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Long-range correlations in elastic moduli and
local stresses at the unjamming transition†

Surajit Chakraborty * and Kabir Ramola

We explore the behaviour of spatially heterogeneous elastic moduli as well as the correlations between

local moduli in model solids with short-range repulsive potentials. We show through numerical

simulations that local elastic moduli exhibit long-range correlations, similar to correlations in the local

stresses. Specifically, the correlations in local shear moduli exhibit anisotropic behavior at large

lengthscales characterized by pinch-point singularities in Fourier space, displaying a structural pattern

akin to shear stress correlations. Focussing on two-dimensional jammed solids approaching the

unjamming transition, we show that stress correlations exhibit universal properties, characterized by a

quadratic p2 dependence of the correlations as the pressure p approaches zero, independent of the

details of the model. In contrast, the modulus correlations exhibit a power-law dependence with

different exponents depending on the specific interaction potential. Furthermore, we illustrate that while

affine responses lack long-range correlations, the total modulus, which encompasses non-affine

behavior, exhibits long-range correlations.

1 Introduction

Solids differ from fluids in their ability to resist deformation in
response to external forces.1 Amorphous solids, such as glasses
and granular solids, lack long-range order similar to fluids, yet
they are rigid in response to small mechanical perturbations.2,3

Unlike crystalline materials where the elasticity is derived from
a symmetry-broken, unique stress-free state, amorphous solids
lack such a reference state. The rigidity of these materials
emerges from the complex, heterogeneous contact networks
that form between particles, satisfying conditions of local
mechanical equilibrium. Due to the inherent disorder within
the material, amorphous solids show large spatial fluctuations
in their mechanical properties, characterized by localized
stresses and heterogeneous local elastic moduli.4

Despite their varying microscopic details that differ among
different amorphous structures and result in different physical
properties, amorphous solids exhibit several common mechan-
ical properties. Stress fluctuations in amorphous solids display
long-range anisotropic correlations, decaying as a power-law of
1/rd in d dimensions.5–10 These correlations are anisotropic at
large lengths scales exhibiting pinch point singularities in
Fourier space.11–13 The observed rigidity of amorphous solids
has also been linked to the existence of such long-range stress

correlations originating from random reference states.12,14,15

Amorphous solids are also known to exhibit regions termed
‘‘soft spots’’, where the stiffness associated with collective
vibrations is small. These low-frequency vibrations are consid-
ered (quasi-) localized as only a limited number of particles
near the core participate in the vibration.16 The presence of
these localized vibrations leads to non-affine displacements of
particles within the material when subjected to deformation
about mechanical equilibrium. These non-affine displacements
make a negative contribution to the local moduli.17–19 The
combined effect of non-affine displacements and inherent
disorder gives rise to local stiffness variations when subjected
to deformations, resulting in a spatially heterogeneous elastic
response.20–30 In this context, understanding the nature of
elastic heterogeneity is crucial for understanding the anoma-
lous elastic properties exhibited by disordered solids.

Systems composed of soft particles, which are largely unaf-
fected by temperature fluctuations, enter a jammed state when
the density or applied stress reaches a threshold value.31 This
jamming transition signifies the onset of rigidity within a
disordered assembly, and is exhibited across various structures
like foams, emulsions, granular solids, and glasses.31–38 Theo-
retical frameworks for jammed amorphous solids extensively
usually rely on configurations of frictionless particles with
finite-range repulsive interactions at zero temperature.9,39–50

Athermal arrangements of soft, repulsive frictionless spheres or
disks demonstrate a well-defined jamming transition by vary-
ing the packing density at zero applied shear stress. At zero
pressure, the system achieves isostaticity, marked by an average
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number coordination of 2d per particle, where d represents the
dimensions. Below this threshold, the system loses its rigidity.
Approaching the transition, floppy modes dominate the linear
response,44,45 and the system exhibits diverging length scales
and scaling behavior evident in both mechanical as well as
geometrical properties.40,42,51 Such materials exhibit anoma-
lous elastic properties as the unjamming transition is
approached, with the bulk modulus scaling as p(a�2)/(a�1), while

the shear modulus scales as p a�3
2

� ��
a�1ð Þ.40,42,52 Here, a repre-

sents the exponent associated with the repulsive interaction,
with the potential energy scaling as v(d) B da, where d denotes
the interparticle overlap. Although global moduli have been
extensively investigated, the local elastic moduli and its hetero-
geneity within such materials has received relatively less
attention.

The anomalous mechanical, thermal, and acoustic proper-
ties observed in amorphous solids53–58 have been suggested to
originate from the presence of spatially heterogeneous elastic
moduli.30,59–65 This local heterogeneity is illustrated in Fig. 1
where we show the spatial map of (1) local bulk modulus
and (2) local shear modulus for a particular configuration of
N = 4096 harmonically interacting disks at a pressure of 10�2.
The map is presented for different coarse-graining box sizes (lw)
utilized in defining the local moduli (details are provided in the
subsequent text), specifically (a) lw = 4 and (b) lw = 6. The vector
field overlaid on the map illustrates the first non-zero vibra-
tional mode of the system. Local bulk and shear modulus show
large fluctuation caused by large non-affine contribution to the
corresponding modulus.

Some recent studies on three-dimensional jammed solids
and low-temperature glasses have suggested that local elastic

moduli exhibit negligible correlations at large lengthscales.22,28,66

In contrast, other studies investigating acoustics properties
in low-temperature glasses such as Gelin et al.30 suggest long-
range spatial correlations in elastic moduli. Theoretical
frameworks often invoke the presence of extended power-law
correlations in elastic moduli.67,68 In contrast, Mizuno et al.,66

utilizing a protocol similar to that in ref. 30 for measuring
affine elastic moduli, reported the absence of long-range spatial
correlations in elastic moduli. In contrast, Mahajan et al.69

investigated the local moduli in three dimensional disordered
solids by measuring the local stress response to global strain
deformation, and observed anisotropic correlations with a r�3

decay in the local shear moduli measured in this manner. In a
more recent study, Zhang et al. investigated local elastic moduli
in jammed solids and observed long-range behavior above a
threshold pressure.70 Thus the nature of the correlations in
local elastic moduli in amorphous systems remains a subject of
some debate.

In this study, we show the presence of long-ranged correla-
tions in local elastic moduli. Our analysis focuses on the
spatially heterogeneous elastic moduli of two-dimensional
amorphous solids composed of soft disks that interact via
short-range repulsive interactions. To explore the correlations
between elastic moduli, we measure the correlations in Fourier
space and observe that the fluctuations in local elastic moduli
exhibit long-range correlations, similar to the stress tensor
correlations that are anisotropic and decay as 1/r2 at large
lengthscales. Specifically, the local (simple) shear modulus
correlations reveal anisotropic behavior with pinch-point sin-
gularities in Fourier space, resembling the structural patterns
observed in shear stress correlations. We characterize both the
affine and non-affine contributions to the modulus correlations
in Fourier space, specifically focusing on small wavenumbers.

In addition, we investigate the fluctuations in local stresses
and moduli near the unjamming transition across model
solids with short-range repulsive potentials. Our results reveal
that stress fluctuations exhibit a universal characteristic, with
correlation magnitude decays as p2 when the pressure p appro-
aches the unjamming point, independent of specific inter-
action details. In contrast, modulus correlations exhibit
model-dependent behavior, following power-law decay with
exponents associated with the specific interaction potential.
Fluctuations in the local affine moduli scale as its spatial
average, i.e. h|dKm|i B h %Kmi, as pressure p decreases towards
the unjamming point. In contrast, the total shear modulus,
which includes significant non-affine contributions, exhibits
anomalous scaling behavior. The relative fluctuations in local
shear modulus (h|dGm|i/h %Gmi) distributions increase following
distinct power-law exponents as the system approaches the
unjamming transition, highlighting the critical influence of
non-affine deformations on the mechanical properties of amor-
phous solids.

The outline of the paper is as follows. The first section
describes the numerical protocol employed to generate two-
dimensional amorphous packings at fixed global pressures.
In the second section, we show the correlation of the local

Fig. 1 Spatial map of the local elastic modulus ((1) bulk modulus (Km) and
(2) shear modulus (Gm)) for a particular configuration of N = 4096
harmonically interacting disks at a pressure of 10�2. The map is presented
for different coarse-grained box sizes, specifically (a) lw = 4 and (b) lw = 6.
The vector field overlaid on the map illustrates the first non-zero vibra-
tional mode of the system. Local bulk and shear modulus show large
fluctuations near regions with significant particle displacements in low-
energy excitations. Details regarding the measurements are provided
in the text.
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stress tensor as the unjamming transition is approached.
The measurement of local elastic moduli heterogeneity within
the two-dimensional solids is presented in the third section.
In the fourth section, we investigate the correlations of the
(simple) shear moduli in Fourier space. Finally, we conclude by
summarizing our observations and highlighting the signifi-
cance of our results.

2 Model and methods

We simulate jammed packings of a bi-disperse (50 : 50) mixture
of frictionless disks with a diameter (a) ratio of 1 : 1.4 in two
dimensions with periodic boundary conditions. The particles
interact via a short-range repulsive interaction of the form

v rij
� �

¼ e
a

1� rij

aij

� �a

; (1)

where rij is the center-to-center distance between disk i and disk

j, whereas aij ¼
ai þ aj

2
is the sum of the radii of the two disks.

The small particle diameter (a0) is the unit of length and e is the
unit of energy. The coarse-grained stress components and

moduli are expressed in units of
e
a03

. We study canonical models

of jamming with frictionless soft particles, such as the Harmonic

(a = 2) and Hertzian a ¼ 5

2

� �
models. Additionally, we explore

potentials related to different a values. We utilize the Conjugate
Gradient minimization protocol to generate energy minimized
arrangements at different pressures following a variant of the
standard O’Hern protocol.40,71 The ensembles are characterized
by the pressure of the configurations. Unless explicitly men-
tioned, all analyses are conducted on solid configurations with
a system size N = 8192 grains. Grains identified as ‘‘rattlers’’,
characterized by a lack of overlap with neighboring grains, are
subsequently removed from the analysis.

3 Stress correlations at the unjamming
transition

Granular solids exhibit long-range anisotropic stress correla-
tions, indicating the presence of force chains within these
materials.11,12 Long-range anisotropic stress correlations have
also been observed in low-temperature glasses, attributed to
the percolation of force-bearing networks.15 Moreover, the
existence of long-range anisotropic stress correlation has been
identified in rigid gels,13 revealing identifiable force chains
within these materials. In this study, we investigate stress
correlations in two-dimensional jammed solids as they approach
the unjamming transition, examining the decay of these correla-
tions across model solids with short-range repulsive potentials.

In order to investigate the local mechanical properties,
specifically the stress tensor and elastic modulus tensor, we
follow previously established coarse graining procedures.22,28,63

We partition the simulation box into coarse-graining boxes
of different sizes, each characterized by a linear length lw

measured in units of the smallest particle diameter. The stress
tensor is obtained by coarse-graining the force moment tensor.
The force moment tensor associated with the contact between
particles i and j is defined as the cross product of the contact

force vector
-

fij and the distance vector -
rij. The local stress tensor

within a coarse-grained box m is determined by considering the
fraction of bond lengths contained within that box, defined as,

smab ¼
1

lw2

X
io j

@v rij
� �
@rij

raijr
b
ij

rij

qij

rij
: (2)

Here,
qij

rij
represents the fraction of the bond length rij contained

within box m.
To extract the long-range behavior of stress correlations at

large length scales, we measure the correlations in the Fourier
domain. Typically, such long-range correlations are easier to
analyze in the Fourier domain, since one only has to analyze the
behavior in a small range near |q| - 0, as opposed to a large
region in real space which can also produce a large amount of
noise in the data (since the values are small at large distances).
We measure stress correlations in Fourier space by performing
a discrete Fourier transform of the fluctuations in the local
stress tensor component Dsm

ab, representing the difference
between sm

ab and its spatial average, �sm
ab:

Dsabð~qÞ ¼
X
m

exp i~q �~rmð ÞDsmab: (3)

Here, -
q represents the wavevector in Fourier space and -

rm

denotes the coordinates of the center of the m-th box. The
correlation at -

q is given by,

Cabgdð~qÞ ¼ Dsabð~qÞDsgdð�~qÞ
� �

; (4)

where ‘hi’ denotes average over configurations. Each point in

Fourier space is separated by
2p
L
;, where L represents the length

of the square simulation box, and the upper cutoff is deter-
mined by the size of the coarse-grained box. To measure the
correlation, we average over a minimum of 200 configurations
for each pressure.

In Fig. 2, we present the Fourier space representation of
shear stress correlations across different pressures. The top row
of Fig. 2 illustrates the two-dimensional representation of these
correlations. The correlation is anisotropic at large length scales
and exhibits different limits in Fourier space as |q| - 0
is approached from different directions. This feature is known
as a ‘‘pinch point’’ singularity. Such ‘‘pinch point’’ singularities
have been observed in the context of spin correlations within
frustrated magnetic systems.72 Pinch-point behavior has also
been identified as a significant feature of stress correlations in
granular systems.8,9,73,74 Recent theoretical studies predict that
pinch-point singularities in stress correlations of amorphous
solids arise from mechanical equilibrium conditions.11,12 Nota-
bly, stress correlations unveil pinch-point singularity at |q| - 0
across all pressures, signifying the presence of long-
range anisotropic stress correlations extending up to the
unjamming point. Such anisotropic structures, characterized
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by pinch-point singularities as |q| - 0 within stress
correlators, have been observed in both simulations and experi-
mental studies of jammed solids.11 A recently developed
theoretical framework, based on the mapping between the
elasticity theory of granular solids and tensorial electromag-
netism provides the functional expression for the observed
anisotropic stress correlations,11,12

Cxyxy(q,y) = A sin2 y cos2 y. (5)

The angular dependence of shear stress correlations is shown
in the bottom row of Fig. 2. The angular dependence of the
correlations at small |q| are computed through radial averaging

within jqj ¼ 2
2p
L

to 10
2p
L

using angular intervals of
2p
60

. Next, we

investigate the amplitude of the anisotropic stress correlations
(A) in model solids with short-range repulsive potentials as they
approach the unjamming transition.

In Fig. 3, we illustrate the behaviour of A as the system
approaches the unjamming point, employing different coarse-
graining box sizes for stress measurement in real space. Notably,
increasing the coarse-graining box length diminishes the magni-
tude of fluctuations, impacting the overall correlation magnitude.
Interestingly, we observe a universal quadratic scaling (p2) of stress
correlation amplitude (A) regardless of the specific microscopic
details. This dependence on the pressure can be explained from
phenomenological arguments: as the local stress tensor is the first
moment of the force distribution, at low pressures all elements are
proportional to p, yielding a p2 dependence for the stress correla-
tions, independent of the form of interactions. This simple
analysis is also corroborated by a more detailed field theory
constructed based on the symmetries observed in jammed solids
under isotropic compression predicts, at the transition point, the
stress correlation vanishes as the square of the pressure (p2) of the

packings.9 Recent studies on near-crystalline packings have pro-
vided a more microscopic derivation of this scaling, and shown
that it is robust across an amorphization transition.75 This beha-
viour has also been observed in systems with finite ranged
Lennard-Jones interaction.76

4 Heterogeneous elastic moduli

Among various alternative derivations to compute elastic
moduli,22,30,77 in this study, we measure elastic responses
by assuming hypothetical affine deformations of the solid.
We measure the local elastic moduli using the ‘‘fully local’’
approach described in ref. 22 and 63 under athermal condi-
tions (T = 0). This evaluation incorporates both affine (A) and
non-affine (NA) displacements incurred by particles within
amorphous structures at mechanical equilibrium (T = 0).17,78

At each coarse-grained box m, the local elastic modulus tensor

Fig. 2 Shear stress correlations within two-dimensional amorphous packings under Hertzian repulsion are studied in Fourier space at varying pressures:
(a) p = 10�3, (b) p = 10�4, (c) p = 10�5, and (d) p = 10�6. The stress tensor in real space is derived using (2) with coarse-grained boxes of size lw = 3. In the
top row, we present a two-dimensional representation of shear stress correlations. These reveal pinch-point singularities as |q| - 0 at all pressures,
indicating the presence of long-range anisotropic correlations extending up to the unjamming point. The bottom row illustrates the angular dependence

of the correlations at small |q|, computed through radial averaging within jqj ¼ 2
2p
L

to 10
2p
L

using angular intervals of
2p
60

. These correlations exhibit an

angular dependency of A sin2 y cos2y for various A values at different pressures.

Fig. 3 Dependence of the amplitude (A) of shear stress correlations,
which behave as Cxyxy(q,y) = A sin2 ycos2 y, on the pressure (p) of the
packings. Remarkably, the stress correlation exhibits a universal behavior
across different model solids. In both models, A follows a quadratic
dependence on pressure (p2) at small pressures as shown in (a) and (b)

for Harmonic (a = 2) and Hertzian a ¼ 5

2

� �
respectively.
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(Xabgd) is computed by subtracting the non-affine relaxation
contribution (XNA m

abgd ) from the affine contribution (XA m
abgd),

expressed as:

Xm
abgd = XA m

abgd � XNA m
abgd . (6)

The contribution arising from affine deformation is measured
through the ‘‘Born’’ term XB m

abgd,
4,17,79

XBm
abgd ¼

1

lw2

X
io j

@2v

@rij2
� 1

rij

@v

@rij

� �
rijarijbrijgrijd

rij2
qij

rij
: (7)

To account for the non-zero values of the stress components
in the random reference states of amorphous solids, a correc-
tion term (XC m

abgd) is added to the contribution from affine
deformations:80

XCm
abgd ¼ �

1

2
2smabdgd � smagdbd � smaddbg � smbgdad � smbddag
	 


: (8)

Therefore, the overall contribution of affine deformations is
given by,

XA m
abgd = XB m

abgd + XC m
abgd. (9)

The application of strain to amorphous solids results in
non-affine relaxation of particles, contributing to the overall
modulus at mechanical equilibrium which is zero for the case
of crystalline solids.17,78,81 The non-affine contribution (XNA m

abgd )
is determined through the analysis of the ‘‘Hessian matrix’’ in the
Harmonic approximation of the potential energy at T = 0:17,18

XNAm
abgd ¼

P
k

L2

ok2

PN
i¼1

ck
i �
@smab
@ri

� � PN
j¼1

ck
j �
@sgd
@rj

 !
; (10)

where ck
i represents the d dimensional displacement vector of

particle i in the normal mode ck of the ‘‘Hessian matrix’’ and
ok

2 is the corresponding eigenvalue. The local bulk modulus of
a two-dimensional solid within a coarse-grained box m is
measured as

Km = (Xm
xxxx + Xm

yyyy + Xm
xxyy + Xm

yyxx)/4, (11)

and the local (simple) shear modulus at the m-th box is

Gm = Xm
xyxy. (12)

Fig. 4 illustrates the behavior of the mean local modulus as
the pressure of the solids is decreased towards the unjamming
point. The mean values of the local moduli remain largely
independent of the coarse graining box sizes, here we employ
coarse-grained boxes of linear length lw = 3. For Harmonic
repulsion (a = 2) the mean bulk modulus ( %Km) remains con-
stant, while the mean shear modulus ( %Gm) scales as p1/2 at low
pressures, as shown in (a) and (b) respectively. In the case of
Hertzian (a = 5/2) interactions, %Km scales as p1/3 and %Gm scales as
p2/3 as illustrated in (c) and (d) respectively. Notably, this
scaling behaviour of the mean moduli with pressure is remi-
niscent of scaling behavior observed in macroscopic moduli

measured in model solids. Specifically, the bulk modulus scales as

p(a�2)/(a�1) and the shear modulus scales as p a�3
2

� ��
ða�1Þ.42,51,82

The behavior of the affine and non-affine components of
these moduli reveals that the bulk modulus is mainly governed
by its affine component, with a relatively small non-affine
contribution. This explains the observed bulk modulus scaling,
as the resistance to affine deformation scales with the double
derivative of the potential energy (da�2), with d denoting the
interparticle overlap. Consequently, as bulk deformations are
primarily governed by an affine response, the pressure scales
according to the force that scales as the derivative of the
interaction energy (da�1). On the other hand, the shear modu-
lus exhibits a significant non-affine component, which is
comparable to its affine counterpart, resulting in deviations
from the expected scaling behavior.42,51,82 These findings
regarding the interplay between the affine and non-affine
response align with earlier studies.22,83

In Fig. 5, we present the relative fluctuations in local moduli
distributions as the unjamming transition is approached. The
relative fluctuations in the bulk modulus remain constant,
i.e., h|DKm|i B h %Kmi, as pressure p - 0 for both Harmonic
(a = 2) and Hertzian (a = 2.5) interactions, as shown in (a) and
(c), respectively. Conversely, the relative fluctuations in the
local shear modulus (h|DGm|i/h %Gmi) increase near the unjam-
ming point (p - 0). For Harmonic interactions, h|DGm|i/h %Gmi
scales as p�0.20 at low pressures, while for Hertzian interac-
tions, it scales as p�0.16, as illustrated in (b) and (d).
Here, h|DKm|i and h|DGm|i represent the standard deviation
of the spatial fluctuations in the bulk and shear modulus,

Fig. 4 The pressure-dependent behaviors of mean bulk modulus ( %Km)
and mean shear modulus ( %Gm) are shown for different particle interaction
potentials (open circles). For Harmonic interactions (a = 2), the mean bulk
modulus ( %Km) remains constant, while the mean shear modulus ( %Gm) scales
as p1/2 at low pressures, as shown in (a) and (b) respectively. In the case of
Hertzian interactions (a = 5/2), the mean bulk modulus ( %Km) scales as p1/3

and the mean shear modulus ( %Gm) scales as p2/3, as illustrated in (c) and (d)
respectively. The corresponding behaviors for affine ( %GA

m, %KA
m) and non-

affine ( %GNA
m , %KNA

m ) moduli are represented by open triangles and squares
respectively. The local moduli are evaluated using a coarse graining length
of lw = 3.
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respectively, and their spatial averages are denoted by %Km and
%Gm. The bulk modulus is primarily dominated by its affine
component, with the non-affine contribution remaining rela-
tively small, leading to consistent behavior in their fluctua-
tions. However, the total shear modulus, characterized by
significant non-affine components, exhibits anomalous beha-
vior in its fluctuations.

Quasi-localized excitations are crucial for understanding the
anomalous mechanical and transport properties of amorphous
solids.16,64,66,84,85 Therefore, it is important to study local
elastic responses at length scales similar to those of floppy
modes. In the next section, we explore the correlation between
these local elastic responses. The presence of quasi-localized
excitations leads to non-affine relaxation of particles when
deformed in mechanical equilibrium. At small length scales,
the non-affine response becomes substantial, resulting in
regions with negative modulus and large relative fluctuations
in local shear moduli distribution. This effect diminishes at
larger length scales. A crossover length scale can be identified,
beyond which the relative fluctuations become negligible.
Following Mizuno et al.,22 we identify a length scale that
diverges as the system approaches p - 0, exhibiting similar
scaling behavior as the isostatic length scale in two
dimensions,86 as detailed in the ESI.†

5 Pinch point singularities in shear
modulus correlations

Previous studies investigating the local moduli of three-
dimensional jammed solids and low-temperature glasses,

using the ‘‘fully local’’ approach, suggested negligible spatial
correlations between elastic moduli at large distances.22,28 In
contrast, studies focusing on the acoustic properties of low-
temperature glasses proposed the presence of long-range spa-
tial correlations in elastic properties, determining local elastic
moduli through vibrational dynamics.30 However, Mizuno
et al.,66 utilizing a protocol similar to that in ref. 30 for
measuring affine elastic moduli, reported the absence of
long-range spatial correlations in elastic moduli. Our study is
closely related to the recent work of Zhang et al. who investi-
gated local elastic moduli in jammed solids using actual strain-
based measurements and observed long-range behavior beyond
a specific pressure.70 In contrast, our study is based on linear
response theory,17,78 avoiding actual strain-based measure-
ments that could introduce non-linearities in the response,
particularly in fragile solids approaching the unjamming tran-
sition. Using linear response measurements, we aim to explore
the local moduli correlations by conducting measurements of
the fluctuations in the local simple shear modulus (Gm) within
two-dimensional jammed packings. To analyze behavior across
larger length scales, we employ Fourier space measurements
and evaluate correlations at small wavenumbers. We utilize the
‘‘fully local’’ approach, as previously employed by ref. 22,
considering both affine and non-affine contributions to the
modulus.

We measure the correlation in Fourier space by performing
discrete Fourier transform of DGm, which represent the differ-
ence between Gm and its spatially averaged value %Gm:

DGð~qÞ ¼
X
m

exp i~q �~rmð ÞDGm: (13)

The modulus correlation in Fourier space is given by,

CG(-q) = hDG(-q)DG(�-
q)i (14)

where ‘hi’ denotes average over configurations.
We investigate pressure-dependent shear modulus correla-

tions (hGq
-G�q

-i) within two-dimensional amorphous packings
with hertzian repulsion, exploring correlations across a range
of pressures up to the unjamming point. Fig. 6 illustrates the
correlations in Fourier space corresponding to six distinct
pressures: (a) p = 10�3, (b) p = 10�4, (c) p = 10�5, and (d) p =
10�6. To obtain the shear modulus in real space, we employ
coarse graining boxes of linear length lw = 3. Notably, across all
pressures we observe pinch point singularities in the shear
modulus correlations at |q| - 0. This demonstrates that the
local shear modulus exhibits long-range correlations that are
anisotropic and persist down to the unjamming transition.
Interestingly, the structure of shear modulus correlations is
identical to shear stress correlations observed in jammed
solids.11,12

These correlations exhibit an angular dependence of

CG(q,y) = g sin2 y cos2 y, (15)

as |-q| - 0, where y represents the angle and g signifies the
amplitude of the anisotropic correlations. The bottom row of
Fig. 6 presents the angular dependency of these correlations at

Fig. 5 Relative fluctuations in the spatial distribution of local moduli as the
unjamming transition is approached. For Harmonic interactions (a = 2), the
relative fluctuations in local bulk modulus (|DKm|/ %Km) remain constant,
while relative fluctuations in local shear modulus (|DGm|/ %Gm) grows as
p�0.20 at low pressures, as shown in (a) and (b) respectively. In the case of
Hertzian interactions (a = 5/2), dKm/ %Km remains constant, and dGm/ %Gm

increases as p�0.16, as shown in (c) and (d) respectively. The corresponding
behaviors for the affine and nonaffine responses are represented by open
triangles and squares, respectively.
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small |q|. The angular dependency is obtained through radial

averaging in the range of jqj ¼ 2
2p
L

to 10
2p
L

with angular binning

intervals of
2p
60

to reduce noise.

To illustrate the independence of the Fourier space correla-
tion CG(|q|, y) with respect to |q|, we measure CG(|q|) by
integrating CG(|q|, y) over the angular range for different values

of |q|, specifically from |q| to |q| + d|q|, where djqj ¼ 2p
L

ffiffiffi
2
p

.

This integration is performed separately for the first quadrant

y ¼ 0;
p
2

h i	 

and the second quadrant y ¼ p

2
; p

h i	 

.

Fig. 7(a) illustrates CG as a function of |q| for packings of
particles at a pressure of p = 10�6. As |q| - 0, the correlation
becomes independent of |q| and depends only on the angular
coordinate. This indicates that in real space, the correlations
decay as 1/r2 at large length scales. To illustrate this, we

measure the integrated correlation function by performing
the angular integration while taking into account the aniso-
tropic nature of the correlation function,

CGðjrjÞ ¼ �
1

2p

ð2p
0

Gð~rÞGð0Þh i
Gð0ÞGð0Þh i cosð4yÞdy: (16)

Fig. 7(b) demonstrates that CG(|r|) decays as
1

r2
at all pres-

sures (p) up to the unjamming point.
Next, we investigate the behavior of modulus correlations

across different model solids by examining the correlation
strength as the pressure decreases towards the unjamming
point. Fig. 8 illustrates the dependence of g, the amplitude of
anisotropic shear stress correlation defined in (15), on the
pressure p of the packings for various model solids, utilizing
different coarse-graining box sizes for modulus measurement
in real space. Notably, an increase in the coarse-graining box
size leads to reduced fluctuations (DGm), thereby affecting the

Fig. 6 Fourier space measurements of shear modulus correlations (hDGq
-DG�q

-i) within two-dimensional amorphous packings with Hertzian repulsion
at different pressures: (a) p = 10�3, (b) p = 10�4, (c) p = 10�5, and (d) p = 10�6. The shear modulus in real space is determined using coarse-grained boxes
of size lw = 3. The top row presents a two-dimensional representation of the shear modulus correlations. Notably, pinch point singularities are observed
in the shear modulus correlations as |q| - 0 for all pressures, indicating the presence of long-range anisotropic correlations. The bottom row displays the
angular dependence of the correlations at small hqi, well-fitted by the functional form CG(q,y) = g sin2 y cos2 y for different g values at varying pressures.

Angular dependency is computed through radial averaging in the range jqj ¼ 2p
L

to 10
2p
L

with angular binning intervals of
2p
60

.

Fig. 7 (a) CG(|q|) as a function of |q| for packings of particles interacting
via Hertzian interaction at a pressure of p = 10�6. The plot shows the

integration of CG(|q|, y) over the angular ranges y ¼ 0;
p
2

h i
and y ¼ p

2
; p

h i
.

As |q| - 0, the correlation is independent of |q| near the origin. (b)
Integrated correlation in real space Cr (defined in (16)) as a function of

|r|. The correlation decays as � 1

r2
at large distances.

Fig. 8 Dependence of the amplitude (g) of shear modulus correlations,
which behave as CG(q,y) = g sin2ycos2y, on the pressure (p) of the packings for
different model solids, measured employing various coarse-graining lengths-
cales (lw). (a) For a = 2, the amplitude displays a decay proportional to p0.6 as the

pressure nears the unjamming point. (b) a ¼ 5

2
exhibits a power-law behavior of

p1 near the unjamming point.
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correlation magnitude, while the scaling behavior of the corre-
lation remains consistent. In (a), for a = 2, we observe that the
correlation decays as p0.6 when the pressure decreases towards

the unjamming point. Conversely, in (b) for a ¼ 5

2
; the correla-

tion displays a power-law behavior of p1. Further details regard-
ing the shear modulus correlation strength across various a
values can be found in the ESI.† However, we do not discern a
consistent relationship between the decay exponent of correla-
tion strength as the system approaches the unjamming transi-
tion and a in the case of shear modulus.

5.1 Correlation of the affine responses

Next, we investigate the correlation of the local affine shear
modulus, measured in Fourier space by conducting a discrete
Fourier transform of DGA

m, representing the difference between
GA

m and its spatially averaged value %GA
m,

DGA
mð~qÞ ¼

X
m

exp i~q �~rmð ÞDGA
m: (17)

The correlation in Fourier space is given by,

CA
G ð~qÞ ¼ DGA

mð~qÞDGA
mð�~qÞ

� �
: (18)

The correlation of the local affine shear modulus under
various pressures is illustrated in Fig. 9. In Fourier space the
affine modulus correlations appear independent of -

q, display-
ing isotropic and radially independent behaviour near |q| - 0.
This implies a negligible correlation in the affine shear
modulus across significant spatial distances, consistent with
findings by Mizuno et al.,66 despite employing a different
measurement protocol. Upon considering non-affine displace-
ments of particles to maintain the mechanical equilibrium
of solids, long-range spatial correlations emerge in the

elastic shear modulus, resembling structures observed in stress
correlations.

6 Conclusion and discussion

In conclusion, our study reveals the presence of long-ranged
anisotropic correlation in the local elastic response of amor-
phous solids in mechanical equilibrium. While previous inves-
tigations into local moduli often suggested negligible spatial
correlations between elastic moduli at large distances.22,28

On the other hand, studies focusing on the acoustic properties
of low-temperature glasses, such as by Gelin et al.30 proposed
the existence of long-range spatial correlations in elastic prop-
erties. However, it must be noted that this study measured the
affine response, and due to the specific form of the potential
utilized in their study (inverse power-law), the affine response
exhibited exact proportionality to stress, resulting in the obser-
vation of long-range correlations similar to stress correlations.
Mizuno et al.66 highlighted this issue and reported the absence
of long-range correlation in affine moduli by measuring the
affine response following the formalism used by Gelin et al.30

In a more recent study, Mahajan et al. investigated the response
of particle-level stresses to global strain deformations followed
by energy minimization, and demonstrated that local moduli
measured in this manner indeed exhibit long-ranged anisotro-
pic correlations.69

In this study, we investigated long-range correlations in local
elastic moduli within two-dimensional granular packings of
soft repulsive disks. Employing the ‘‘fully local’’ approach to
compute the local moduli,22,63 we considered both affine and
non-affine contributions to the modulus. By analyzing the
fluctuations in the local simple shear modulus (Gm) in Fourier
space, we unveil the existence of long-range correlations in the
local elastic properties of such athermal materials. These
correlations display anisotropic characteristics with pinch-
point singularities in Fourier space, consistent with recent
observations in real space by Zhang et al.70 Our study reveals
that these correlations in Fourier space are similar to the
correlations in the shear components of the local stress tensor
and exhibit a power-law decay similar to the stress correlations,

following a
1

rd
decay in d dimensions, in real space.

Our investigation into the correlations within the affine
response indicates negligible correlations at large spatial dis-
tances. However, upon considering the response arising from
non-affine displacements of particles associated with vibrations
about mechanical equilibrium in solids, long-range spatial
correlations emerge in the elastic shear modulus, resembling
the structures observed in stress correlations. The bulk mod-
ulus correlations are short-ranged, being independent of -q as
evidenced by Fourier space analysis, akin to pressure correla-
tions observed in amorphous solids. These observations sug-
gest an intriguing relationship within such solids: linking
stiffness to deformations and tensions at mechanical equili-
brium, which warrants further investigation.

Fig. 9 Fourier space measurements of the correlation of affine shear
modulus within two-dimensional amorphous packings of Hertzian repul-
sion under varying pressures: (a) p = 10�3, (b) p = 10�4, (c) p = 10�5, and (d)
p = 10�6. The correlation remains independent of q

-
, exhibiting isotropic

and radially independent characteristics. The modulus is measured using
coarse-grained boxes of size lw = 3. The correlations in Fourier space are
independent of q

-
, revealing isotropic and radially independent character-

istics, implying minimal correlation at significant spatial distances.
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Furthermore, our study quantitatively explores the beha-
viour of the correlation near the unjamming transition across
model solids with short-range repulsive potentials. We showed
that stress correlations exhibit a universal quadratic decay (p2)
as the pressure approaches the unjamming point, irrespective
of the specific interaction details. In contrast, modulus correla-
tions exhibit a model-specific behavior, displaying power-law
decays with exponents related to the specific interac-
tion potential. Fluctuations in the local affine moduli scale
with their spatial average, i.e. h|DKm|i B h %Kmi, as pressure p
decreases towards the unjamming point. In contrast, the total
shear modulus, which includes significant non-affine contribu-
tions, exhibits anomalous scaling behavior in its spatial fluc-
tuations. The relative fluctuations in the local shear modulus
(h|DGm|i/h %Gmi) increase according to distinct power-law expo-
nents as the system approaches the unjamming transition. For
Harmonic interactions (a = 2), h|DGm|i/h %Gmi scales as p�0.20 at
low pressures, whereas for Hertzian interactions (a = 2.5), it
scales as p�0.16. While, the spatial average of the shear modulus

scales as h �Gmi � p a�3
2

� ��
ða�1Þ. These findings highlight the

critical influence of non-affine deformations on the mechanical
properties of amorphous solids.

Finally, our findings challenge the prevailing assumptions
in theories that attribute the anomalous properties of amor-
phous solids to spatially heterogeneous moduli, presuming
negligible correlations beyond small length scales. Although
many previous studies have observed long-range stress correla-
tions in low-temperature glasses,7,15,87 some studies have
attributed this behaviour to the percolation of a force-bearing
network.15 In this context, it will be interesting to study the
correlation in stiffness within glasses as temperature decreases
in order to ascertain whether the long-range correlations
observed under mechanical equilibrium conditions coincide
with the formation of a force-bearing network.
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