

Webinar

Roles for Neuronal Excitability and Bioenergetics in the Regulation of Longevity

Kartik Venkatachalam

UTH Science Center, Houston

Mitochondrial ATP production is a well-known regulator of neuronal excitability. In this talk, I will describe a mechanism by which depolarized neurons elevate the somatic ATP/ADP ratio in *Drosophila* glutamatergic neurons. I will show that depolarization increases phospholipase- C β (PLC β) activity by promoting the association of the enzyme with its phosphoinositide substrate. Augmented PLC β activity led to greater release of endoplasmic reticulum (ER) Ca²⁺ via the inositol trisphosphate receptor (IP₃R), which in turn, stimulated mitochondrial Ca²⁺ uptake and ATP synthesis.

Expression of a gene encoding, an ALS-causing variant of an ER membrane protein, VAPB, decouples mitochondrial ATP production from neuronal activity. Due to a combination of diminished ATP production and elevated ATP consumption — established outcomes in ALS neurons — the levels of ATP in mutant neurons are unable to keep up with the bioenergetic burden of depolarization. The resulting paucity of ATP results in diminished extrusion of cytosolic Ca^{2+} , defects in synaptic vesicle release, and chronic depolarization.

Sustained depolarization of neurons in models of ALS and tauopathy led to PLCβ–IP₃R activation, untrammelled and а dramatic shortening of Drosophila lifespan. Investigation of the underlying mechanisms revealed that increased sequestration of Ca²⁺ into endolysosomes was an intermediary in the regulation of lifespan by IP₃Rs. Manipulations that either lowered PLC_B/IP₃R abundance or attenuated endolvsosomal Ca²⁺ overload restored animal longevity. Collectively, our findings demonstrate that depolarizationdependent regulation of PLC_B-IP₃R signalling is required for modulation of ATP/ADP ratio healthy glutamatergic neurons. the in whereas hyperactivation of this axis in chronically depolarized glutamatergic neurons shortens animal lifespan by promoting endolysosomal Ca²⁺ overload.

Friday, Aug 26th 2022 09:00 AM

