

Seminar

Reconstruction of Pathological Amyloid Polymorphs in vitro for Drug Design and Biomarker Discovery in Alzheimer's and Parkinson's Disease

Dhiman Ghosh

ETH Zürich, Switzerland

Amyloid diseases, such as Alzheimer's (AD), Parkinson's (PD), and systemic amyloidoses (Transthyretin Amyloidosis, ATTR; Serum Amyloid A Amyloidosis, SAA; Dialysis-Related Amyloidosis, DRA; Amyloid Light-chain Amyloidosis AL), result from the aggregation of proteins into insoluble fibrils with a cross- β -sheet structure. AD and PD affect ~55 million and ~10 million people globally, respectively, with \$2.8 trillion In India. projected to reach by 2030. costs neurodegenerative conditions are often misdiagnosed due to limited awareness and healthcare access, especially in rural areas. PD is marked by a-synuclein (a-Syn) aggregation into polymorphic fibrils, influenced by pH and buffer composition. Cryo-EM studies have revealed new a-Syn polymorphs at pH 7.0, resembling those seen in juvenile-onset synucleinopathies. Amyloid formation occurs via nucleation, elongation, and secondary nucleation, the latter being the main driver of toxicity. The BRICHOS domain, derived from proSP-C, secondary nucleation by weakly binding inhibits to fibrils. Furthermore, Small molecules modelled on A_{β1-42} fibrils also reduce α -Syn and A β aggregation, offering a promising direction for personalised therapeutic development.

Wednesday, Aug 13th 2025 16:00 Hrs (Tea / Coffee 15:45 Hrs) Auditorium, TIFRH