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Theoretical descriptions of the stepping-stone model, a cornerstone of spatial population genetics,
have long overlooked diffusive noise arising from migration dynamics. We derive an exact fluctuating
hydrodynamic description of this model from microscopic rules, which we then use to demonstrate
that diffusive noise significantly alters early-time genetic demixing, which we characterize through
heterozygosity, a key measure of diversity. Combining macroscopic fluctuation theory and micro-
scopic simulations, we demonstrate that the scaling of density fluctuations in a spatial domain
displays an early-time behaviour dominated by diffusive noise. Our exact results underscore the
need for additional terms in existing continuum theories and highlight the necessity of including
diffusive noise in models of spatially structured populations.

Understanding the mechanisms that generate and
maintain genetic diversity in spatially structured popu-
lations is a fundamental problem in evolutionary biol-
ogy [1–6]. Spatial population genetics, epitomized by
the stepping-stone model [7, 8], provides a framework
to study allele dynamics across discrete demes connected
by migration. The stepping-stone model has been in-
strumental in exploring how migration and genetic drift
influence allele frequencies across discrete demes, and it
has been very successful in quantitatively capturing fixa-
tion time (the mean time for a particular allele to become
dominant) as well as genetic drift in spatially evolving
populations [8, 9]. Despite the utility of the stepping-
stone model, classical theories [1, 7] and modern contin-
uum approaches [8, 10, 11] have focused on genetic drift
and selection as well as predominantly on local demo-
graphic noise, while overlooking the stochastic fluctua-
tions arising from migration, referred to as diffusive noise.
This oversight is significant, as migration rates in natu-
ral populations can surpass birth-death rates, suggesting
that diffusive noise may substantially impact genetic di-
versity patterns.

Coarse-grained hydrodynamic descriptions, such as
the stochastic Fisher-Kolmogorov-Petrovsky-Piscounov
(sFKPP) equation [8, 10–12], provide a continuum frame-
work to study large-scale allele dynamics and have been
often used to interpret the stepping stone model. Al-
though these hydrodynamic models capture emergent
behavior, they are often derived phenomenologically or
through coarse-graining lattice models. This makes
microscopic models crucial for identifying effects that
may be overlooked in continuum approximations. Re-
cent studies [5, 8, 13, 14] have derived fluctuating hy-
drodynamic equations for similar systems but omitted
noise from particle exchanges, implicitly assuming that
reaction-driven fluctuations dominate. This gap is criti-
cal: migration rates in natural populations often exceed
birth-death rates [15–18], suggesting diffusive noise could
profoundly influence diversity and can lead to incom-
plete or inaccurate representations of genetic diversity
patterns. Notably, diffusive noise has also been shown to
significantly modify the dynamics and phase behavior in
other microscopic systems [19–23].
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FIG. 1: (a) Schematic of the one-dimensional stepping-stone
model. The lattice sites are indexed by i, with each site repre-
senting an island (or deme) inhabited by N individuals of two
distinct types: A (blue) and B (yellow). (b) Shows the evolu-
tion of the frequency fi = nA

i /N over time, indicating three
different regimes. The early-time regime features a well-mixed
phase where diffusion dominates dynamics, making diffusive
noise essential for computing observables. At intermediate
times, reaction-driven genetic demixing forms distinct allele
domains, with diffusive noise still influencing domain bound-
aries. The late-time fixation regime emerges when domain
sizes grow to match the system size, with a single allele type
present in the entire system.

In this Letter, we address this gap by deriving a fluctu-
ating hydrodynamic equation that incorporates both dif-
fusive and reaction (demographic) noise. Our approach
builds upon recent advancements in fluctuating hydrody-
namics [20, 24–26], which have successfully modeled mi-
croscopic fluctuations in systems with both diffusive and
reactive dynamics. We illustrate the significant effects of
this diffusive noise by computing the heterozygosity as
well as density fluctuations, and show how this is a much
more accurate framework for understanding microscopic
simulations as well as experiments. Crucially, we show
that the early time behavior of genetic demixing, quan-
tified by heterozygosity at the origin, is well described
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by a modified hydrodynamic equation and not by the
ubiquitously used sFKPP framework [8, 11, 27].

Stepping Stone Model: We consider a one-dimensional
stepping-stone model (see Fig. 1) consisting of a peri-
odic lattice of length l = La, with lattice sites indexed
by i = −L/2 + 1, ...,−1, 0, 1, ..., L/2 and separated by a
distance a. Each site represents a deme that contains a
fixed number N of individuals belonging to two allelic
types, denoted A and B. The system evolves through
local reproduction and short-range migration processes,
which are modeled using discrete-time update rules.

At each time step, the following processes can occur:
(1) Reproduction: Two individuals are randomly selected
within a deme, and one of them reproduces while the
other is removed, maintaining the population size N at
each site fixed. Reproduction is modeled by the following
reactions [28]:

A+B
K1−−→ A+A, A+B

K2−−→ B +B, (1)

where K1 and K2 are the rates of reproduction of alleles
A and B, respectively. (2) Migration: With rate Rd, an
individual at site i is exchanged with an individual from
a neighboring site i + 1. This model includes stochastic
effects due to genetic drift, leading to fixation dynamics
and spatial heterogeneity in allele frequencies. The key
observable of interest is the fraction fi(τj) of allele A at
site i at time step τj , which evolves under the combined
influence of reactions and diffusion. This is defined as
fi(τj) = nA

i /N , where nA
i is the number of A alleles. The

fraction of allele B is then simply given by 1−fi(τj), since
the total number of individuals per site is conserved. Our
simulations employ the same microscopic rules, whose
details as well as additional explanations related to the
figures in the main text are provided in the Supplemental
Material [29].

Derivation of Fluctuating Hydrodynamics: To de-
rive the fluctuating hydrodynamics of the stepping-stone
model, we start from the discrete description and extend
it to a continuum framework [30–32]. The change in al-
lele frequency at site i during a microscopic time step dτ
is captured by the quantity Ji(τj) = fi(τj+1) − fi(τj),
which we refer to as the microscopic current. The prob-
ability of observing a specific trajectory of frequencies
{fi(τj)} can be expressed in terms of these currents as

P ({f}) =

〈∏
i,j

δ (fi(τj+1)− fi(τj)− Ji(τj))

〉
{J}

, (2)

where the delta functions enforce the dynamical rules,
and the average is taken over all possible realizations (or
histories) of {J}. Next, using the integral representation
of the delta function, δ(a − b) =

∫ i∞
−i∞

df̂
2πie

−f̂(a−b), the
probability of observing a trajectory is rewritten as a
path integral over auxiliary fields f̂i(τj) as

P ({f}) =
∫

Df̂ e−S . (3)

Here, Df̂ =
∏L/2

i=−L/2+1

∏M
j=1 df̂i(τj) denotes the path

integral measure over the auxiliary fields at each site i
and time step τj and the action S is given by

S =
∑
i,j

[
f̂i(τj) (fi(τj+1)− fi(τj))

]

− ln

∏
j

〈
e
∑

i f̂i(τj)Ji(τj)
〉

︸ ︷︷ ︸
(Td+Tr)

.
(4)

Eq. (4) holds for any process governed by a microscopic
stochastic rule, whereas the specific form of the second
term depends on the underlying process. This path-
integral approach provides a systematic framework to de-
rive the continuum limit. Given that the probability of
each event is known, the calculation of the average in
Eq. (4) becomes straightforward [23, 33]. The second
term of the above action has been divided into contribu-
tions from two sources, Td and Tr, which can be derived
from the microscopic rules of the stepping stone model.
The diffusive part Td which arises from particle exchanges
between neighboring sites i and i+ 1 is given as

Td = Rddτ
∑
i,j

[
fi(τj)(1− fi+1(τj))

(
e

f̂i+1(τj)−f̂i(τj)

N − 1

)

+ fi+1(τj)(1− fi(τj))

(
e

f̂i(τj)−f̂i+1(τj)

N − 1

)]
. (5)

A similar expression for Td has been reported for the
asymmetric simple exclusion process (ASEP) [34, 35] as
well as for other related models [23, 26, 33]. The reaction
term Tr, which captures birth-death processes within a
deme, is given as

Tr = dτ
∑
i,j

[
K1fi(τj)(1− fi(τj))

(
e

f̂i(τj)

N − 1

)

+ K2fi(τj)(1− fi(τj))

(
e−

f̂i(τj)

N − 1

)]
. (6)

We next use this form of the action to derive the contin-
uum fluctuating hydrodynamic equation for the stepping-
stone model. To do so, we perform a coarse-graining pro-
cedure. The spatial and temporal coordinates are scaled
as x = ia and t = jdτ , with a, dτ → 0. To ensure hy-
drodynamic scaling, the exchange rate Rd is rescaled as
Rd → R̃d/a

2, ensuring that diffusive noise and reaction
noise contribute equally in the hydrodynamic limit. We
expand the discrete fields fi±1(τj) and f̂i±1(τj) in Tay-
lor series: f(x ± a, t) ≈ f(x, t) ± a∂xf + a2

2 ∂2
xf , and

f̂(x ± a, t) ≈ f̂(x, t) ± a∂xf̂ + a2

2 ∂2
xf̂ , and substitute

into the action S. Here, f(x, t) is the continuous rep-
resentation of the allele fraction. Retaining terms up to
O(a2, dτ), we find that the action separates into contri-
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butions from diffusion and reactions as:

S =
1

a

∫
dx dt

[
f̂∂tf +Dd∂xf∂xf̂ − σs

2
f̂

−σd

2
(∂xf̂)

2 − σr

2
f̂2

]
,

(7)

where Dd = R̃d/N is the macroscopic diffusion constant,
while σd = 2Ddf(1 − f)/N , σr = 2Drf(1 − f)/N and
σs = 2Sf(1− f)/N are noise amplitudes associated with
diffusion, reaction and selection (deterministic drift) re-
spectively. In addition, Dr = Rr/N , Rr = (K1 +K2)/2,
and S = K1 − K2 represent the genetic diffusion con-
stant, neutral reaction rate, and selective advantage, re-
spectively. Next, following standard techniques [30, 36–
38], we employ a Hubbard-Stratonovich transformation
so that the quadratic terms in f̂ are linearized by intro-
ducing Gaussian noise fields ηd(x, t) (conservative) for the
diffusive term σd

2 (∂xf̂)
2 and ηr(x, t) (non-conservative)

for the reaction term σr

2 f̂2. This yields the probability
of observing a history of allele frequencies as

P ({f}) =
∫

Df̂DηdDηr e
−S . (8)

where,
∫
Df̂DηdDηr denotes the path integral measure

over the auxiliary fields f̂(x, t), and the noise fields
ηd(x, t) and ηr(x, t), at each space-time point and

S =
1

a

∫
dx dt

[
f̂∂tf − f̂Dd∂

2
xf − f̂∂x (

√
σdηd)

− f̂
σs

2
− f̂

√
σrηr +

η2d
2

+
η2r
2
. (9)

Performing an integral over f̂ , we obtain

P ({f}) ≈
∫

DηdDηr e−
1
2a

∫
dxdt(η2

d+η2
r) ×

δ

(
∂tf −Dd∂

2
xf − σs

2
− ∂x (

√
σdaηd)−

√
σraηr

)
.

(10)

This leads to the stochastic partial differential equation:

∂tf = Dd∂
2
xf+

S

N
f(1−f)+∂x (

√
σdaηd)+

√
σraηr, (11)

where ηd and ηr are Gaussian white noises with mean
zero and correlations given by

⟨ηd(x1, t1)ηd(x2, t2)⟩ = δ(x1 − x2)δ(t1 − t2),

⟨ηr(x1, t1)ηr(x2, t2)⟩ = δ(x1 − x2)δ(t1 − t2),

⟨ηd(x1, t1)ηr(x2, t2)⟩ = 0. (12)

We note that Eq. (11) without the presence of the third
term is popularly known as the sFKPP equation [8, 10–
12], which is a common model to describe the invasion of
advantageous organisms within an existing population.
To highlight the effects of diffusive noise, we focus on the
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FIG. 2: Effect of diffusive noise on spatial heterozygosity
H(x, t): (a) and (b) display H(x, t) at different time instants.
The red circles represent data from direct Monte Carlo simu-
lations of the stepping stone model; stars indicate solutions of
Eq. (14) that include diffusive noise, and squares correspond
to solutions without this noise. (c) illustrates the time evolu-
tion of heterozygosity at the origin H(0, t) for various reaction
rates. The points are obtained from Monte Carlo simulations.
The solid and dashed lines represent solutions of Eq. (14) with
and without diffusive noise, respectively. (d) presents the
long-time decay of heterozygosity for different reaction rates,
with the time axis rescaled by the reaction rate. All curves
display the same asymptotic behavior at large times [29].

case where the selective advantage is zero, i.e., we set
the second term in Eq. (11) to zero. This allows us to
isolate and study the impact of stochastic effects due to
migration and genetic drift in detail.

Effect on Heterozygosity: To illustrate the conse-
quences of the diffusive noise, we focus on the two-
point correlation function H(x1, x2, t) = ⟨f(x1, t)(1 −
f(x2, t))+f(x2, t)(1−f(x1, t))⟩, commonly referred to as
the average spatial heterozygosity in population genetics.
This represents the average probability that two individ-
uals at positions x1 and x2 carry different alleles and
is routinely used to quantify genetic diversity [7, 8, 27].
Starting from the fluctuating hydrodynamic equation for
the frequency of the allele given in Eq. (11), we derive the
equation for H. Following previous work [8], we apply
Ito’s Lemma, and expand H to second order in δf , using
the stochastic increments δf(x, t) = Dd∂

2
xf δt+ dw(x, t),

where dw encodes the noise correlations, we have

⟨dw(x, t)dw(x′, t′)⟩ =
(
2Dda

N
∂x∂x′ [f(1− f)δ(x− x′)]

+
2Dra

N
f(1− f)δ(x− x′)

)
δ(t− t′).

(13)

An analogous form of averaging arises in general
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Langevin processes describing systems with diffusive
dynamics [39]. After averaging over the noise, the
deterministic terms yield Dd(∂

2
x1

+ ∂2
x2
)H, while the

noise contributions produce: − 2Dra
N Hδ(x1 − x2) and

+ 2Dda
N ∂x1

∂x2
[Hδ(x1 − x2)] respectively. The first term

reflects reaction-driven diversity loss as seen in previous
studies [4, 8, 27], while the second term represents a new
contribution arising from diffusive noise. The resulting
equation for the heterozygosity H(x1, x2) becomes

∂tH = 2Dd∂
2
xH − 2Dra

N
Hδ(x) +

2Dda

N
∂2
x[Hδ(x)], (14)

where x = x1 − x2. This generalizes previous equations
that did not include diffusive noise [8, 40]. Our mod-
ified equation introduces an additional term, the third
term arising uniquely from diffusive noise, which modi-
fies the spatial structure of heterozygosity. Specifically,
it suppresses diversity at the origin while enhancing it
at other spatial locations at short times. This behav-
ior is illustrated by the heterozygosity profiles shown in
Fig. 2. We observe a clear discrepancy between Monte
Carlo simulations and the theory without diffusive noise.
However, when diffusive noise is correctly accounted for,
the simulations match the theory perfectly. Previous the-
ories without diffusive noise do not capture this, lead-
ing to discrepancies in spatial profiles when Rr ≪ Rd.
This analysis shows that early genetic demixing is accu-
rately described by a hydrodynamic equation with dif-
fusive noise rather than the sFKPP equation. However,
the long-time behavior remains the same regardless of the
presence of diffusive noise (see Supplemental Material for
details [29]).

Current Fluctuations: To further demonstrate the im-
portance of diffusive noise, we next focus on an additional
quantity, namely the fluctuations in the number of alleles
across a spatial domain. The total flux of particles QT

across the origin up to a time T has become a standard
observable in diffusive systems, both in and out of equi-
librium, over the past few decades [22, 24, 41–48]. It is
most commonly used as a test of large deviations using
macroscopic fluctuation theory (MFT) [38, 42, 49–53]. In
the following, we use this quantity to determine the rela-
tive contribution of diffusive noise in the stepping-stone
model. We define the net change in allele concentration
A up to time T in half the spatial domain (which includes
contributions from both flux and reactions), also called
the integrated current:

QT =
1

a

∫ l/2

0

[f(x, T )− f(x, 0)] dx. (15)

The variance of QT , denoted ⟨Q2
T ⟩c, provides insight into

the fluctuations in allele transport within the system. To
compute this variance, we employ the MFT framework,
which facilitates the analysis of fluctuations in systems
governed by hydrodynamic equations [49]. Within the
MFT framework, the probability of observing a specific
trajectory of the system is characterized by an action

functional S. This action S is the same as Eq. (9) but
now biased by an extra term λqT , i.e., S = S − λqT .
The moment generating function for QT , ⟨eλQT ⟩, can be
expressed as a path integral:

⟨eλQT ⟩ =
∫

Df Df̂ e−LS , (16)

where f̂ is the conjugate field, qT =
∫ 1/2

0
[f(x′, T ) −

f(x′, 0)] dx′ represents the scaled integrated current. To
evaluate this path integral, we apply a saddle-point ap-
proximation [42], leading to a set of coupled Euler-
Lagrange equations for the fields f(x, t) and f̂(x, t):

∂tf = Dd∂
2
xf − ∂x

(
σd(f)∂xf̂

)
+ σr(f)f̂ ,

∂tf̂ = −Dd∂
2
xf̂ − σ′

d(f)

2
(∂xf̂)

2 − σ′
r(f)

2
f̂2.

(17)

Here, the primes denote derivatives with respect to f .
Next, we apply a standard perturbative expansion to

compute the current fluctuations [22, 42]. We expand
both fields in powers of the perturbation parameter λ,
which quantifies deviations from the typical trajectory:

f = f0+λf1+λ2f2+ · · · , f̂ = λf̂1+λ2f̂2+ · · · . (18)

At linear order in λ, the Euler-Lagrange equations be-
come

∂tf1 = Dd∂
2
xf1 − ∂x

(
σd(f0)∂xf̂1

)
+ σr(f0)f̂1,

∂tf̂1 = −Dd∂
2
xf̂1.

(19)

The boundary conditions are f1(x, 0) = 0 (quenched
initial state) and f̂1(x, T ) = θ(x) [22, 24, 53], where
θ(x) = 1 for x ∈ [0, 1/2]. The homogeneous solution
for f̂1, backward in time (τ = T − t) can be easily found
in Fourier space to be

f̂1(k, τ) =
i(1− eikπ)

2kπ
e−Dd(2πk)

2τ . (20)

At leading order (λ2), the variance ⟨Q2
T ⟩c becomes:

⟨Q2
T ⟩c =

∞∑
k=−∞

∫ T

0

dt
[
σdk

2|f̂1(k, t)|2 + σr|f̂1(k, t)|2
]
,

(21)
where f̂1(k, t) given in Eq. (20) solves the linearized
MFT equations in Eq. (19). The predictions from the
above expression are compared with the results from di-
rect numerical simulations of the stepping-stone model in
Fig. 3, showing perfect agreement. It is straightforward
to analyze the scaling limits of the above expression: at
short times (T ≪ T ∗) diffusive noise dominates and the
sum converges to a scaling form ⟨Q2

T ⟩c ∼ σd

√
T/

√
2πDd,

while at long times (T ≫ T ∗) reaction noise prevails,
yielding ⟨Q2

T ⟩c ∼ σrT/8, with a crossover timescale given
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FIG. 3: The variance of the current QT plotted against time
for different values of L. The points represent the results ob-
tained from Monte Carlo simulations, and the dashed lines are
obtained from the MFT prediction (performing the summa-
tion in Eq. (21)). (Inset) The variance is plotted in rescaled
coordinates, where the temporal coordinate is scaled as T/L2

and the variance is scaled as ⟨QT
2⟩c/L. All the curves for dif-

ferent system sizes collapse onto a single curve. For T ≪ T ∗,
⟨Q2

T ⟩ ∼
√
T (diffusive noise dominates); whereas for T ≫ T ∗,

⟨Q2
T ⟩ ∼ T (reaction noise), confirming the theoretical scaling.

by T ∗ ∼ 32σ2
d/(πσ

2
rDd). The

√
T scaling is typical of

diffusive systems [41, 42] while the linear T behavior is
typical of reactive as well as active systems [48, 54]. Inter-
estingly, the short-time behavior of current fluctuations
in the stepping stone model is the same as the symmet-
ric simple exclusion process (SSEP) [35, 38, 42, 55, 56],
since in the absence of reaction dynamics the exchange
rules are similar, however the fluctuations are reduced by
a factor of 1/N compared to the SSEP.

Conclusions: Our analysis shows that both types of
noise are essential for accurate predictions in spatially
structured populations, particularly at short times when
migration rates exceed reaction rates (Rd ≫ Rr). This
insight extends beyond population genetics to general
reaction-diffusion systems where transport and local re-
actions coexist, such as epidemic spreading, ecological
invasions, or chemical front propagation [57–59]. While

the classical stochastic Fisher equation [4, 11, 27] and
related continuum models [8, 60] focus solely on reac-
tion noise (genetic drift), they miss initial fluctuations
when migration prevails. Our exact results demonstrate
that diffusive noise is crucial for correctly modeling early-
time genetic demixing in populations. We have provided
quantifiable observables such as heterozygosity as well
as current fluctuations, which offer a direct measure to
identify the timescales where diffusive noise is relevant.
This limitation is crucial considering experiments, where
high migration rates in microbial expansions cause rapid
allele mixing and reduce local heterozygosity. We there-
fore hope our study motivates future experimental and
numerical studies designed to investigate early-time ge-
netic diversity and density fluctuations in spatially grow-
ing populations.

There are several interesting directions for future re-
search. Our framework can be easily extended to other
reaction-diffusion systems, including two-dimensional
and heterogeneous landscapes, to study how the interplay
between different noise types shapes biodiversity pat-
terns. It still remains to be explored how diffusive noise
influences fixation times in the stepping stone model
as well as in general phase-separating populations. It
would also be interesting to study the differences between
quenched (fixed) and annealed (random) initial condi-
tions [41–43, 45, 61] in such models of population genet-
ics, which can be addressed within the MFT framework
we have developed. Finally, our results suggest that the
stochastic Fisher equation may have limitations in its
applicability to systems characterized by strong migra-
tion rates. In the absence of noise, the nonlinear equa-
tion (11) admits Fisher waves [10, 12] that propagate at a
unique speed dependent on initial conditions [62]; small
demographic noise preserves the wave nature but cor-
rects the front speed [40] in a noise-strength-dependent
manner [11, 60]. Since diffusive noise could add fur-
ther corrections, understanding how such Fisher wave-
fronts and genetic domain walls evolve under strong dif-
fusive noise could provide new insights on the roughness
and stability of interfaces in biological and chemical sys-
tems [36, 63, 64].

Acknowledgments: We thank R. Benzi, S.
Chakraborty, and S. Prakash for discussions.

[1] W. J. Ewens and W. Ewens, Mathematical Population
Genetics: Theoretical Introduction, vol. 27 (Springer,
2004).

[2] O. Hallatschek, P. Hersen, S. Ramanathan, and D. R.
Nelson, Proceedings of the National Academy of Sciences
104, 19926 (2007).

[3] N. Rana, P. Ghosh, and P. Perlekar, Physical Review E
96, 052403 (2017).

[4] S. Pigolotti, R. Benzi, P. Perlekar, M. H. Jensen,
F. Toschi, and D. R. Nelson, Theoretical Population Bi-

ology 84, 72 (2013).
[5] U. C. Täuber, in Order, Disorder and Criticality: Ad-

vanced Problems of Phase Transitions and Complex Sys-
tems (World Scientific, 2025), pp. 67–115.

[6] J. Murray, Mathematical Biology: An Introduction
(Springer, 2002).

[7] M. Kimura and G. H. Weiss, Genetics 49, 561 (1964).
[8] K. S. Korolev, M. Avlund, O. Hallatschek, and D. R.

Nelson, Reviews of Modern Physics 82, 1691 (2010).
[9] T. Singha, P. Perlekar, and M. Barma, Physical Review

https://link.springer.com/book/10.1007/978-0-387-21822-9
https://link.springer.com/book/10.1007/978-0-387-21822-9
https://www.pnas.org/doi/epdf/10.1073/pnas.0710150104
https://journals.aps.org/pre/pdf/10.1103/PhysRevE.96.052403
https://www.sciencedirect.com/science/article/abs/pii/S0040580912001360
https://www.sciencedirect.com/science/article/abs/pii/S0040580912001360
https://arxiv.org/pdf/2405.05006
https://arxiv.org/pdf/2405.05006
https://arxiv.org/pdf/2405.05006
http://pcleon.if.ufrgs.br/pub/listas-sistdin/MurrayI.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1210594/pdf/561.pdf
https://link.aps.org/doi/10.1103/RevModPhys.82.1691
https://journals.aps.org/prresearch/pdf/10.1103/PhysRevResearch.2.023412


6

Research 2, 023412 (2020).
[10] R. A. Fisher, Annals of Eugenics 7, 355 (1937).
[11] C. R. Doering, C. Mueller, and P. Smereka, Physica

A: Statistical Mechanics and its Applications 325, 243
(2003).

[12] A. N. Kolmogorov and N. Piskunov, in Differential Equa-
tions (CRC Press, 2019), pp. 106–132.

[13] T. L. Duty, Ph.D. thesis, University of British Columbia
(2000).

[14] U. C. Täuber, M. Howard, and B. P. Vollmayr-Lee, Jour-
nal of Physics A: Mathematical and General 38, R79
(2005).

[15] M. Raymond and M. Marquine, Journal of Evolutionary
Biology 7, 315 (1994).

[16] R. M. May, J. A. Endler, and R. E. McMurtrie, The
American Naturalist 109, 659 (1975).

[17] T. Lenormand, Trends in Ecology & Evolution 17, 183
(2002).

[18] S. Jain and A. D. Bradshaw, Heredity (1966).
[19] S. Prakash, M. Barma, and K. Ramola, arXiv preprint

arXiv:2503.16103 (2025).
[20] T. Agranov, S. Ro, Y. Kafri, and V. Lecomte, Journal

of Statistical Mechanics: Theory and Experiment 2021,
083208 (2021).

[21] T. Bodineau and B. Derrida, Journal of Statistical
Physics 145, 745 (2011).

[22] S. Jose, R. Dandekar, and K. Ramola, Journal of Statis-
tical Mechanics: Theory and Experiment 2023, 083208
(2023).

[23] R. Mukherjee, S. Saha, T. Sadhu, A. Dhar, and S. Sab-
hapandit, Physical Review E 111, 024128 (2025).

[24] B. Derrida and A. Gerschenfeld, Journal of Statistical
Physics 137, 978 (2009).

[25] L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, and
C. Landim, Reviews of Modern Physics 87, 593 (2015).

[26] A. G. Thompson, J. Tailleur, M. E. Cates, and R. A.
Blythe, Journal of Statistical Mechanics: Theory and Ex-
periment 2011, P02029 (2011).

[27] K. Korolev and D. R. Nelson, Physical Review Letters
107, 088103 (2011).

[28] P. A. P. Moran, Random Processes in Genetics (Pro-
ceedings of the Cambridge Philosophical Society, vol. 54,
issue 01, p. 60, 1958).

[29] See Supplemental Material for details.
[30] A. Lefevre and G. Biroli, Journal of Statistical Mechan-

ics: Theory and Experiment 2007, P07024 (2007).
[31] M. Doi, Journal of Physics A: Mathematical and General

9, 1465 (1976).
[32] L. Peliti, Journal de Physique 46, 1469 (1985).
[33] D. Martin, Ph.D. thesis, Université Paris Cité (2021).
[34] B. Derrida, Physics Reports 301, 65 (1998).
[35] H. Spohn, Large Scale Dynamics of Interacting Particles

(Springer Science & Business Media, 2012).
[36] L. Pechenik and H. Levine, Physical Review E 59, 3893

(1999).
[37] P. C. Martin, E. Siggia, and H. Rose, Physical Review A

8, 423 (1973).
[38] B. Derrida, C. Enaud, C. Landim, and S. Olla, Journal

of Statistical Physics 118, 795 (2005).
[39] D. S. Dean, Journal of Physics A: Mathematical and Gen-

eral 29, L613 (1996).
[40] E. Brunet and B. Derrida, Physical Review E 56, 2597

(1997).
[41] B. Derrida and A. Gerschenfeld, Journal of Statistical

Physics 137, 978 (2009).
[42] P. Krapivsky and B. Meerson, Physical Review E 86,

031106 (2012).
[43] T. Banerjee, R. L. Jack, and M. E. Cates, Physical Re-

view E 106, L062101 (2022).
[44] P. L. Krapivsky, K. Mallick, and T. Sadhu, Journal of

Statistical Physics 160, 885 (2015).
[45] P. Krapivsky, K. Mallick, and T. Sadhu, Physical Review

Letters 113, 078101 (2014).
[46] K. Mallick, H. Moriya, and T. Sasamoto, Physical Review

Letters 129, 040601 (2022).
[47] R. Dandekar, P. Krapivsky, and K. Mallick, Physical Re-

view E 107, 044129 (2023).
[48] S. Jose, A. Rosso, and K. Ramola, Physical Review E

108, L052601 (2023).
[49] L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, and

C. Landim, Physical Review Letters 94, 030601 (2005).
[50] L. Bertini, A. D. Sole, D. Gabrielli, G. Jona-Lasinio,

and C. Landim, Journal of Statistical Physics 123, 237
(2006).

[51] L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, and
C. Landim, Journal of Statistical Mechanics: Theory and
Experiment 2007, P07014 (2007).

[52] L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio,
and C. Landim, Journal of Statistical Physics 135, 857
(2009).

[53] R. Dandekar, P. Krapivsky, and K. Mallick, Physical Re-
view E 110, 064153 (2024).

[54] T. Banerjee, S. N. Majumdar, A. Rosso, and G. Schehr,
Physical Review E 101, 052101 (2020).

[55] D. G. Levitt, Physical Review A 8, 3050 (1973).
[56] R. Arratia, The Annals of Probability 11, 362 (1983).
[57] J. V. Noble, Nature 250, 726 (1974).
[58] D. Campos, V. Méndez, and V. Ortega-Cejas, Bulletin

of mathematical biology 70, 1937 (2008).
[59] L. Schimansky-Geier and C. Zülicke, Zeitschrift für

Physik B Condensed Matter 82, 157 (1991).
[60] O. Hallatschek and K. S. Korolev, Physical Review Let-

ters 103, 108103 (2009).
[61] J. Cividini and A. Kundu, Journal of Statistical Mechan-

ics: Theory and Experiment 2017, 083203 (2017).
[62] W. Van Saarloos, Physical Review A 37, 211 (1988).
[63] O. Hallatschek and D. R. Nelson, Evolution 64, 193

(2010).
[64] A. Lemarchand, I. Nainville, and M. Mareschal, Euro-

physics Letters 36, 227 (1996).
[65] A. Prados, J. Brey, and B. Sánchez-Rey, Journal of Sta-

tistical Physics 89, 709 (1997).
[66] A. B. Bortz, M. H. Kalos, and J. L. Lebowitz, Journal of

Computational Physics 17, 10 (1975).
[67] A. F. Voter, in Radiation Effects in Solids (Springer,

2007), pp. 1–23.

https://journals.aps.org/prresearch/pdf/10.1103/PhysRevResearch.2.023412
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1469-1809.1937.tb02153.x
https://people.math.rochester.edu/faculty/cmlr/Preprints/inter-fkpp.pdf
https://people.math.rochester.edu/faculty/cmlr/Preprints/inter-fkpp.pdf
https://benjaminmoll.com/wp-content/uploads/2019/07/KPP.pdf
https://benjaminmoll.com/wp-content/uploads/2019/07/KPP.pdf
https://open.library.ubc.ca/media/stream/pdf/831/1.0085696/2
https://iopscience.iop.org/article/10.1088/0305-4470/38/17/R01/pdf
https://iopscience.iop.org/article/10.1088/0305-4470/38/17/R01/pdf
https://academic.oup.com/jeb/article-abstract/7/3/315/7322397
https://academic.oup.com/jeb/article-abstract/7/3/315/7322397
https://www.journals.uchicago.edu/doi/10.1086/283036
https://www.journals.uchicago.edu/doi/10.1086/283036
https://www.sciencedirect.com/science/article/pii/S0169534702024977
https://www.nature.com/articles/hdy196642
https://arxiv.org/abs/2503.16103
https://arxiv.org/abs/2503.16103
https://arxiv.org/abs/2104.14650
https://arxiv.org/abs/2104.14650
https://link.springer.com/article/10.1007/s10955-011-0315-7
https://link.springer.com/article/10.1007/s10955-011-0315-7
https://doi.org/10.1103/PhysRevE.110.064153
https://doi.org/10.1103/PhysRevE.110.064153
https://arxiv.org/abs/2405.19984
https://link.springer.com/article/10.1007/s10955-009-9830-1
https://link.springer.com/article/10.1007/s10955-009-9830-1
https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.87.593
https://iopscience.iop.org/article/10.1088/1742-5468/2011/02/P02029/meta
https://iopscience.iop.org/article/10.1088/1742-5468/2011/02/P02029/meta
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.107.088103
https://www.cambridge.org/core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society/article/abs/random-processes-in-genetics/9EEED52D6AE22A026036F32D9B1CA07C
https://iopscience.iop.org/article/10.1088/1742-5468/2007/07/P07024
https://iopscience.iop.org/article/10.1088/1742-5468/2007/07/P07024
https://iopscience.iop.org/article/10.1088/0305-4470/9/9/008/meta
http://www.peliti.org/Publications/pathIntegrals.pdf
https://theses.hal.science/tel-03479496/
https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://www.phys.ens.psl.eu/~derrida/PAPIERS/1998/altenberg-1998.pdf&ved=2ahUKEwiUxsjl6caNAxWDA9sEHd0bLfUQFnoECBgQAQ&usg=AOvVaw0ImcbqEpF_batfSHr63pxt
https://link.springer.com/book/10.1007/978-3-642-84371-6
https://journals.aps.org/pre/pdf/10.1103/PhysRevE.59.3893
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.8.423
https://link.springer.com/article/10.1007/s10955-004-1989-x
https://link.springer.com/article/10.1007/s10955-004-1989-x
https://iopscience.iop.org/article/10.1088/0305-4470/29/24/001
https://iopscience.iop.org/article/10.1088/0305-4470/29/24/001
https://journals.aps.org/pre/pdf/10.1103/PhysRevE.56.2597
https://link.springer.com/article/10.1007/s10955-009-9830-1
https://link.springer.com/article/10.1007/s10955-009-9830-1
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.86.031106
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.106.L062101
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.106.L062101
https://link.springer.com/article/10.1007/s10955-015-1291-0
https://link.springer.com/article/10.1007/s10955-015-1291-0
https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.113.078101
https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.113.078101
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.129.040601
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.129.040601
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.107.044129
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.107.044129
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.108.L052601
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.94.030601
https://link.springer.com/article/10.1007/s10955-006-9056-4
https://iopscience.iop.org/article/10.1088/1742-5468/2007/07/P07014
https://iopscience.iop.org/article/10.1088/1742-5468/2007/07/P07014
https://arxiv.org/abs/0807.4457
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.110.064153
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.110.064153
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.101.052101
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.8.3050
https://projecteuclid.org/journals/annals-of-probability/volume-11/issue-2/The-Motion-of-a-Tagged-Particle-in-the-Simple-Symmetric/10.1214/aop/1176993602.full
https://www.nature.com/articles/250726a0
https://pubmed.ncbi.nlm.nih.gov/18696165/
https://pubmed.ncbi.nlm.nih.gov/18696165/
https://link.springer.com/article/10.1007/BF01313999
https://link.springer.com/article/10.1007/BF01313999
https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.103.108103
https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.103.108103
https://iopscience.iop.org/article/10.1088/1742-5468/aa75de/meta
https://iopscience.iop.org/article/10.1088/1742-5468/aa75de/meta
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.37.211
https://pubmed.ncbi.nlm.nih.gov/19682067
https://iopscience.iop.org/article/10.1209/epl/i1996-00209-3/pdf
https://iopscience.iop.org/article/10.1209/epl/i1996-00209-3/pdf
https://link.springer.com/article/10.1007/BF02765541
https://link.springer.com/article/10.1007/BF02765541
https://www.sciencedirect.com/science/article/abs/pii/0021999175900601
https://www.sciencedirect.com/science/article/abs/pii/0021999175900601
https://link.springer.com/chapter/10.1007/978-1-4020-5295-8_1


7

Supplemental Material for
“Diffusive noise controls early stages of genetic demixing”

This document provides supplemental figures and details related to the results presented in the main text.

I. DETAILS OF NUMERICAL SOLUTION

A. Numerical integration of the heterozygosity equation

We numerically integrate the modified equation for heterozygosity, given in Eq. (14) in the main text, repeated
below

∂tH = 2Dd∂
2
xH − 2Dra

N
Hδ(x) +

2Dda

N
∂2
x[Hδ(x)], (22)

In order to numerically integrate the above equation, we use a finite difference scheme. For the time integration,
we use the forward Euler method. Spatial derivatives involving the Laplacian are discretized using a second-order
central difference scheme. A particular challenge arises from the third term in the RHS of Eq. (22), which involves
the second derivative of the Dirac delta function. To handle this, we regularize the Dirac delta by approximating it
with a Gaussian function defined as

δµ(x) = lim
µ→∞

√
µ

π
exp (−µx2). (23)

For the central difference scheme, the standard deviation of the Gaussian, 1/
√
2µ, must be at least twice the spatial

discretization ∆x. As µ increases, ∆x must be refined accordingly. The time step ∆t is chosen such that ∆t = (∆x)2

to ensure stability of the numerical scheme. With these, Eq. (22) is approximated by

H(x, t+∆t) = H(x, t) +
2Dd∆t

∆x2

(
H(x+∆x, t) +H(x−∆x, t)− 2H(x, t)

)
− 2Dra∆t

N
H(x, t)δ(x) +

2Dda∆t

N∆x2

(
H(x+∆x, t)δ(x+∆x)

+ H(x−∆x, t)δ(x−∆x)− 2H(x, t)δ(x)
)
. (24)

Once the solution for H(x, t) is obtained, it is averaged to filter out fluctuations below the lattice length scale a. The
coarse-grained field H(x̄, t) is defined as

H(x̄, t) =
1

a

∑
|x−j∆x|<a

H(x̄− j∆x, t)∆x, (25)

where x̄ = ia and i ∈ (−L/2a, L/2a]. Note that a is the spacing between the lattice sites in the Monte Carlo
simulation, whereas ∆x denotes the spatial discretization used in the numerical scheme. The solution given in
Eq. (25) agrees well with the Monte Carlo simulations (as evidenced by Fig. 2 in the main text).

B. Scaling solution

A scaling solution of Eq. (22) can be obtained when the spatial and temporal coordinates, as well as the parameters
of the system, are appropriately scaled. When the spatial and temporal coordinates are rescaled as x′ → x/L and
t′ → Ddt/L

2, Eq. (22) remains invariant provided that the genetic drift constant Dr and the parameter µ of the
Gaussian function are also scaled as D′

d → Dr

Dd
L2 and µ′ → µL2. Under this transformation, the equation takes the

form

∂H(x′, t′)

∂t′
= 2

∂2H(x′, t′)

∂x′2 −A H(x′, t′)δ(x′) +B
∂2H(x′, t′)δ(x′)

∂x′2 , (26)

where A = 2L
a

Rr

Rd

1
N and B = 2

N
a
L are dimensionless constants. Therefore, for a fixed value of A and B, different

solutions of Eq. (22) corresponding to different choices of system parameters exhibit a scaling collapse. We demonstrate
this scaling behavior in Fig. 4.
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FIG. 4: (a) Solution of Eq. (22) obtained using a finite difference method (Eq. (24)) with a spatial step size of ∆x = 1/23

and a temporal step size of ∆t = 1/26. Simulations are performed for different values of system parameters, Rr, µ, and L
while keeping the dimensionless constants A = 2−5 and B = 2−15 fixed. The time instant for all the plots is fixed to be
t = 26. (b) When the spatial and temporal coordinates are rescaled as x′ → x/L and t′ → Ddt/L

2, with the scaled time
t′ = 2−17 all the curves collapse onto a single universal curve. The diffusion rate for all the plots is taken to be Rd = 1.

C. Late-time behavior of heterozygosity at the origin

As discussed in the main text, the full dynamical behavior of the heterozygosity is accurately captured by Eq. (22).
In the long time limit, the effects of diffusive noise are less relevant as seen in Fig. 2(d). In this limit, Eq. (22) can be
approximated as [8]

∂tH = 2Dd∂
2
xH − 2Dra

N
Hδ(x). (27)

The exact solution of Eq. (27) has been derived previously [8] and is given by

H(0, t) = H0erfc

(√
t

tc

)
et/tc , (28)

where tc = 4Dd/(Dra)
2 = 4DdN

2/(Rra)
2 is the characteristic timescale. This solution predicts that for t ≫ tc:

H(0, t) ∼ (t/tc)
−1/2e−t/tc . Therefore, when the time is scaled by R2

r , an asymptotic power-law decay with exponent
−1/2 is observed. This asymptotic behaviour is displayed in Fig. 5(a). However, in finite systems of size L, this
behaviour is cutoff at a finite time, as a crossover occurs when the diffusion length

√
Ddt exceeds L. In this case a

data collapse is achieved when time is rescaled by Rr rather than R2
r , which reflects the well-mixed (zero-dimensional)

limit approached by small systems at late times, as shown from numerical solutions and Monte Carlo simulations in
Fig. 2(d) in the main text, as well as from numerical solutions in Fig. 5(b).

II. DETAILS OF MICROSCOPIC SIMULATIONS

A. Monte Carlo simulation parameters

For the microscopic simulations, we use a kinetic Monte Carlo scheme [65–67]. We discretize the spatial domain
into L lattice sites, separated by a lattice constant a. Each site initially contains N/2 particles, each of type A and
type B. The dynamics involve two processes: diffusion and reaction, which occur with rates Rd and Rr, respectively.
The simulation time step δt is chosen such that (Rd + Rr)δt < 1. The probabilities of a diffusion event, a reaction
event, and no event occurring during a given time step are Rdδt, Rrδt, and 1− (Rd +Rr)δt, respectively.

During a microscopic step, a site is selected at random from the L sites, followed by a stochastic selection of the
event (diffusion or reaction) based on the associated probabilities. For a diffusion event, one particle from the chosen
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FIG. 5: Numerical solutions of heterozygosity at the origin plotted for various reaction rates. (a) shows the scaling behaviour
with the time axis scaled by R2

r. The curves for larger reaction rates (Rr = 101, 102) collapse onto a single curve that displays
a power-law decay (t−1/2) over several decades as predicted in Eq. (28) before finite-size effects become significant. In (b), the
time axis is scaled by Rr in order to show the behaviour beyond this finite-size timescale. The curves corresponding to smaller
reaction rates (Rr = 10−2, 10−1, 100) converge to the same asymptotic limit at late times, exhibiting behavior characteristic
of a zero-dimensional system. For all the plots, the system size is taken to be L = 28. The Dirac-Delta function is regularized
with µ = 6. The space discretization for reaction rates Rr = 10−2, Rr = 10−1, Rr = 100 is taken to be ∆x = 1/23, whereas for
larger reaction rates Rr = 101, Rr = 102 it is ∆x = 1/25. The time discretization is ∆t = ∆x2 for all plots.

site is randomly selected and exchanged with a particle from a neighboring site. For a reaction event, two particles are
randomly drawn from the same site; one undergoes reproduction, while the other is removed. One Monte Carlo step
consists of L such updates, during which each site is expected to be updated once on average. We consider quenched
uniform initial conditions for simplicity, with fi(0) = 0.5 for all realizations.

FIG. 6: Scaling solutions obtained from Monte Carlo simulations. The heterozygosity profile H(x, t) is plotted as a function of
distance x. (a) Multiple simulations are performed for different values of L,N , and Rr so as to keep the dimensionless constants
A = 2−5 and B = 2−15 in Eq. (26) fixed. The time instant corresponds to all the plots are taken to be t = 27. (b) When the
spatial and temporal coordinates are rescaled as x′ → x/L and t′ → Ddt/L

2, with the scaled time t′ = 2−17 all the curves
collapse onto a single universal curve, verifying the scaling solution obtained numerically in Fig. 4. The diffusive rate Rd = 1
is fixed for all the plots.

B. Parameters used for figures in the main text

In this Section, we provide numerical values of various parameters used in the figures provided in the main text.
In Fig. 1 in the main text, the reaction rates are K1 = K2 = 1 and the diffusive rate is Rd = 0.5. The system size is
taken to be L = 256, the Monte-Carlo time step is taken to be δt = 0.5. In Fig. 2(a) and Fig. 2(b) in the main text,
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the reaction rate Rr = 0.1 and diffusion rate Rd = 0.5. The system size is L = 26. To solve Eq. (14) in the main
text, we use a finite difference scheme (explained in Sec. IA), with the spatial and temporal discretization ∆x = 1/27

and ∆t = 1/214 respectively. The Dirac delta function is regularized with µ = 24. In Fig. 2(d) in the main text,
∆x = 1/23, ∆t = 1/26 and µ = 6. In Fig. 3 in the main text, the scaled reaction rate is taken to be R̃r = 1, diffusion
rate Rd = 1. For all figures in the main text, the lattice spacing used in the Monte Carlo simulations is a = 1, and
the number of particles per site (deme size) is N = 100.

C. Scaling solution using Monte Carlo simulations

As discussed in Sec. I B, Eq. (22) displays a scaling solution when space and time are rescaled as follows: x′ → x/L,
t′ → Dst/L

2, provided A = 2L
a

Rr

Rd

1
N and B = 2

N
a
L are held fixed. This scaling behaviour is confirmed using direct

Monte Carlo simulations in Fig. 6.

III. CONVERGENCE TESTS

The numerical solution of Eq. (22) obtained from the integration scheme in Eq. (24) converges to an asymptotic
solution in the limit as µ → ∞, ∆x → 0, and ∆t → 0. In the following, we validate our numerical scheme for different
times t across various parameters: lattice spacing a used in the Monte Carlo simulations, deme size N , as well as the
sharpness of the delta function parametrized by µ in Eq. (23). Fig. 7 demonstrates the stability of the scheme for
different values of µ. The numerical results are in good agreement with Monte Carlo simulations at all times shown
in panels (a) to (d). A similar analysis is presented in Fig. 8, where the lattice spacing is set to a = 0.5, confirming
that H(x, t) also depends on the value of a as is clear from Eq. (22). Finally, in Fig. 9, we confirm the stability of the
scheme across various spatial discretizations ∆x used in the numerical integration.

FIG. 7: The heterozygosity profile H(x, t) is plotted as a function of distance x for different values of µ, showing good
convergence as well as agreement with the Monte Carlo simulations (MC). The lattice spacing in the Monte Carlo simulations
is set to unity (a = 1). The diffusion rate Rd = 0.5, reaction rate Rr = 0.1, and time step δt = 1. The system size is L = 26.
For numerical integration, the spatial discretization is chosen as ∆x = 1

27
and the time discretization as ∆t = ∆x2. The top

panel corresponds to deme size N = 100 and the bottom panel corresponds to N = 50.
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FIG. 8: The heterozygosity profile H(x, t) is plotted as a function of distance x for different values of µ, showing good
convergence as well as agreement with the Monte Carlo simulations (MC). In the Monte Carlo simulations, the lattice spacing
is set to a = 1/2. The diffusion rate Rd = 0.5, reaction rate Rr = 0.1, and time step δt = 1/22. The system size is L = 26. For
the finite difference method, the spatial discretization is chosen as ∆x = 1

27
and the time discretization as ∆t = ∆x2. The top

panel corresponds to deme size N = 100, and the bottom panel corresponds to N = 50.

FIG. 9: The heterozygosity profile H(x, t) is plotted as a function of distance x for different values of ∆x, showing good
convergence as well as agreement with the Monte Carlo simulations (MC). In the Monte Carlo simulation, the lattice spacing
is set to a = 1/2. The diffusion rate Rd = 0.5, reaction rate Rr = 0.1, and time step δt = 1/22. The system size is L = 26.
The time discretization in the finite difference method is chosen as ∆t = ∆x2. The parameter µ of the Gaussian function
appearing in Eq. (23) is set to µ = 48 for all the plots. The top panel corresponds to deme size N = 100, and the bottom panel
corresponds to N = 50.
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