

Internal Webinar

Enhanced chiral discrimination in mass spectrometry with Orbital Angular Momentum Beams

Haritha Venugopal

IIT, Hyderabad

Chirality is a fundamental geometric property that plays a critical role in determining chemical functionality and biological processes across all scales of matter, from the molecular to the macroscopic. Chiral molecules exist as non-superimposable mirror images, or enantiomers, whose distinction requires a chiral probe. Optical approaches exploit the spin angular momentum of light to selectively reveal these chiral molecular signatures. Recent developments in light-matter interaction suggest that twisted light beams carrying orbital angular momentum (OAM) – can enhance chiral selectivity. An experimental approach that combines both the orbital and spin angular momenta of femtosecond laser pulses with mass spectrometry is introduced, resulting in a fourfold amplification of the chiral response. Using S (-)- and R (+)- camphor enantiomers as test molecules, with laser pulses hundreds of femtoseconds long, and energies of a few hundreds of μJ , strong enantioselective ionisation and fragmentation behaviour is observed. Laser intensity and pulse width act as tuneable parameters affecting the chiral signal. The present method proposes a scalable pathway for resolving molecular handedness in complex chemical and biological systems.

Tuesday, Jan 20th 2026

11:30 Hrs

