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Unlike classical elasticity, where stresses arise from deformations relative to a stress-free reference
configuration, rigidity in amorphous systems is maintained by disordered force networks that gen-
erate internal prestress. Previously, we introduced a “stress-only” formulation, where mechanical
equilibrium resembles Gauss’s law in a rank-2 tensor electrostatics with vector charges, and demon-
strated that the mechanical response of jammed solids is described by the dielectric response of
this gauge-theoretic formulation. Here, we extend this framework by incorporating scale-dependent
screening that captures both dielectric and Debye-type behaviour. This introduces a characteristic
length scale in stress correlations as well as in the response to external forces. Through numerical
simulations of soft-sphere packings, we show that this length scale is set by the particle size, thus
providing a natural ultraviolet cutoff while preserving long-wavelength emergent elasticity. We show
that this lengthscale remains finite for all pressures, with no evidence for an emergent Debye-like
screening near the frictionless unjamming transition. We demonstrate that although individual
realisations show strong fluctuations, disorder averaging at fixed macroscopic conditions yields a
robust dielectric-like response that persists up to unjamming. Finally, we also provide a physical
interpretation of the gauge field within the electrostatic mapping: relative grain displacements in
response to localised external perturbations correspond to difference in the gauge field, linking the
field-theoretic description to particle-level mechanics.

I. INTRODUCTION

The theory of classical elasticity of solids describes
their mechanical responses to deforming forces. It as-
sumes that internal forces, manifested as the stress ten-
sor, arise from displacements relative to a well-defined,
stress-free reference state. These forces are proportional
to the strain field – calculated from the derivative of the
displacement from the reference state, with the propor-
tionality constant - the elastic modulus - characterising
the rigidity of the solid in the linear regime [1]. Canoni-
cal examples are crystalline solids where the spontaneous
symmetry breaking provides a unique zero stress refer-
ence state with respect to which the strain field is mean-
ingfully defined, along with the right number of elastic
moduli, with the structure of the latter tied to the nature
of the symmetry breaking via the space-group [1].

Many soft solids [2–9] exhibit structural and mechani-
cal features that emerge from “frozen-in” stresses, or pre-
stress that arise from a variety of sources. Jammed solids
gain their rigidity from external forces, and the resulting
prestress is essential in defining their solidity [3, 5, 10].
Colloidal and polymer gels form in processes where ther-
mal fluctuations of the constituents are frozen, and the
internal stresses that are generated can at best be par-
tially redistributed [11–13]. Common to all these cases
is the absence of a unique, stress-free reference state:
prestress determines the mechanical response, which, in
turn, influences the assembly of the stress-bearing net-
work. This nonlinear feedback cannot be rigorously in-
corporated within the framework of classical elasticity,
where strain, defined with respect to a stress-free refer-
ence structure, leads to stress, a derived quantity [1].

Solids with prestress, nevertheless, exhibit elastic be-
haviour under small perturbations [14–17], with rigidity
emerging from a disordered network of interparticle con-
tacts that enforce local mechanical equilibrium. Jammed
solids, composed of non-Brownian particles with purely
repulsive interactions, are an extreme example since they
acquire rigidity only when an externally applied stress
exceeds a critical threshold [3, 5, 10, 18–20]. This mech-
anism underlies the physics of jamming transition, a uni-
fying concept of rigidity in disordered materials such as
foams, emulsions, and granular media [5, 18, 21–23].
In Jammed solids, therefore, the mechanical response
emerges from the frozen-in internal stresses.

Previously, some of the authors of this paper intro-
duced the Vector Charge Theory of Granular mechanics
(VCTG) for amorphous elasticity to explain the emer-
gent elasticity of such prestressed solids [24, 25]. This
was established through a mapping of mechanical equi-
librium constraints to a tensor U(1) Tensor Gauge The-
ories [26] with vector charges. The prestress, generated
by contact forces, appears as the analogue of the famil-
iar polarisation field present in a dielectric in standard
electromagnetism (EM) as summarised in Fig. 1.

VCTG thus provides a stress-only, field-theoretic de-
scription [24, 25] of emergent elasticity in disordered
solids. The conditions of mechanical equilibrium, force
and the torque balance are built into its structure via
Gauss’s law for a symmetric rank-2 tensor electric field
sourced by the vector charge – the force. The self-
averaging jammed solid corresponds to a dielectric of the
tensor electromagnetism where the stress tensor σij cor-
responds to the electric displacement field Dij . Forces
act as vector charges, ρj = ρextj + ρboundj , with ρextj
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Poisson Equation:

Standard Electrostatics Vector Charge Theory (Granular)

D field Correlation:

Homogeneous medium

S0 = ∫ ddr [ 1
2 𝒫i

1
ϵ0 χ

𝒫j + 1
2 (Di − 𝒫i) 1

ϵ0
(Dj − 𝒫j)]

Action:

⟨Di(q)Dj(−q)⟩ = ϵ0(1 + χ)[δij − qiqj

q2 ]
[ϵ0(1 + χ)q2] iψ̃ = ρ̃ext

Heterogeneous medium
Action:
S = S0 + ∫ ddr

1
2 Γαβij(∂α𝒫i)(∂β𝒫j)

D field Correlation:

⟨Di(q)Dj(−q)⟩ = ϵ0(1 + χ) 1 + ℓ2q2

1 + (1 + χ)ℓ2q2 [δij − qiqj

q2 ]

( ϵ0 χq2

1 + ϵ0 χΓq2 + ϵ0q2) iψ̃ = ρ̃ext

Debye Screening:   χ−1 → 0

Homogeneous medium

S0 = ∫ ddr
1
2g [𝒫ij χ−1

ijkl𝒫kl + (σij − 𝒫ij)δ−1
ijkl(σkl − 𝒫kl)]

Action:

Stress correlation:

Heterogeneous medium
S = S0 + 1

2 ∫ ddr (∂α𝒫ij) Γαβijkl (∂β𝒫kl)Action:

Stress correlation:

Poisson Equation:

Poisson Equation: g (χijkl + δijkl) i
2 qj(qkφl + qlφk) = f̃ ext

i

Poisson Equation: [( 1
g

χ−1
ijkl + Γαβijklqαqβ)

−1
+ δijkl] i

2 qj(qkφl + qlφk) = f ext
i

Anisotropic Debye Screening:  (gχ)−1 → 0

⟨σxx(q)σyy(−q)⟩

⟨σij(q)σkl(−q)⟩ = g
2 (1 + ν)[ 1

2 (δikδ jl + δilδ jk) + qiq jqkql

q4

− 1
2 ( δikq jql

q2 + δ jkqiql

q2 + δilq jqk

q2 + δ jlqiqk

q2 )] .

⟨σij(q)σkl(−q)⟩ = g(q)
2 (1 + ν(q))[ 1

2 (δikδ jl + δilδ jk) + qiq jqkql

q4

− 1
2 ( δikq jql

q2 + δ jkqiql

q2 + δilq jqk

q2 + δ jlqiqk

q2 )] .

Charge: 


Bound charge created field: 


Unscreened field: 


Screened field: 


Constraint: 

ρ = ρbound + ρext

𝒫i

Ei = ∂iψ

Di = ϵ0Ei + 𝒫i

∂iDi = ρext

Charge: 


Contact forces created field:  


Unscreened field:  


Screened field: 


Constraint: 

⃗f = ⃗f contact + ⃗f ext

𝒫ij

Eij = (∂iφj + ∂jφi)/2
σij = gEij + 𝒫ij

∂iσij = f ext
j

⟨Dx(q)Dy(−q)⟩

⟨Dx(q)Dy(−q)⟩ ⟨σxx(q)σyy(−q)⟩

Point 
charge

Point 
force

FIG. 1. Analogy between dielectric response in standard electromagnetism (EM) and the mechanical response of jammed solids
described by VCTG. In both frameworks, the screened fields—D in EM and σij in VCTG—combine an unscreened field and
a polarization contribution: D = ϵ0E + P in EM, and σij = gEij + Pij in granular media, where Eij is a compatible tensor
electric field and Pij encodes internal prestress. Polarization fields follow Pi = ϵ0χEi in linear dielectrics and Pij = gχijklEkl

is its analog in VCTG. The key distinction is that g depends on the macrostate of the solid and vanishes near unjamming. In
heterogeneous media, spatial fluctuations in the polarisation field incur an energetic cost, which suppresses short-wavelength
responses. In the EM, this leads to Debye screening in the limit χ−1 → 0, corresponding to highly polarizable materials. A
mechanically analogous screening behaviour arises in the VCTG framework, where the limit (gχ)−1 → 0 plays a similar role.

corresponding to external body force and ρboundj being
the internal contact forces generated in response to the
boundary and body forces. Analogous to standard di-
electrics [27], the vector bound charges induce a tensor
polarization field, Pij [24, 25]. Mechanical response of
the jammed solid is characterised by a fourth-rank tensor
Λ−1
ijkl, the analogue of a dielectric permittivity, relating

stress to the unscreened field via σij = Λ−1
ijklEkl. The

symmetric field Eij , derived from a vector, electrostatic
potential, captures the compatible, irrotational response
in the absence of internal constraints, while σij incor-
porates screening from boundary and body forces [25].
VCTG can also accommodate a Debye-type screening
with an anisotropic screening length [25, 28–30].

VCTG successfully predicts long-range anisotropic

stress correlations that decay as a power law, 1/rd, in
d dimensions [7, 8, 31–33], with a non-trivial angular
form-factor that gives rise to pinch-point singularities
in Fourier space – a hallmark of stress correlations in
granular systems [33–36]. Within the VCTG framework,
these singularities emerge naturally as a consequence of
Gauss’s law constraint on the stress tensor. These pre-
dictions have been tested in granular solids at high pres-
sures and in gels near the rigidity transition, as well as
near-crystalline systems [24, 25, 37–40].

In this paper, we investigate three mechanical aspects
of jammed solids: (i) stress-stress correlations across a
range of pressures, approaching unjamming, (ii) the link
between displacements of grains in response to external
forces, and the potentials of VCTG, and (iii) the role
played by disorder averaging in describing the jammed
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phase, especially close to the unjamming transition. Each
of these aspects focuses on important features of the
elasticity of jammed solids: (i) addresses the question
of whether or not dielectric breakdown precedes unjam-
ming, (ii) resolves the mapping between the electrostatic
potential in VCTG and measurements of displacements
in disordered, prestressed solids, and (iii) discusses the
important role of disorder averaging, particularly close
to unjamming where self-averaging is known to fail [20].

Based on numerical observations of stress-stress corre-
lations, we motivate a natural extension of the VCTG
framework, and then numerically examine its conse-
quences. The extended theoretical framework introduces
a scale-dependent mechanical response, analogous to a
scale-dependent susceptibility in dielectrics. As in the
dielectric theory of electrostatics, the extended VCTG
framework identifies natural conditions under which the
dielectric framework could fail, potentially giving rise to
Debye-type screening. However, our analysis reveals no
evidence for such behavior in frictionless jammed solids.

In addition to the stress response, we compute the dis-
placement of the grains generated by localized deforming
forces (Fig. 2). Stress fields are central to VCTG [41–43],
though they are experimentally accessible only in model
systems such as photoelastic disks [44, 45].

In contrast, displacements relative to an unperturbed
prestressed configuration can be directly measured in
particle-tracking and imaging experiments on granular
media, biological tissues and other soft solids, they are
widely used in theoretical studies of amorphous elastic-
ity [28, 46]. Establishing the link between displacement
response and the stress-based field-theoretic formulation
of VCTG is therefore essential and can offer a direct route
to test the prediction of VCTG across diverse systems.

Finally, we emphasize the crucial role of disorder aver-
aging in revealing the emergent elasticity of amorphous
solids. Near the unjamming transition, individual con-
figurations exhibit strong sample-to-sample fluctuations
and may undergo irreversible rearrangements in response
to even small perturbations, resulting in plastic behav-
ior. However, our numerical results show that ensemble
averaging over such configurations—at fixed macroscopic
conditions—smooths out these fluctuations and restores
a dielectric-like elastic response consistent with VCTG
predictions, even up to the unjamming point indicating
that the weight of such plastic events averages out within
our numerical protocol. This suggests that localized plas-
tic events are statistical in nature and do not define a dis-
tinct “prejammed” phase in a self-averaging system. Al-
ternatively, restricting attention to those configurations
that remain elastic under local perturbations also yields
representative responses in line with the VCTG frame-
work. Thus, while it has been proposed that plastic-
ity induces a finite screening length characteristic of a
prejammed phase [28, 30], our findings show that the
disorder-averaged response of frictionless jammed solids
remains well described by the dielectric within the lin-
ear VCTG theory. However, near unjamming the re-

⃗f g,g 1g
g1g2

g3 g4

⃗r g,g 1

gn

g4

g1
⃗r gn,g1

⃗f gn,g1

FIG. 2. Schematic illustration of the stress tensor convention
and external forcing geometry used in this study. The grain-
level force-moment tensor at grain gn is defined as σgn =∑

m fgn,gm ⊗rgn,gm , where fgn,gm is the contact force exerted
on grain gn by a neighboring grain gm, and rgn,gm is the vector
connecting the centers of grains gn and gm. The external force
consists of a uniform distribution of force in the negative y-
direction applied over a circular region centered at the origin
over the grains shaded in orange, balanced by a line force in
the positive y-direction applied at y = −L/2 + 5 applied on
grains shaded in blue.

sponse exhibits pressure-dependent nonlinear deviations,
while clear structural changes appear only when the ap-
plied force exceeds the confining pressure, a criterion that
also governs the response deep in the jammed phase.
This effect is distinct from what would be expected from
Debye-like screening, which introduces a screening length
within linear response. This observation indicates the
need for non-linear corrections to the dielectric formalism
of VCTG, and we propose an approach in Appendix C.

The rest of this paper is organized as follows. Sec-
tion II presents numerical results on pressure correlations
in jammed soft-sphere packings, highlighting deviations
from scale-independent elasticity at short length scales.
Section III extends the VCTG framework by introduc-
ing polarization gradient terms that incorporate a finite
length scale while preserving the long-wavelength behav-
ior of the VCTG. Section IV compares the predictions of
this modified theory with numerical measurements of the
mechanical response to localized perturbations, provides
a particle-level interpretation of the gauge potential, φ,
as relative displacements, and investigates the pressure
dependence of the emergent elastic moduli. Finally, Sec-
tion V summarizes our findings and outlines possible di-
rections for future research. The Appendices provide ad-
ditional details: Appendices A and B cover technical as-
pects of the theoretical calculations and numerical anal-
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ysis, Appendix C discusses the nature of the nonlinear
corrections, and Appendix D presents the calculation of
correlations and response for standard electrostatics.

II. PRESSURE CORRELATIONS

A key prediction of the original formulation of
VCTG [24, 25] is that, deep inside the jammed phase, dif-
ferent components of the stress tensor exhibit anisotropic
correlations. In contrast, correlations of the pressure,
the trace of the stress tensor, are isotropic and scale-
independent at long wavelengths. In two dimensions, the
VCTG calculations [24, 25] yield the Fourier-space cor-
relation function of local pressure fluctuations,

⟨P (q)P (−q)⟩ = g(1 + ν)

2
≡ K2D, (1)

where P (q) denotes the Fourier components of the local
pressure fluctuations (throughout this paper, we denote
spatial fluctuations of the local pressure field by P , while
p refers to the global pressure of the system) with the
average, ⟨· · · ⟩, taken over independent packings at fixed
pressure, p. Here, g, and ν, are coupling constants of
VCTG (see Fig. 1), and characterize the mechanical re-
sponse of the jammed solid. As will be discussed in Sec-
tion IV, these coupling constants play roles analogous to
the Lamé coefficients in classical elasticity theory, with g
being the shear modulus and ν the Poisson ratio. Thus,
pressure correlations bear the signature of the emergent
elasticity via, g, and ν.

We start by numerically examining the validity of the
prediction in Eq. (1) as a system approaches unjamming
from the jammed side. We simulate two-dimensional
jammed packings of a 50 : 50 bidisperse mixture of fric-
tionless disks with a diameter ratio of 1 : 1.4, under pe-
riodic boundary conditions. Particles interact via short-
range repulsive potential,

v(rij) =
ϵ

α

(
1− rij

aij

)α

, (2)

where rij is the inter-particle distance between particles

i and j, and aij =
ai+aj

2 is the sum of their radii. We

consider both Harmonic (α = 2) and Hertzian (α = 5
2 )

interactions. Energies are measured in units of ϵ and
lengths in units of the smaller particle diameter a0. We
set ϵ = 1 and a0 = 1 for convenience. Jammed configura-
tions at various pressures p are generated via conjugate
gradient energy minimization, following [19].

The grain-level force-moment tensor is obtained as

σgn =
∑
m

fgn,gm ⊗ rgn,gm , (3)

where fgn,gm is the contact force exerted on grain gn by a
neighboring grain gm, and rgn,gm is the vector connect-
ing their centers (Fig. 2). The above force-moment tensor

(a)

(b)

FIG. 3. Fourier-space pressure correlation function,
⟨P (q)P (−q)⟩, for harmonic packings of N = 8192 particles
at pressures approaching the unjamming transition. (a) Cor-
relation normalized by p2, exhibiting a plateau whose height
defines K2D [Eq. (1)]. The data collapse at low p and long-
wavelength behavior reflects the scale-invariant correlations
at large length scales. At large |q|, the correlation decays in
a pressure-independent manner, indicating universal suppres-
sion of short-wavelength pressure fluctuations. Inset shows
that K2D scales as p2 near unjamming. (b) Pressure correla-
tion as a function of |q| at fixed p = 10−4 for different system
sizes, highlighting finite-size effects and convergence at both
long and short wavelengths. Inset: Two-dimensional q-space
map showing isotropic correlations, with a crossover from a
flat, long-wavelength regime to a short-wavelength decay.

has the dimensions of [energy]. This force-moment ten-
sor, σg, is readily averaged over and has straightforward
generalizations to amorphous materials such as glasses,
where longer-ranged interactions may be present. We
however refer to this as stress instead of the force-moment
tensor for brevity.

For a given configuration, the spatially averaged stress
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is defined as

σ̄ =
1

N

N∑
gn=1

σgn , (4)

where N = Ldϕ is the total number of grains in the
system, and ϕ is the packing fraction. Local stress fluc-
tuations relative to this average are then defined at the
center of each grain, rgn , as

∆σij(rgn) = σij(rgn)− σ̄ij . (5)

The discrete Fourier transform of the stress fluctua-
tions is given by

∆σij(q) =
1√
N

N∑
gn=1

eiq·rgn ∆σij(rgn). (6)

Note that in a periodic box of linear size, L, the spacing
of the Fourier modes is given by ∆q = 2π/L in each
direction. Finally, the Fourier-space stress correlations
are computed as

Cijkl(q) = ⟨∆σij(q)∆σkl(−q)⟩. (7)

Fig. 3(a) shows ⟨P (q)P (−q)⟩ as a function of wavevec-
tor magnitude |q| for harmonic packings of N = 8192
particles across a range of pressures, approaching the
unjamming threshold. At small |q|, corresponding to
long wavelengths, the correlation displays a plateau, con-
sistent with the scale-invariant predictions of VCTG
[Eq. (1)]. The inset demonstrates that the plateau
height, K2D, scales as p2 near unjamming, consistent
with the pressure dependence of effective moduli in two
dimensions [34, 47] such that in the main panel, where we
plot ⟨P (q)P (−q)⟩/p2 the data collapses across pressures
in the low-p regime and small |q|.

Importantly, at large |q|, the correlation systemati-
cally decays, indicating a suppression of pressure fluc-
tuations at short distances. Notably, the shape of this
decay is independent of pressure near unjamming, point-
ing to a universal deviation from scale invariance at high
wavevectors. Fig. 3(b) explores finite-size effects by plot-
ting ⟨P (q)P (−q)⟩ versus |q| for various system sizes at
fixed pressure p = 10−4, confirming the scale-free plateau
at smaller |q| and the decay at shorter wavelengths. The
inset of Fig. 3(b) displays the two-dimensional correlation
map, revealing the isotropic nature of pressure fluctua-
tions across all wavevectors, and clearly illustrating the
crossover from a flat, long-wavelength plateau to a decay
regime at higher |q|.

This short-distance decay reflects the limitations of a
purely continuum description and implies the presence of
a finite length scale below which the Gaussian theory of
VCTG must be modified. In real space, this corresponds
to a crossover beyond which the power-law decay of stress
correlations emerges. We quantify this scale later and
find it to be approximately two grain diameters. These

FIG. 4. Pressure correlation near unjamming compared
with predictions of the extended VCTG including polariza-
tion gradient terms [Eq. (14)]. Simulation data for p =
10−4, 10−5, 10−6 are shown scaled by p2. The theoretical
curve is fitted at p = 10−4 with ν = 0.95, with g chosen to
match the low-|q| plateau, and is scaled by the same factor for
direct comparison. A finite polarization stiffness, gΓ = 0.062,
reproduces the large-|q| decay and captures the crossover.

observations naturally lead to the question: Can VCTG,
which captures long-range, scale-invariant features, be
extended to account for the finite-wavelength suppression
of stress fluctuations?
In the following, we modify the VCTG theory [24, 25]

to incorporate an intrinsic microscopic length scale. This
extension preserves the scale-invariant features at long
distances while regularizing short-range behavior consis-
tent with our numerical observations.

III. MODIFIED FIELD THEORY AND
ADDITIONAL LENGTHSCALE

Within the VCTG, stress–stress correlations and linear
response functions are computed from the partition func-
tion in the presence of an external body force f extj [25],

Z[f extj ] =

∫
[DP][Dσ] δ(∂iσij − f extj ) e−S0 , (8)

where the delta function enforces Gauss’s law. To lowest
order, the Gaussian action, S0, is given in Fig. 1.
To capture the short-lengthscale deviations from the

scale-independent VCTG framework, as evident in the
pressure correlation obtained from simulations of jammed
solids (Fig. 3), we extend the theory by incorporating the
leading symmetry-allowed gradient terms to obtain the
extended action

S = S0 + S1, (9)

with the correction term

S1 =
1

2

∫
ddr (∂αPij) Γαβijkl (∂βPkl). (10)
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gΓ
=0

.00
gΓ

=0
.10

ν = 0.9, g = 4 × 10−6
Cxxxx Cyyyy Cxyxy

(1.a) (1.b) (1.c)

(2.a) (2.b) (2.c)

(3.a) (3.b) (3.c)
Numerics (p = 10−3)

Cxxyy

(1.d)

(2.d)

(3.d)

FIG. 5. Fourier-space stress correlation functions, ⟨σij(q)σkl(−q)⟩, obtained from Eq. (A10) with an isotropic polarization
stiffness tensor. The columns display the four components Cxxxx, Cyyyy, Cxyxy, and Cxxyy. The first two rows show the effect
of increasing Γ at fixed ν = 0.9 and g = 4 × 10−6, parameter values chosen consistently with the stress-response analysis and
with correlations measured at pressure p = 10−3. For Γ = 0 (top row), the correlations are independent of |q| and anisotropic.
Finite Γ progressively suppresses large-|q| fluctuations, and at sufficiently large Γ the correlations are strongly attenuated except
near small |q|, where anisotropic pinch-point singularities persist (second row). The third row shows corresponding correlations
measured in simulations of jammed packings at pressure p = 10−3.

Here, Γαβijkl is a sixth-rank tensor that encodes the stiff-
ness associated with gradients of the polarization field
Pij . This correction penalizes local inhomogeneities in
the internal stress organization. This formalism is analo-
gous to the treatment of gradient terms in dielectric the-
ories of standard electromagnetism, where spatial varia-
tions in the polarization fieldP contribute an energy den-
sity ∝ |∇P |2. In standard dielectrics, such terms arise
from the electrostatic energy of bound charges, which
penalize non-uniform polarization. The analogy is illus-
trated in Fig. 1 and discussed further in Appendix D.

Implementing the constraint of Gauss’s law via a La-
grange multiplier field, φ, we obtain

Z[f extj ] =

∫
[DP][Dσ][Dφ] e−S̃ , (11)

with the effective action

S̃ =

∫
ddr

[
1

2g

{
Pijχ

−1
ijklPkl + (σij − Pij)δ

−1
ijkl(σkl − Pkl)

}

+
1

2
(∂αPij) Γαβijkl(∂βPkl) + iσijJij + iφif

ext
i

]
.

(12)

Here, the coupling constant g, has dimensions of

[energy]
2
[length]

d
, since the stress, σij , and the polariza-

tion, Pij , are actually force-moment tensors, which have
dimensions of [energy]. Jij is an auxiliary source field
that couples linearly to the total field σij enabling the
computation of stress-stress correlations via functional
derivatives of logZ[J ] and Jij = Jij +

1
2 (∂iφj + ∂jφi).

The detailed calculation is presented in Appendix A.
To incorporate the consequences of polarization gradi-

ents, we consider the simplest isotropic form of the po-
larization stiffness tensor introduced in Eq. (10),

Γαβijkl = δαβ
Γ

2
(δikδjl + δilδjk) (13)

with Γ having dimensions of [length]2−d[energy]−2. This
choice assigns equal stiffness to all components of Pij and
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penalizes spatial variations isotropically, thereby preserv-
ing rotational invariance, ensuring that the trace of the
stress tensor exhibits isotropic correlations. The result-
ing pressure–pressure correlation function reads

⟨P (q)P (−q)⟩ =
g(2 + gΓq2)

[
2(1 + ν) + gΓq2(1 + 3ν)

]
8 + 4gΓq2 [3 + 5ν + gΓq2(1 + 3ν)]

,

(14)
which reduces in the long-wavelength limit (|q| → 0) to
a scale-independent plateau given by Eq. (1). The pa-
rameter Γ introduces a characteristic length scale,

ℓ =
√
gΓ, (15)

For wavevectors |q| ≳ |q|∗ ∼ 1/ℓ, stress correlations devi-
ate from their scale-free form. The length-scale, l, should
be compared with the standard electrostatic screening
length λ =

√
ϵ0Γ presented in Appendix D. A crucial

point of difference between the VCTG screening length
and the electrostatic one is that ϵ0 is a fundamental con-
stant, whereas g depends on the proximity to rigidity and
goes to zero at the unjamming transition.

Fig. 4 compares the scaled simulation data with
Eq. (14). To compare to numerical results, we fix ν =
0.95, consistent with the stress response analysis shown
in Section IV. The coupling constant, g, is chosen to
match the |q| → 0 plateau at p = 10−4, and the theoret-
ical curve is scaled by p2 for comparison. A value gΓ =
0.062 captures the observed decay, yielding quantitative
agreement with the data. Importantly, the crossover
wavevector |q|∗ is finite and pressure-independent, im-
plying a microscopic screening length |r∗| ∼ 2πℓ, ap-
proximately two grain diameters. Beyond this scale,
stress correlations revert to the continuum 1/rd decay.
Other components of the stress–stress correlations ex-
hibit anisotropy [Eq. (A10)], with wavevector dependence

entering through the amplitude K̃2D(q). Representative
results are shown in Fig. 5 for ν = 0.9, g = 4 × 10−6,
chosen to match simulation results at p = 10−3. When
Γ = 0, the theory reduces to the scale-free VCTG with
pinch points. Finite Γ suppresses large-|q| fluctuations,
leading to a crossover to short-range behavior while pre-
serving pinch-point singularities at small |q| [Eq. (A10)].
The bottom row illustrates corresponding correlations
measured in jammed packings at p = 10−3.

IV. RESPONSE TO EXTERNAL FORCES

We now turn to analyzing the effects of the polarization
gradient terms [Eq. (10)] on the mechanical response of
jammed solids to external perturbations, as we tune p
towards unjamming. For this we use a protocol, similar
to that of Ref. [25], and illustrated in Fig. 2.

To probe the response to external forces in real space,
we compute coarse-grained stress and displacement fields.
The coarse-grained stress field is given by

σ(r) =
1

NΩ

∑
gn∈Ω

σgn , (16)

where NΩ is the number of grains in the coarse-graining
region Ω.
Similarly, grain displacements ugi , from an initial ref-

erence configuration in static equilibrium are coarse-
grained using the same procedure to obtain the displace-
ment field

u(r) =
1

NΩ

∑
i∈Ω

ugi . (17)

We note that within a static configuration, NΩ, in
each coarse-graining box can vary, which can be an addi-
tional source of fluctuations in the coarse-grained fields.
While coarse-graining is convenient for visualizing the
spatial profile of stresses and displacements, stress corre-
lations can be evaluated directly in Fourier space, with-
out coarse-graining, as discussed in Section II.
The gauge redundancy intrinsic to VCTG, reflects the

absence of a unique zero-stress reference state, which re-
sults in the ambiguity in defining displacement vectors
relative to any arbitrary reference configuration. As a
result, displacements from equally valid reference config-
urations are unobservable in configuration averaged cor-
relations and responses [24, 25]. In practice, however,
numerical and experimental studies naturally resolve this
issue by measuring displacement differences, analogous
to differences in electrostatic potential, φ. By measuring
displacements relative to configurations in the absence of
the localised external forces, we can make direct com-
parisons with the difference in the electrostatic poten-
tial, φ, although the absolute value of the latter is unob-
servable in configuration averaged responses as discussed
above. This establishes a direct correspondence between
the gauge-theoretic formulation of the response functions
and classical elasticity with φ playing a role analogous
to the relative displacement field u, albeit without refer-
ence to a unique stress-free configuration. However, the
mapping of the displacement fields to φ, also involves a
careful analysis of the dimensions of these fields, and we
address this in the context of determining the pressure
dependence of the elastic moduli.
To compute the responses in the stress and φ fields,

we perform a saddle-point analysis of the constrained ac-
tion defined in Eq. (12). At the saddle point of the action
with respect to the gauge potential φ, the Gauss-law con-
straint yields the condition of mechanical equilibrium,

∂iσij = f extj . (18)

Variations of the action with respect to σij and Pij re-
spectively yield the two constitutive equations

σij = Pij −
i

2
gδijkl(∂kφl + ∂lφk), (19)

χ−1
ijklPkl − δ−1

ijkl(σkl − Pkl)− gΓαβijkl∂α∂βPkl = 0. (20)

Substituting Eq. (19) into Eq. (20) eliminates σij ,
which, followed by a Fourier transform gives:

Pkl(q) = g χ̃ijkl(q)
1

2
(qiφj + qjφi), (21)
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where

χ̃ijkl(q) =
(
χ−1
ijkl + gΓαβijklqαqβ

)−1

(22)

is the scale-dependent susceptibility tensor. Eq. (21) mir-
rors the constitutive relation of dielectric theory of stan-
dard EM with polarization-gradient terms (Appendix D),
where the vector polarization couples to the vector elec-
tric field through a scale-dependent susceptibility. The
corresponding real-space relation for the vector polar-
ization field is given in Eq. (D11), which, upon Fourier
transformation, reduces to the same underlying form as
Eq. (21), despite its different tensorial character.

Substituting back into Eq. (19), we obtain the stress
field in Fourier space:

σij(q) = g (χ̃ijkl(q) + δijkl)
1

2
(qkφl + qlφk) (23)

≡ Λ̃−1
ijkl(q)

1

2
(qkφl + qlφk), (24)

where Λ̃−1 is defined as the effective scale-dependent
elastic tensor related to χ̃ (see Eq. (A2)).
In the q → 0 limit, upon disorder averaging, the di-

electric permittivity tensor, Λ−1
ijkl, reduces to an isotropic

form [24, 25]. In analogy with isotropic elasticity theory,
whose elastic modulus tensor, Kijkl, is described by the
two Lamé coefficients (µ, ν), the shear modulus and the
Poisson ratio, we parametrize Λ−1

ijkl as:

Λ−1
ijkl = g

(
δijkl + χijkl

)
,

χijkl =
1
2 (δikδjl + δilδjk) +

2ν
1−ν δijδkl, (25)

where δijkl =
1
2 (δikδjl+δilδjk) is the fourth-rank identity

tensor.
Inserting these into the Gauss-law leads to a Poisson

equation for the potential :

i

[(
(gχ)−1

ijkl + Γαβijklqαqβ

)−1

+ gδijkl

]
1

2
qi(qkφl + qlφk) = f extj (q). (26)

Eq. (26) is equivalent to a generalized Cauchy–Navier
equation for an isotropic elastic medium [48]

i

[(
g̃(q)

1 + ν̃(q)

1− ν̃(q)

)
qiqj + g̃(q) q2δij

]
φj(q) = f̃i(q).

(27)
with scale-dependent moduli. The q-dependence intro-
duced by the polarization gradient effects are given by

g̃(q) =
g(2 + gΓq2)

2(1 + gΓq2)
, (28)

and

ν̃(q) =
2ν

2 + gΓq2 (3 + 5ν + gΓq2(1 + 3ν))
. (29)

This demonstrates that the polarization stiffness Γ in-
troduces a characteristic length scale that modifies the
effective elastic response of the system.

The corresponding Green’s function c̃−1
ij (q), defined

via iφi = c̃−1
ij f

ext
j , is given by

c̃−1
ij (q) =

1

g̃(q)q2

(
δij −

1 + ν̃(q)

2

qiqj
q2

)
. (30)

From Eq. (24), the stress response is

σij = G̃ijkf
ext
k , (31)

with Green’s function

G̃ijk(q) =
1

q2

[
ν̃ qkδij + qiδkj + qjδki − (1 + ν̃)

qiqjqk
q2

]
.

(32)

On the other hand, Eq. (26) reduces to an anisotropic
generalization of the screened Poisson equation for stan-
dard EM [Eq. (D13)] with g → ϵ0, and χijkl → χ. The
limit (gχ)−1 → 0, corresponds to a high-polarizability
(Debye-like) regime [Eq. (D14)], where, in exact analogy
with standard electrostatics, the gauge potential would
be screened, albeit with an anisotropic screening length.
The appearance of such a regime would signal a transition
from dielectric screening via bound charges to screening
via unbound charges. It has been proposed that such a
regime exists as a precursor to unjamming [28, 30]. The
theory for this prejammed phase is based on an equa-
tion very similar to Eq. (26) with iφ mapped to the
displacement field (via a scalar with the dimensions of
[energy][length]d, as discussed in Section IV) emerging in
response to an external force but with the (gχ)−1 term
set to zero from the outset [28, 49].

As we show later in this section through the analysis
of the response to external perturbations, our numerical
results are inconsistent with the existence of such Debye-
like screening response. Our analysis demonstrates that
the Poisson ratio ν becomes weakly pressure-dependent
and tends toward unity as the pressure approaches the
unjamming threshold, which would imply a diverging
susceptibility χ (defined in Eq. (25)). However, the dis-
placement response of jammed solids, shown in Fig. 7,
does not exhibit the corresponding screening. This can
be understood by noting that gχ ∼ g(2ν/(1 − ν)) ∼
2Bν/(1 + ν) (where B = g (1+ν)

(1−ν) is the Bulk modulus).

It is well-known that for frictionless jamming, the bulk
modulus remains finite at unjamming and decreases with
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FIG. 6. Theoretical response obtained by solving Eqs. (30) and (32) and Fourier transforming to real space. Columns (a–e)
display the gauge potentials φy, φx and the change in the stress components σyy, σxx, and σxy, respectively, for the external
force geometry shown in Fig. 2. Results are presented for p = 10−2 (top two rows) and p = 10−3 (bottom two rows). For
each pressure, the first row corresponds to the scale-independent case (Γ = 0), while the second includes a finite polarization
gradient term (gΓ = 0.05). Introducing a finite Γ suppresses stress fluctuations at small length scales and smooths sharp
features in the response, thereby capturing key qualitative trends observed in simulations (Fig. 7). The shear modulus g is set
from the long-wavelength plateau of the pressure–pressure correlations, and the Poisson ratio ν is fixed from the stress–response
analysis presented later in this section. The gauge potentials φi have been redefined to absorb the factor of i in their Fourier
representation.

pressure depending on the interaction potential between
particles as the unjamming transition is approached [20].
Thus gχ remains finite as one approaches the unjamming
transition at odds with Debye screening. This feature
is specific to the frictionless unjamming transition and
is not generic. Indeed it would be interesting to test
whether such tensorial Debye screening occurs in certain
situations such as in gels [38].

We numerically solve the response equations in Fourier
space under an applied external body force, and ob-
tain the corresponding real-space fields by inverse Fourier
transform. The forcing protocol consists of a smoothed
point force applied in the negative y-direction within a
circular region of radius 2 centered at the origin, bal-
anced by an equal and opposite line force at y = −45
to ensure global force neutrality, as illustrated schemati-
cally in Fig. 2. The corresponding spatial distributions of
the gauge potentials φy and φx, together with the stress
components σyy, σxx, and σxy (columns a–e), obtained
by solving Eqs. (30) and (32), are presented in Fig. 6.

The top two rows correspond to elastic parameters rep-
resentative of a system at pressure p = 10−2, with ap-
plied force amplitude f0 = 10−3. The Poisson ratio ν is
chosen to match the angular structure of the stress re-
sponse observed in simulations (shown below), while g is
fixed by requiring consistency with the amplitude of the
pressure–pressure correlations for the same ν. The first
row shows the response for Γ = 0, corresponding to the
scale-free theory. The second row includes a finite polar-
ization gradient cost with gΓ = 0.05, which introduces a
characteristic screening length ℓ ∼

√
gΓ [Eq. (15)] that

smooths short-distance features in the response. The
bottom two rows display results for parameters corre-
sponding to p = 10−3, with f0 = 10−4.
While the Green’s function for the gauge potential φi

depends on both g and ν, the stress response is deter-
mined solely by ν. Consequently, the effect of the mi-
croscopic length scale introduced by Γ is most clearly
visible in the stress fields. For the chosen force geom-
etry (Fig. 2), the σxx component is particularly sen-
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FIG. 7. Disorder-averaged displacement and stress response fields from numerical simulations of jammed packings with harmonic
repulsion at different pressures p, following the localized force geometry shown in Fig. 2. The applied body force has magnitude
10−1p and the resulting fields are coarse-grained in unit-area boxes and averaged over 1000 independent configurations at fixed
p. Panels display displacement components uy and ux (a,b), and the change in the stress components σyy, σxx, and σxy (c–e).
Each row corresponds to a different pressure: (1) p = 10−2, (2) p = 10−3, (3) p = 10−4, and (4) p = 10−5. Across all pressures,
the response remains smooth and featureless at large scales, consistent with scale-free elasticity, while at shorter scales it agrees
closely with the predictions of the extended theory. These results demonstrate that the polarization-gradient length scale stays
microscopic across all p and does not generate macroscopic features near unjamming.

sitive to the short lengthscale regularization through
ν, as evident from Eq. (32). The inclusion of Γ sup-
presses short-wavelength stress fluctuations and regular-
izes short-range features of the response, leading to ex-
cellent qualitative agreement with simulations.

Fig. 7 shows the disorder-averaged mechanical re-
sponse of numerically generated jammed packings with
harmonic repulsion, following the perturbation protocol
of Ref. [25] and extended here to low-pressure systems
near the unjamming transition. While individual con-
figurations may exhibit strong sample-to-sample fluctua-
tions and can undergo irreversible rearrangements lead-
ing to plastic behavior (see Appendix B), the disorder-
averaged response remains smooth and featureless across
all pressures studied, with no indication of a diverging
length scale even as the system approaches the unjam-
ming. These results also demonstrate that the large-scale
mechanical behavior is well captured by the VCTG, with-
out the need for a gradient-regularized polarization term.

We observe that the disorder-averaged displacement

fields obtained from simulations and the φi field are
structurally similar. Importantly, the φ field depends
on emergent elastic moduli, which are determined by in-
ternal stress fluctuations, rather than being extracted
from the response of the system to boundary deforma-
tions. This suggests that, under a given set of external
conditions, the VCTG gauge potential can predict the
disorder-averaged relative displacement field u—defined
as the difference between the perturbed and unperturbed
states—up to a proportionality constant. This constant
depends on the external conditions and thus varies with
system parameters. In the following, we demonstrate this
relationship explicitly by examining how both the emer-
gent elastic moduli and the proportionality constant re-
lating φi to ui vary with pressure in jammed solids.

Since Γ introduces a length scale via a scale-dependent
modulus, and the numerical observations of pressure cor-
relations and localized responses suggest that its influ-
ence is confined to short-range features. In the subse-
quent analysis we focus on the large-scale features of the
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FIG. 8. Angular dependence of the stress response measured in the annular region r ∈ [25, 35], shown as a function of angle θ
for different pressures. Rows compare systems with harmonic (top) and Hertzian (bottom) interactions, while columns show
the change in the different stress components: (a) σyy, (b) σxx, and (c) σxy. Stress responses are normalized by the applied
force magnitude. Solid lines denote predictions of the theory with Γ = 0, evaluated in the same annulus using the emergent
Poisson ratio ν fitted at each pressure. The close agreement across pressures confirms that scale-free elasticity captures the
large-scale response, with polarization-gradient effects restricted to short scales. At high pressures, the fitted ν depends on p,
but this variation weakens at lower pressures, suggesting a limiting value of ν near unjamming. Nonlinear effects dominate very
close to unjamming (see Appendix C), preventing a reliable determination of ν in this regime. The theoretical fits employ the
same ν values as those obtained for the harmonic case. For Hertzian interactions, the fitted ν may differ slightly at comparable
pressures.

displacement and stress fields to obtain the behavior of
the emergent moduli.

We investigate the angular structure of the stress re-
sponse by analyzing the radially averaged stress compo-
nents within a far-field annular region, r ∈ [25, 35], as
a function of the angle θ at different pressures. Fig. 8
presents these angular profiles for systems with (1) Har-
monic and (2) Hertzian interactions (top and bottoms
rows, respectively), showing the change in the three stress
components: (a) σyy, (b) σxx, and (c) σxy. As the po-
larization gradient effects are negligible at these length
scales and remain confined to shorter distances near the
source, we compute the theoretical stress fields using
Γ = 0, applying the same force geometry and evaluat-
ing the results within the same annular region. As the
Green’s function for the stress response [Eq. (32)] de-
pends only on emergent Poisson ratio ν, we extract values
of ν, at each pressure, which closely match the simulation
results. Importantly, the VCTG describes both harmonic
and Hertzian systems, underscoring its universality.

As the system approaches unjamming, the fitted Pois-
son ratio exhibits progressively weaker pressure depen-
dence, and the angular response profiles at different pres-
sures tend to collapse. This behavior suggests that ν

approaches a limiting value in the low-pressure regime.
Very close to unjamming, however, nonlinear effects in
the response become significant (see Appendix C), mak-
ing it increasingly difficult to determine ν reliably. In
this regime, the response scaled by the force magnitude
does not collapse for different applied forces, indicating
the need for a nonlinear generalization of the theory.
Such a framework must incorporate the evolution of the
emergent moduli under the nonlinear feedback from local
stresses. We note that this regime is still characterized
by a dielectric response at long wavelengths, and the q
dependence is not affected by this nonlinearity.

As shown previously in Fig. 7, the disorder-averaged
displacement field, defined as the difference between per-
turbed and unperturbed configurations, shares the same
spatial structure as the potential field φ. Here we com-
pare the scaling with pressure, of the displacement field
in jammed solids against the scaling of φ.

As discussed earlier, the amplitude of stress correla-
tions scales as K2D = g

2 (1 + ν) ∼ p2 near unjamming.
Since ν becomes independent of pressure in this regime, it
follows that g ∼ p2. Combined with the Green’s function
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FIG. 9. Displacement field components induced by the lo-
calized perturbation. Panels (1.a) and (2.a) show the angu-
lar dependence of the x-displacement, ux, measured within
the annular region r ∈ [25, 35] for systems with harmonic
(1.a) and Hertzian (2.a) interactions. Displacements are plot-
ted as a function of angle θ for different pressures, reveal-
ing anisotropy that depends on both pressure and interaction
type. Panels (1.b) and (2.b) show the angularly averaged
magnitude of the y-displacement, |uy|, as a function of ra-
dial distance r measured from the edge of the forcing region
(r = 2). All displacements are normalized by the magnitude
of the applied point force. With this normalization, the fields
exhibit pressure-dependent scaling: ux, uy ∼ p−1/2 for har-
monic interactions and ∼ p−2/3 for Hertzian interactions. In
our perturbation protocol, uy is negative near x = 0 and pos-
itive at larger x, and therefore, to compare displacements at
different r, we plot the angular average of |uy| on a logarith-
mic scale.

for φ [Eq. (30)], this yields the scaling

φ

|f |
∼ p−2. (33)

We now examine the displacement response obtained
from simulations. In linear response, if u were identical to
φ, then upon normalization by the force magnitude f0 it
should scale as p−2 across pressures. Fig. 9 compares this
expectation with numerical results for harmonic (α = 2)
and Hertzian (α = 5/2) interactions. Panels (1.a) and
(2.a) show the angular variation of ux(θ) measured in the
far field (r ∈ [25, 35]), while panels (1.b) and (2.b) display
the angularly averaged |uy(r)| as a function of r, mea-
sured from the edge of the forcing region at r = 2, for a
force applied in the −y direction. The measured displace-
ment response, once normalized by the applied force, ex-
hibits a power-law dependence on pressure: u ∼ p−1/2

for harmonic interactions and u ∼ p−2/3 for Hertzian in-
teractions. These results match the general scaling form

u

|f |
∼ p−

α−3/2
α−1 , (34)

demonstrating that while u and φ share the same spatial
structure, their pressure dependence differs. This differ-

ence can be rationalized by noting that the two fields
carry distinct physical dimensions. The displacement u
has units of length, whereas φ, introduced as a Lagrange
multiplier enforcing Gauss’s law, has units of [energy]−1

[length]−d+1. To relate φ to the physical displacement,
we introduce a proportionality constant β(p) with dimen-
sions of [energy] [length]d:

ui = β(p)φi. (35)

The observed scaling of u then implies β(p) ∼ p−
α−1/2
α−1 .

The factor β(p) encodes microscopic information set by
both pressure and the details of the forcing protocol. In
our case, a localized force applied near the origin, the re-
sponse excites shear-like, non-affine motions governed by
the connectivity of the contact network and the proxim-
ity of the system to isostaticity [50]. Incorporating these
isostatic scaling arguments into the energetic framework
underlying Eq. (35) reproduces the displacement scaling
observed in simulations. Thus, once the deformation pro-
tocol and interaction potential are specified, the extended
VCTG framework provides a consistent description of the
displacement response in jammed solids.

V. CONCLUSION AND DISCUSSION

In this work, we have extended the Vector Charge
Theory of Granular solids (VCTG)—a stress-only elas-
ticity framework of prestressed solids—to incorporate
both dielectric-like and Debye-type screening. Using this
framework, we characterized the mechanical response
of jammed packings of frictionless disks in two dimen-
sions by analyzing stress correlations, grain displacement
fields, and the scaling of the emergent elastic moduli as
the system approaches the unjamming transition.
Our main conclusions can be grouped into four cate-

gories: Foremost, using the disorder-averaged response
to small external perturbations, we find no evidence of
an emergent Debye-like screening length scale. If such
a scale were present, it would be expected to manifest
in stress correlations or mechanical response functions.
Instead, the dielectric-like response persists up to the
unjamming point. A distinct “prejammed” phase with
anomalous elasticity has been proposed in recent stud-
ies [28, 30], but such behavior does not emerge in our
simulations. While those theoretical regimes can be for-
mally recovered from our formulation in the Debye-like
limit (gχ)−1 → 0, the systems we study remain in the di-
electric regime all the way to unjamming. This does not
rule out the possibility that other classes of prestressed
solids may undergo a transition from dielectric to Debye
screening. For instance, it would be interesting to explore
whether such a transition occurs in gels [38].
Second, our analysis indicates that the pressure depen-

dence of the emergent Poisson ratio becomes weaker as
the system approaches the unjamming transition. This
trend suggests that, in the low-pressure limit, the Poisson
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ratio becomes effectively pressure-independent, while the
emergent shear modulus follows the scaling g ∼ p2. How-
ever, the onset of non-linearities in the response near un-
jamming prevents a definitive determination of the pres-
sure dependence of the elastic moduli. Capturing such ef-
fects may require extending the theory beyond the linear
regime–incorporating, for instance, stress-dependent po-
larization or other network-level reorganizations. Within
the linear regime, a dimensional analysis allows us to
relate the VCTG moduli to conventional strain-based
measurements, recovering the expected pressure scaling
once changes in energy associated with the specific inter-
particle potential and details of the deformation are taken
into account. For a fixed macrostate of the ensemble,
the averaged response is therefore well captured by the
dielectric framework of VCTG.

Third, we clarified the physical role of the differences
of gauge potential φ within the VCTG framework, show-
ing that changes in φ-induced by external forcing under
gauge fixing-encode the relative displacement field de-
fined as the difference between the perturbed and un-
perturbed states. This correspondence is analogous to
experimental protocols that measure ensemble-averaged
responses across multiple disordered realizations under
fixed macroscopic conditions. We have also demon-
strated that VCTG predictions can be translated to dis-
placement fields that arise in response to force pertur-
bations, with applications of the analysis presented in
this paper to experiments on biological tissues [51, 52],
gels [53] or frictional granular solids [46].

Finally, our results underscore the crucial role of dis-
order averaging. While individual realizations of amor-
phous packings show strong fluctuations and plastic
events, ensemble averaging yields a robust, linear dielec-
tric response that remains valid all the way up to un-
jamming. This statistical emergence of elasticity is rem-
iniscent of spin-ice systems [54], where local constraints
enforce a gauge symmetry and global behavior arises only
at the ensemble level.

The theoretical framework presented in this paper is
broadly applicable to disordered solids with prestress
or residual stress. This gauge-theoretic, stress-only ap-
proach provides a robust formulation of prestress as
arising from a screening mechanism that screens out
“charges” that violate the divergence-free condition of
the stress when external forces are present. The VCTG
framework emerged out of a dielectric generalization of
the vector-charge theory [26]. A similar generalization
of the scalar charge-theory [26] would provide a useful
framework for solids where prestress arises from the ge-

ometric frustration and the violation of the stress com-
patibility condition [55, 56] We plan to explore this con-
nection in the near future.

ACKNOWLEDGMENTS

The authors acknowledge fruitful discussions with
Anupam Kundu, Pinaki Chaudhuri, Madan Rao,
Srikanth Sastry, Smarajit Karmakar, Itamar Procaccia,
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Appendix A: Correlation Functions for the Modified
VCTG

Here we provide the details the stress correlations
in the VCTG augmented by the polarization gradient
term [Eq. (10)]. Fourier transforming constraint action
[Eq. (12)] and integrating out the polarization field Pij

yields an effective action in terms of the stress tensor,

S̃ ′ =

∫
ddq
[
1
2σij(q)Λ̃ijklσkl(−q) + iσij(q)Jij(−q)

+ iφi(q)ρi(−q)
]
,

(A1)
where the emergent elasticity tensor acquires a nontrivial
wavevector dependence,

Λ̃−1
ijkl = g (χ̃ijkl + δijkl) , (A2)

where the modified susceptibility χ̃ijkl is given by
Eq. (22). For brevity in notation, we suppress the ex-
plicit q-dependence.
Integrating out the stress tensor σij yields the partition

function

Z[f extj ] =

∫
[Dφ] e−Seff , (A3)

with the effective action:

Seff =

∫
ddq
[
iφi(q)f

ext
i (−q) + 1

2

{
Jij(q)Λ̃

−1
ijklJkl(−q) + iφj(q)qiΛ̃

−1
ijklJkl(−q)− iJij(q)Λ̃

−1
ijklqkφl(−q)

+ φj(q)qiΛ̃
−1
ijklqkφl(−q)

}]
.

(A4)

Finally, integrating out φi and differentiating logZ with respect to the source fields gives the stress–stress correlation
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function,

⟨σij(q)σkl(−q)⟩fext=0 =
Λ̃−1
ijkl + Λ̃−1

klij

2
− 1

4
(Λ̃−1

ijab + Λ̃−1
abij)(Λ̃

−1
klmn + Λ̃−1

mnkl)qbqnc̃
−1
am,

(A5)

with c̃il = qjΛ̃
−1
jiklqk introduced for compactness.

Thus, polarization gradients renormalize the stress cor-

relations through the wavevector dependence of Λ̃−1
ijkl.

Scale-Dependent Elasticity
To capture the effects of spatial gradients in the po-

larization field, we adopt an isotropic form for the polar-
ization stiffness tensor in Eq. (13) to obtain a modified
elastic tensor in Fourier space,

Λ̃−1
ijkl(q) =

g(2 + gΓq2)

2(1 + gΓq2)
(δikδjl + δilδjk)

+
4gν

(2 + gΓq2)(1− ν + (1 + 3ν)gΓq2)
δijδkl.

(A6)
In two dimensions, this tensor has three eigenvalues

corresponding to orthogonal modes: a compressional
mode associated with the eigenvector (1, 1, 0), and two
degenerate shear modes associated with the eigenvectors
(1,−1, 0) and (0, 0, 1). These eigenmodes allow us to de-
fine wavevector-dependent elastic coefficients. The effec-
tive shear modulus is given in Eq. (28), reducing to the
bare value g in the long-wavelength limit (|q| → 0), and
saturating to g/2 at short wavelengths (|q| → ∞). The
compressional modulus acquires a similarly nontrivial de-
pendence,

λ̃(q) =
2gν

(1 + gΓq2)(1− ν + gΓq2(1 + 3ν))
. (A7)

At small |q|, this recovers the bare value λ̃(q) →
2gν/(1 − ν) ≡ λ, while at large |q| it decays as λ̃(q) ∼
|q|−4. The crossover from scale-independent to scale-
dependent elasticity is controlled by a characteristic
length scale, ℓ =

√
gΓ [Eq. (15)].

Pressure Correlations and Screening
The explicit form of the pressure–pressure correlation

function is given in Eq. (14). In the long-wavelength
limit, this reduces to the unscreened value

⟨P (q)P (−q)⟩ → g

2
(1 + ν) ≡ K2D. (A8)

At finite |q|, the correlations acquire a scale dependence,
which can be expressed in terms of the effective Lamé
coefficients as

⟨P (q)P (−q)⟩ = g̃(q)

2

(
1 + ν̃(q)

)
≡ K̃2D(q), (A9)

with the scale-dependent Poisson ratio ν̃(q) defined in
Eq. (29).

More generally, the full stress–stress correlation ten-
sor exhibits anisotropic angular structure that emerges
naturally within the VCTG, specifically,

⟨σxx(q)σxx(−q)⟩ = 4K̃2D(|q|) sin4 θ,

⟨σyy(q)σyy(−q)⟩ = 4K̃2D(|q|) cos4 θ,

⟨σxy(q)σxy(−q)⟩ = 4K̃2D(|q|) sin2 θ cos2 θ,

⟨σxx(q)σyy(−q)⟩ = 4K̃2D(|q|) sin2 θ cos2 θ,

⟨σxx(q)σxy(−q)⟩ = 4K̃2D(|q|)(− sin3 θ cos θ),

⟨σxy(q)σyy(−q)⟩ = 4K̃2D(|q|)(− sin θ cos3 θ). (A10)

Fig. 5 illustrates the Fourier-space stress–stress cor-
relation functions, ⟨σij(q)σkl(−q)⟩. The four columns
correspond to different stress components–Cxxxx, Cyyyy,
Cxxyy, and Cxyxy–and each row presents results for in-
creasing values of the polarization stiffness Γ, while keep-
ing the elastic parameters fixed at ν = 0.9 and g =
4 × 10−6, consistent with the values extracted from nu-
merical simulations at pressure p = 10−3. For Γ = 0,
corresponding to the scale-free limit of linear elastic-
ity, the correlations are long-ranged and exhibit strong
anisotropy, characteristic of unscreened theory. As Γ is
increased, short-scale screening becomes evident: correla-
tions at large |q| are increasingly suppressed, regularizing
the ultraviolet behavior of the theory. In real space, this
manifests as a crossover from short-distance suppression
to long-distance power-law correlations. Despite this sup-
pression, the small-q structure remains anisotropic, with
pinch-point singularities that reflect directional depen-
dence in the correlations as |q| → 0.

Appendix B: Effects of Averaging

In disordered particle assemblies, where rigidity
emerges from a complex contact network, sample-to-
sample variations influence the mechanical response.
These effects are particularly pronounced near the un-
jamming transition [20] and near rigidity transitions [57].
Fig. 10 illustrates this behavior in the displacement re-
sponse of a jammed solid at two different pressures, p,
for a system of N = 8192 particles subjected to a point
force of magnitude 0.1p. The first two rows show the
response of the same configuration to forces applied at
different locations, with displacement fields, specifically
the y-component uy, plotted relative to the force applica-
tion point, whereas the third row shows the average over
different realizations of the perturbing force. The field is
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FIG. 10. Displacement response of a jammed solid at pres-
sure, p = 10−2 (p = 10−4) in left (right) column for a system
of N = 8192 particles subjected to a point force of magni-
tude 0.1p. The first and second rows show responses of the
same configuration for two different force-application points,
with displacement fields plotted relative to the force loca-
tion. The third row shows displacement fields averaged over
32 point-force realizations of the same configuration. Individ-
ual realizations may deviate strongly due to localized plastic
events, but the averaged response remains elastic. At lower
pressures, stronger background noise obscures the response
structure, highlighting the need for averaging.

obtained by coarse-graining in square boxes of length two
grain diameters, as the number of grains within each box
can vary across the configuration, this introduces addi-
tional fluctuations in the coarse-grained u-field.

Individual realizations can either follow reversible,
elastic behavior or exhibit pronounced deviations, where
localized, irreversible rearrangements of the contact net-
work produce anomalous displacement patterns. To dis-
tinguish these behaviors, we compute the mean-squared
displacement (MSD), defined as MSD = 1

N

∑
i|rif − ri0|2,

where ri0 denotes the position of particle i in the unper-
turbed configuration and rif its position after the point
force is removed and the system is re-minimized. Real-
izations with MSD ≤ 10−7 are classified as elastic, while
those with larger values correspond to plastic events. At
p = 10−2, 8 out of 32 realizations undergo plastic in-
stabilities, whereas at p = 10−4, 19 out of 32 realiza-
tions are elastic. This trend demonstrates the increas-

ing likelihood of plastic rearrangements as the pressure
is decreased. Importantly, when the displacement field
is averaged over all 32 force realizations within a given
configuration, the anomalous features are smoothed out,
and the resulting pattern closely follows the elastic re-
sponse, as shown in the third row of Fig. 10. Near un-
jamming with small applied forces, the displacement field
is dominated by strong background noise, and clear elas-
tic patterns emerge only after averaging over multiple
realizations, while for larger forces (f0 ≥ p) the response
exhibits significant nonlinear effects, as discussed in Ap-
pendix C.
While plasticity has been proposed to generate a fi-

nite screening length characteristic of a “prejammed”
phase [28, 30], our results show that the ensemble-
averaged responses remain well described by the di-
electric screening predicted by VCTG. In our proto-
col—where the perturbation strength scales with pres-
sure by applying localized forces along −y to grains near
the origin—plastic rearrangements occur in localized re-
gions but are smoothed out in the disorder-averaged re-
sponse, even at low pressures close to unjamming. We
therefore do not observe evidence of a distinct prejammed
phase with a finite, non-microscopic Debye-like screening
length. The observed differences may stem from the nu-
merical protocols used, and it remains unclear whether
plastic events acquire finite weight in ensemble-averaged
observables under alternative driving conditions. Our
simulations clearly demonstrate that, upon averaging
over multiple configurations or perturbation points, the
system exhibits elastic-like behavior up to unjamming,
consistent with the linear dielectric VCTG. This be-
havior underscores the crucial role of disorder averag-
ing in capturing the emergent elasticity of prestressed
amorphous solids, where statistical observables become
paramount. Such behavior is reminiscent of spin-ice
systems [54], where local energetic constraints enforce
Gauss’s law and global properties emerge only through
disorder averaging.

Appendix C: Non-linear Effects

To probe the limits of linear regime near the unjam-
ming transition, we systematically vary the amplitude of
the applied local force and measure the resulting displace-
ment response. Fig. 11 shows the radial profiles angu-
larly averaged |uy(r)|, normalized by the force amplitude
f0, for a fixed pressure p = 10−5. In a linearly elastic
medium, the normalized displacement |uy|/f0 should be
independent of f0, and all curves would collapse. Instead,
we observe clear deviations from collapse even for small
forcing amplitudes, indicating that the response is intrin-
sically nonlinear in the vicinity of unjamming. This non-
linear behavior is strongly pressure dependent: as shown
in the inset for p = 10−4, the curves nearly collapse at
small forces, signaling a recovery of linear response at
higher pressures.
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FIG. 11. Deviation from linear regime near unjamming. Ra-
dial profiles of the angularly averaged absolute value of the
y-displacement, |uy|, normalized by the applied force magni-
tude f0, are shown for a fixed pressure p = 10−5 and three
different forcing amplitudes: f0 = 0.1p, 0.01p, and 0.001p. In
a linear elastic medium, uy/f0 would be independent of f0, re-
sulting in collapsed curves. The observed separation between
curves indicates a breakdown of linear response, suggesting
that near unjamming, the system deviates from linear behav-
ior even under infinitesimal perturbations. The inset shows
the same analysis at a higher pressure p = 10−4, where the
curves nearly collapse, indicating recovery of linear behavior.
In our perturbation protocol, y-displacement takes negative
values near x = 0 and positive values at larger x even in the
linear response regime described well by VCTG. To compare
displacements at different r on a log scale, we use the angular
average of the absolute value.

We now turn to the spatial structure of the response
fields. Fig. 12 shows that the early onset of nonlinear
behavior at low pressures does not substantially mod-
ify the overall patterns. For applied forces up to the
confining pressure (f0 ≤ p), the displacement and stress
fields retain their spatial structure, despite the deviations
from linear scaling evident in Fig. 11. Pronounced struc-
tural changes appear only once the applied force exceeds
the confining pressure (f0 > p). Importantly, this crite-
rion applies across all pressures: higher-pressure systems
maintain linear scaling over a broader range of forces, yet
the spatial structure alters only when f0 surpasses p.
In the following, we propose a possible theory for the

non-linear effects observed in the response computation.
In the linear regime, the stress tensor σij relates to the
unscreened electric field Ekl via the inverse dielectric (or
elastic constant) tensor Λ−1

ijkl:

σij = Λ−1
ijklEkl, with Eij =

1

2
(∂iφj + ∂jφi), (C1)

where φi is the gauge potential, which we have related

to the displacement field. For stress-dependent moduli,
Λ−1
ijkl becomes a functional of the stress field:

Λ−1
ijkl → Λ−1

ijkl[σ], (C2)

leading to a nonlinear relation:

σij = Λ−1
ijkl[σ]Ekl. (C3)

The mechanical equilibrium condition (Gauss’s law) re-
mains:

∂iσij = f extj , (C4)

but the constitutive relation now implicitly depends on
σij . To close the equations, we enforce the compatibility
condition (Faraday’s law in the static limit):

ϵiakϵjcd∂a∂c(Λ[σ]σ)bd = 0, (C5)

which ensures that Eij derives from a gauge potential

ϕi. For small deviations from a reference stress σ(0), we
expand:

σij = σ
(0)
ij + δσij , Λ−1

ijkl[σ] ≈ Λ
(0)−1
ijkl +

∂Λ−1
ijkl

∂σmn

∣∣∣∣
σ(0)

δσmn.

(C6)
Substituting into Gauss’s law yields a Dyson-type equa-
tion:

∂i

(
Λ
(0)−1
ijkl Ekl +

∂Λ−1
ijkl

∂σmn
δσmnEkl

)
= f extj . (C7)

This can be solved iteratively for δσij , with nonlinear
corrections arising from the δσ-dependent term. A Sim-
ilar construction, albeit expanding the elastic moduli in
terms of the strain have been attempted in the litera-
ture [58]. We have not attempted to solve this equation,
in this work, and leave its verification with numerics to
future work.

Appendix D: Standard Electrostatics with
Polarization Gradient Terms

In heterogeneous dielectric media, spatial inhomo-
geneities in structure and composition lead to fluctuating
internal fields and nonuniform polarization. Variational
formulations of electrostatics have addressed such situa-
tions by allowing for arbitrary spatial variations of the
dielectric susceptibility [59]. Here we explicitly extend
linear dielectric theory by introducing a gradient penalty
term that accounts for spatial variations in the polariza-
tion via
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FIG. 12. Response of jammed packings to a point force applied at the system center, with fields coarse-grained over boxes of
side length equal to grain diameter. Each row corresponds to a different combination of pressure p and applied force magnitude
f0: p = 10−3 with f0 = p (row 1) and f0 = 10p (row 2); p = 10−4 with f0 = p (row 3) and f0 = 10p (row 4); and p = 10−5

with f0 = p (row 5) and f0 = 10p (row 6). The five columns display (a) uy, (b) ux, (c) σyy, (d) σxx, and (e) σxy. As shown
previously (Fig. 11), the onset of nonlinear response is pressure dependent, with low-pressure systems (p = 10−5) exhibiting
deviations already at f0 ≈ 0.1p. Here we show that this onset does not substantially modify the spatial structure: for f0 ≤ p
the displacement and stress fields remain nearly unchanged, while pronounced structural differences appear once the applied
force exceeds the confining pressure (f0 > p). Importantly, this trend also persists at higher pressures, where the response
maintains its form up to larger forces before showing structural modifications once f0 > p.

S =

∫
ddr

[
1

2
Piχ

−1
ij Pj +

1

2
(Di − Pi)ϵ

−1
ij (Dj − Pj) + iDi∂iψ + iψρext +

Γαβij

2
(∂αPi)(∂βPj)

]
, (D1)

where Pi is the polarization vector field, Di is the
electric displacement field, and ψ is a Lagrange multi-

plier enforcing Gauss’s law, ∂iDi = ρext, with ρext rep-
resenting the external charge density. The susceptibility
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and permittivity tensors are taken as χij = ϵ0χδij and
ϵij = ϵ0δij . In the absence of the gradient term, Eq. (D1)
reduces to the standard energy functional for a linear di-
electric.

The gradient term penalizes spatial variations in the
polarization field through a rank-4 isotropic tensor,

Γαβij = Γ

[
δαβδij +

1

2
(δαiδβj + δαjδβi)

]
(D2)

Such an extension is particularly relevant for amor-
phous solids and jammed granular materials, where
structural disorder and local constraints restrict polar-
ization degrees of freedom. The gradient term introduces
a characteristic length scale below which polarization
fluctuations are suppressed, leading to modified electro-
static behavior. The corresponding outcome in jammed
solids—where spatial variations in internal prestress are
similarly penalized—is illustrated schematically in Fig. 1.

1. Correlation Functions in Fourier Space

Transforming Eq. (D1) to Fourier space and integrat-
ing out the polarization field Pi, we obtain an effective
action for the displacement field Di:

S̃′ =

∫
ddq

[
1

2
Di(q)Λ̃ijDj(−q) +Di(q)qiψ(−q)

+ iψ(q)ρext(−q)

]
.

where the modified coupling tensor for the quadratic
term is

Λ̃ij = ϵ−1
ij − ϵ−1

in A
−1
nmϵ

−1
mj . (D3)

with Aij = χ−1
ij + ϵ−1

ij + Γαβijqαqβ . To compute the
correlation functions for Di, we can now use the standard
method of sources to obtain

⟨DiDj⟩ = Λ̃−1
ij − Λ̃−1

in qnC
−1Λ̃−1

jmqm, (D4)

where C = qiΛ̃
−1
ij qj . For an isotropic medium the expres-

sion of A−1
nm simplifies to

A−1
nm =

ϵ0χ

(1 + χ)(1 + λ2q2)

[
δnm − λ2

1 + 2λ2q2
qnqm

]
,

(D5)

where λ2 = ϵ0χΓ
1+χ . Substituting into the definition of Λ̃ij ,

we find the inverse modified coupling tensor:

Λ̃−1
ij =

ϵ0(1 + χ)

1 + (1 + χ)λ2q2

[
(1 + λ2q2)δij

− χλ2

1 + (1 + χ)2λ2q2
qiqj

]
.

Substituting this form into the expression for the cor-
relation function in Eq. (D4) yields:

⟨DiDj⟩ =
(1 + λ2q2)

1 + (1 + χ)λ2q2
ϵ0(1 + χ)

[
δij −

qiqj
q2

]
. (D6)

Due to the Gauss’s law constraint, qiDi = 0 (for ρext =
0), the displacement field correlations ⟨DiDj⟩ is strictly
transverse, satisfying qiqj⟨DiDj⟩ = 0. In the absence of
the polarization gradient term (i.e. Γ = 0), the correla-
tion reduces to the standard form:

ϵ0(1 + χ)

[
δij −

qiqj
q2

]
. (D7)

However, finite Γ introduces a momentum-dependent

amplitude through the prefactor (1+λ2q2)
1+(1+χ)λ2q2 . Since χ >

0 this prefactor decays with increasing q, leading to a
suppression of transverse correlations below the charac-
teristic length scale λ2 = ϵ0χΓ

1+χ .

2. Saddle point analysis

Variation of the constrained action (D1) yields the fol-
lowing set of coupled equations of D, P and ψ for the
dielectric response.

(i) ∂iDi = ρext, (D8)

(ii) Di = Pi − iϵij∂jψ, (D9)

(iii) χ−1
ij Pj − ϵ−1

ij (Dj − Pj)− Γαβij∂α∂βPj = 0.

(D10)

Substituting Eq. (D9) into Eq. (D10) yields a modified
constitutive relation for the polarization:

χ−1
ij Pj − Γαβij∂α∂βPj = −i∂iψ. (D11)

In Fourier space, the polarization in an isotropic
medium takes the form

P̃i =
ϵ0χ

1 + 2ϵ0χΓq2
qiψ̃. (D12)

Substituting Eqs. (D9) and (D12) into Gauss’s
law (D8) leads to a modified Poisson equation:(

ϵ0χq
2

1 + 2ϵ0χΓq2
+ ϵ0q

2

)
iψ̃ = ρ̃ext (D13)

In the limit χ→ ∞ corresponding to a highly polariz-
able medium, this equation reduces to:(

1

2Γ
+ ϵ0q

2

)
iψ̃ = ρ̃ext. (D14)

Solving Eq. (D13) yields the potential response:

iψ̃(q) =
ρ̃ext

ϵ0(1 + χ)

(
1

q2
+

χ

q2 + (
√
2λ)−2

)
, (D15)
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where λ2 = ϵ0χΓ
(1+χ) is the screening length. The inverse

Fourier transform of the expression, in three dimensions
due to a point charge is

ψ(r) =
ρext

ϵ0(1 + χ)

(
1

r
+ χ

e−r/(
√
2λ)

r

)
, (D16)

where the second term reflects Yukawa-type screening
with decay length λ. In the limit χ ≫ 1, this reduces
to

ψ(r) =
ρext

ϵ0

e−r/(
√
2λ)

r
, with λ =

√
ϵ0Γ. (D17)

while in two dimensions, the corresponding expression is

ψ(r) =
ρext

2πϵ0(1 + χ)

[
− log(r) + χK0

(
r√
2λ

)]
, (D18)

where K0 is the modified Bessel function of the second
kind. This function exhibits a crossover from logarithmic
behavior at short distances to exponential decay at large
distances.
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