

Seminar

Tuning Monolayers of MoS₂ for Electronics and Opto-Spintronics via Doping and Heterostructuring

Dipak Maity

TIFR, Hyderabad

Two-dimensional transition-metal dichalcogenide (TMDC) semiconductors like MoS₂ hold promise for next-gen devices, yet face hurdles in industrial applications due to imperfections of wafer-scale deposition techniques and contact impedance issues. On the other hand, monolayer MoS₂'s high Spin-Orbit Coupling (SOC) and inherent broken spatial inversion symmetry hold promise for valleytronics, while magnetic dopants bringing long range magnetic ordering can introduce timereversal symmetry breaking too. Our research was trying to address some such problems by optimising the growth conditions and controlling dopant concentrations. We could successfully grew large-scale monolayer MoS₂ (5mm*5mm) using a modified CVD setup, exhibiting enhanced electron transfer characteristics. We successfully tailored the electronic properties of monolayer MoS₂ and demonstrated an approach where we addressed the high Schottky barrier height (SBH) of conventional metallic contact Au/MoS₂ (~ 215 meV) junction by introducing an interfacial layer of degenerately-doped monolayer of MoS₂ (~9 atomic% V doped MoS₂, V-MoS₂), thereby reducing the SBH to (~ 99 meV). By doping V and Se into the MoS₂ lattice, we could demonstrate a system (V-MoSSe) having both valley shift and bandgap tunability. Furthermore, we demonstrated that V-doped MoS₂ functions as a magnetic spin Hall material, highlighting its potential for spin torque device applications. Potential of MoS_2 in conjunction with other protective layers such as fluorographene in strain dependent photodetector applications is also attempted, and will be briefly discussed.

Monday, Jul 7th 2025 11:30 Hrs (Tea / Coffee 11:15 Hrs) Auditorium, TIFRH