

Comprehensive Seminar

Regulation of DNA damage clamp, 9-1-1 recruitment, and its implications in ATR-mediated damage response

Soumallya Sen

To safeguard genomic integrity, cells have evolved sophisticated DNA damage response (DDR) pathways that detect and repair DNA lesions. Key proteins involved in these pathways include phosphoinositide-3-kinase-related kinases (PIKKs) like ATR, ATM, and DNA-PK, which coordinate the cellular response to different types of DNA damage.

ATR (Ataxia Telangiectasia and Rad3-related) is a central kinase in the DDR recruited to DNA damage sites which are characterised by stretches of single-stranded DNA coated with Replication Protein A (RPA). ATR signal transduction is tightly regulated and activated only when replication stress arises. ATR-mediated signal transduction can result in cell cycle arrest, dormant origin firing, transcriptional activation, and/or apoptosis through effector kinases.

In the initial steps of the ATR activation, the 9-1-1 checkpoint clamp is loaded onto 5'- junctions by the clamp loader Rad17-RFC2-5, which further recruits activators such as TOPBP1 to stimulate ATR kinase activity. The 9-1-1 complex is a heterotrimeric DNA damage clamp composed of Rad9, Rad1, and Hus1. However, we still do not understand the contribution of the checkpoint clamp, 9-1-1, in mediating origin firing through translocation. Further, whether damage-dependent recruitment of 9-1-1 facilitates local vs global ATR signalling is not defined. The relevance of 9-1-1 paralogs in ATR signalling is also not explored.

In this seminar, I will discuss the distinguishing features of the 9-1-1 clamp and the clamp loader. The presentation will also include biophysical and biochemical aspects of 9-1-1 recruitment to the DNA damage sites.

Wednesday, May 28th 2025 10:00 Hrs (Tea / Coffee 09:45 Hrs) Seminar Hall, TIFRH