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Active random walks in one and two dimensions
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We investigate active lattice walks: biased continuous time random walks which perform orientational
diffusion between lattice directions in one and two spatial dimensions. We study the occupation probability
of an arbitrary site on the lattice in one and two dimensions and derive exact results in the continuum limit. Next,
we compute the large deviation free-energy function in both one and two dimensions, which we use to compute
the moments and the cumulants of the displacements exactly at late times. Our exact results demonstrate that the
cross-correlations between the motion in the x and y directions in two dimensions persist in the large deviation
function. We also demonstrate that the large deviation function of an active particle with diffusion displays two
regimes, with differing diffusive behaviors. We verify our analytic results with kinetic Monte Carlo simulations
of an active lattice walker in one and two dimensions.
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I. INTRODUCTION

Active matter, consisting of particles that perform directed
motion using ambient or internal energy, is an important class
of non-equilibrium systems that has recently been of broad
interest. Examples range from granular particles, flocks of an-
imals, to bacterial suspensions [1–6]. Fluctuation-dissipation
relations do not generally apply to such cases, because these
systems break detailed balance at the microscopic scales.
Interacting active particles can exhibit several nonequilib-
rium collective phenomena [7,8], such as domain-formation,
swarming or flocking. Characteristics of global order are
found in such interacting systems (bird flocks, fish schools,
colloids, or even human crowds) [3,4,9], as well as strong
correlation without any leadership or external force. Such
persistent motion can even result in clustering and nonequilib-
rium phase transitions such as in the paradigmatic Vicsek and
Toner-Tu models [10–13]. In such systems, motility-induced
phase separation (MIPS) or confinement induced aggregation
occurs even in the absence of attractive interactions between
the individuals in the flock [14–17]. Active particles also
exhibit interesting stationary distributions when trapped by
external confining potentials [18–20].

Several interesting microscopic models for the dynamics
of active particles have been extensively studied, including the
run and tumble particle (RTP) model [21–27] and the active
Brownian particle (ABP) model [28–32]. Other studies have
also analyzed models of active particle motion that diffuse
between fixed orientations in two dimensions [33]. A RTP per-
forms directed motion with a fixed velocity along a selected
orientation associated with an internal direction of bias and
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this orientation flips stochastically at a fixed rate γ . Run and
tumble particle motion consists of a sequence of forward steps
followed by a sudden reorientation or tumble. The duration τ ,
of the forward flight or run is random and is exponentially
distributed via P(τ ) = γ e−γ τ . The ABP also self propels at
a fixed speed, but changes its direction gradually by rota-
tional diffusion (with rotational diffusivity Dr). Here, Dr

−1

sets the characteristic time for the rotational diffusion. An
isolated ABP performs a random walk at large timescales and
becomes indistinguishable from RTP dynamics when all the
microscopic parameters are uniform and isotropic [14,34].

In this paper, we study biased continuous time random
walks (CTRWs) [35–38] with Poisson distributed jumps per-
forming orientational diffusion between lattice directions in
one and two dimensions. These are often called the two state
RTP model in one dimension and the four state RTP model
in two dimensions respectively. Multistate persistent random
walks arise in several situations and are useful theoretical
tools [39]. They have also been used to model correlation
effects on frequency dependent conductivity in superionic
conductors [40]. A crucial motivation in studying active par-
ticles on lattices stems from the difficulty of solving the
Fokker-Planck equations associated with such systems in the
continuum. Since the differential equations associated with
lattice walks admit a formal analytic solution, lattice systems
can lead to a direct insight into the behavior of active particle
dynamics even in higher dimensions. Additionally, the contin-
uum limit can be obtained from such a lattice model by taking
the appropriate limits. All the techniques introduced in this
paper can be generalized to higher dimensions and to different
lattice structures.

A central aspect of our study is the large deviation function
associated with RTP motion. There have been many studies
on the large deviation functions [41] for different models
of active particle motion in different dimensions [42–48]. In
this paper, we calculate the exact large deviation free-energy
function for a RTP with diffusion in one and two dimensions,
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which we use to analyze the large deviation rate functions
associated with RTP motion. We show that the rate function
corresponding to the occupation probability distribution in
one dimension and the rate functions corresponding to the
marginal occupation probability distributions in two dimen-
sions exhibit two regions with differing diffusive behaviors.

This paper is organized as follows: In Sec. II, we discuss
the RTP model in one and two dimensions and define the
parameters used in the study. In Sec. III, we derive the evo-
lution equations for the occupation probability of an arbitrary
lattice site. We show that the continuum space limit emerges
by taking appropriate limits of the occupation probability in
Fourier space. We recover the position distribution in Ref. [21]
for a RTP in one dimension and the marginal position distri-
butions in Ref. [33] describing the evolution of the x and y
components of the position of a RTP in two dimensions in the
continuum limit. In Sec. IV, we compute the moments, cu-
mulants and large deviation free-energy functions for the one
and two-dimensional cases. We also compute the associated
large deviation rate function for the one-dimensional process,
as well as the two-dimensional process projected along an
arbitrary angle. We verify our analytic results with kinetic
Monte Carlo (kMC) simulation results of an active random
walker on one and two-dimensional lattices.

II. THE MODEL

We consider the motion of an active random walker on
one- and two-dimensional infinite lattices with lattice points
labeled by integer variables x and (x, y), respectively. The
walker can be biased along any of the lattice orientations,
labeled by an internal state m, and perform orientational dif-
fusion between these states.

A. One dimension

In one dimension, the walker can be in any of the two possi-
ble internal states, 0 or 1. Let Pm(x, t ) represent the probability
of finding an active walker starting at the origin at time t = 0,
in the mth state at the lattice position x at time t . The initial
conditions are Pm(x, t = 0) = 1

2δx,0, m = 0, 1. The walker is
biased along the positive x direction if it is in the state 0 and
is biased along the negative x direction if it is in the state 1.
The translational rates for the particle in different states along
different directions are listed in Table I. The intrinsic diffusion
constant associated with the particle motion in one dimension
is represented as D1d. The value of the bias, ε is bounded
between 0 and D1d. In addition to the translation, the particle
may also flip its internal state with a finite rate γ (refer to
Fig. 1). A special case of the model considered in this paper

TABLE I. The translational rates along different lattice directions
for a RTP on a one-dimensional lattice.

Rate

State +x −x

0 D1d + ε D1d − ε

1 D1d − ε D1d + ε

FIG. 1. (a) An active particle in one dimension can flip its inter-
nal state from 0 to 1 or 1 to 0 with a rate γ each. (b) An active particle
in two dimensions can flip its internal state between 0, 1, 2, or 3 with
a rate γ

2 each.

appears in Ref. [40], where a persistent random walk which
can switch between two internal states in one dimension has
been studied.

B. Two dimensions

In two dimensions, the walker can be in any of the four pos-
sible internal states, 0, 1, 2, or 3. Let Pm(x, y, t ) represent the
probability of finding an active walker starting at the origin at
time t = 0, in the mth state at the lattice position (x, y) at time
t . The initial conditions are Pm(x, y, t = 0) = 1

4δx,0δy,0, m =
0, 1, 2, 3. The walker is biased along the positive x, positive
y, negative x, or negative y direction if the walker is in the
state 0, 1, 2, or 3, respectively. The translational rates for the
particle in different states along different directions are listed
in Table II. The intrinsic diffusion constant associated with the
particle motion in two dimensions is represented as D2d. The
value of the bias, ε is bounded between 0 and D2d. In addition
to the translation, the particle may also flip its internal state to
any of the other two possible states with a finite rate γ

2 each
(refer to Fig. 1).

C. Continuum limit

Throughout this study, we also analyze the continuum
limit of these active random walk models. All expressions in
the continuum limit are referred to with a subscript “cont”.
The continuum limit can be arrived at using standard scal-
ing procedures where the microscopic rate constants scale
with discretization parameters such as the lattice constant,
a [49]. In the Supplemental Material [55], we display the
convergence of our lattice results to the continuum theoretical
predictions as the lattice spacing a is reduced.

TABLE II. The translational rates along different lattice direc-
tions for a RTP on a two-dimensional square lattice.

Rate

State +x −x +y −y

0 D2d + ε D2d − ε D2d D2d

1 D2d D2d D2d + ε D2d − ε

2 D2d − ε D2d + ε D2d D2d

3 D2d D2d D2d − ε D2d + ε
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In this study, we compute the continuum limit of the oc-
cupation probabilities by analyzing their behavior in Fourier
space, and keeping only the relevant terms as |�k|a → 0
[50,51]. As the lattice spacing a is decreased, the bias and dif-
fusion rates are rescaled as ε → ε

a and D1d → D1d
a2 . This yields

continuum Fokker Planck equations for RTP motion with
discrete states analyzed in previous studies [21,33]. In Fourier
space, this rescaling of the rates fixes the terms (ka)2D1d and
(ka)ε. Throughout the calculations, we have set the lattice
constant a = 1 for simplicity, and therefore in the continuum
limit expressions, we keep terms of order k2D1d and kε in the
k → 0 limit of our lattice expressions.

III. OCCUPATION PROBABILITY

In this section, we study the occupation probability of
lattice sites for a walker starting at the origin. We derive
evolution equations for the occupation probability of an ar-
bitrary lattice site in one and two dimensions using which we
compute the exact occupation probabilities both on the lattice
as well as in the continuum limit.

A. One dimension

Using the rates for translational motion in the two states
given in Table I, the equations obeyed by the occupation
probabilities in the different states P0,1(x, t ) can be expressed
as

∂P0(x, t )

∂t
= (D1d + ε)P0(x − 1, t ) + (D1d − ε)P0(x + 1, t )

− 2D1dP0(x, t ) + γ P1(x, t ) − γ P0(x, t ), (1)

∂P1(x, t )

∂t
= (D1d + ε)P1(x + 1, t ) + (D1d − ε)P1(x − 1, t )

− 2D1dP1(x, t ) + γ P0(x, t ) − γ P1(x, t ), (2)

where D1d refers to the intrinsic diffusion constant associated
with the active particle motion in one dimension. These cou-
pled equations can be written together in a compact form as
follows:

∂Pm

∂t
= D1d∇2Pm − ε m̂. �∇Pm + γ (Pm′ − Pm), (3)

where Pm = Pm(x, t ) and the subscript m denotes the inter-
nal state (m = 0, 1). We define m′ = mod (m + 1, 2). The
modulo operator mod (m, n) gives the remainder when m is
divided by n. Here, �∇ is the discrete derivative operator and
∇2 is the discrete Laplacian operator on the one-dimensional
lattice defined as

�∇Pm(x, t ) = [Pm(x + 1, t ) − Pm(x − 1, t )]x̂,
(4)∇2Pm(x, t ) = Pm(x + 1, t ) + Pm(x − 1, t ) − 2Pm(x, t ).

Here, m̂ denotes the bias direction which is x̂ or −x̂ for states
0 and 1, respectively.

We use the superscript tilde (∼) to denote any trans-
form (Fourier, Laplace or Fourier-Laplace) of the occupa-
tion probabilities. We use the Fourier transform for the
space variables whereas the Laplace transform is used
for the time variable. We define the Fourier transform of

the occupation probability Pm(x, t ), for a RTP on a one-
dimensional infinite lattice in the internal state m as P̃m(k, t ) =∑∞

x=−∞ eikxPm(x, t ) and the Laplace transform of P̃m(k, t ) as
P̃m(k, s) = ∫∞

0 dte−st P̃m(k, t ). Taking a Fourier transform of
Eq. (3) yields

∂

∂t
|P̃m(k, t )〉 = M(k)|P̃m(k, t )〉, (5)

where the ket |P̃m(k, t )〉 represents the column vector
(P̃0(k, t )

P̃1(k, t )

)
.

In the above equation, we have used the quantum mechanical
bra-ket notation to represent the probabilities of the particle in
different states. The matrix M(k) is given as

M(k) =
(

μ γ

γ μ∗

)
, (6)

with the coefficient, μ ≡ μ(k) = 2D1d(cos k − 1) − γ +
i2ε sin k, and γ represents the transition rate between
the states. Next, taking the Laplace transform of Eq. (5)
yields

[sI − M(k)]|P̃m(k, s)〉 = |P̃m(k, t = 0)〉, (7)

where I is the two-dimensional identity matrix. As we start
the process with a symmetric initial condition with equal
probabilities of being in states 0 and 1, the initial condi-
tion in the Fourier domain is |P̃m(k, t = 0)〉 = (

1
2

1
2

)T
. Solving

Eq. (7) along with the initial conditions, we obtain the Fourier-
Laplace transform of the occupation probability as

P̃(k, s) = 1

[2D1d(1 − cos k) + s] + 4ε2 sin2 k
[2D1d(1−cos k)+s+2γ ]

, (8)

where P̃(k, s) = P̃0(k, s) + P̃1(k, s). Next, performing a
Laplace inversion of Eq. (8) yields

P̃(k, t ) = e−t[2D1d(1−cos k)+γ ]

×
{

cosh [tR(k)] + γ

R(k)
sinh [tR(k)]

}
, (9)

where R(k) is defined as

R(k) =
√

γ 2 − 4ε2 sin2 k. (10)

Equation (9) is the exact expression for the Fourier transform
of the site occupation probability of a run and tumble particle
on a one-dimensional infinite lattice. This expression can also
be alternatively derived by diagonalizing the matrix M(k)
provided in Eq. (5) for each k and solving the resulting eigen-
value equation for symmetric initial conditions P0(x, t = 0) =
P1(x, t = 0) = (1/2)δx,0. We have provided the details of this
calculation in Appendix A. The occupation probability in real
space P(x, t ), can be obtained by taking the inverse Fourier
transform of P̃(k, t ). Since we consider an infinite lattice, this
is given as

P(x, t ) = 1

2π

∫ π

−π

dke−ikxP̃(k, t ). (11)

We next analyze the continuum limit of the lattice expres-
sions for the site occupation probabilities. In the k → 0 limit,
the expression in Eq. (9) converges to the result in Ref. [21]
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for a diffusive RTP in continuous space with diffusion coef-
ficient D1d and velocity v = 2ε. Since we study the process
in discrete space and continuous time, the nontrivial limit
of the lattice walk we consider to derive the distribution in
continuous space is the k → 0 limit keeping k2D1d and kε

fixed. Keeping relevant terms up to O(k2) in Eq. (9) yields

lim
k→0

P̃(k, t ) = e−t (D1dk2+γ )

{
cosh [tRc(k)]

+ γ

Rc(k)
sinh [tRc(k)]

}
, (12)

where Rc(k) = limk→0 R(k) =
√

γ 2 − 4ε2k2 refers to the
continuum limit of the expression in Eq. (10). An inverse
Fourier transform of Eq. (12) yields the probability distribu-
tion in continuous space, given as

P(x, t )cont = lim
k→0

1

2π

∫ ∞

−∞
dke−ikxP̃(k, t ). (13)

Evaluating the integral in Eq. (13) along with the expression
in Eq. (12) yields

P(x, t )cont = γ e−γ t

4ε
√

4πD1dt

∫ ∞

−∞
dye− (x−y)2

4D1dt �

(
t − |y|

2ε

)

×
⎡
⎣I0

(
γ

√
t2 − y2

4ε2

)
+

t I1
(
γ

√
t2 − y2

4ε2

)
√

t2 − y2

4ε2

⎤
⎦

+ cosh
(

ε
D1d

x
)
e− ε2

D1d
t− x2

4D1dt −γ t

√
4πD1dt

, (14)

where In is the modified Bessel function of the first kind of
order n and � is the Heaviside step function. We note that
this continuum limit answer matches the expression derived
in Ref. [21] for the probability that a run and tumble particle
is at position x at time t .

To test the above theoretical predictions, we perform
kinetic Monte Carlo simulations. Kinetic Monte Carlo sim-
ulations [52–54] unlike Monte Carlo simulations allow us to
relate simulation steps to physical time. Usual Monte Carlo
techniques require very small time discretization for accurate
integration. But the processes we study take place at large
timescales and the system essentially remains inactive at the
short timescales. Kinetic Monte Carlo techniques overcome
this limitation by performing direct jumps to events thus sav-
ing simulation time. The knowledge of the rates describing the
motion of the particle helps to associate a Poisson distributed
time interval between consecutive events. The length of the
time intervals varies during the simulation. In the RTP model
considered in this paper, the events could be either the hop to
an adjacent lattice site or the sudden tumble (in other words;
change of internal state) of the particle. The initial position of
the particle is set at the origin. An update in the position or
the state of the particle (which in turn is determined by the
corresponding probability rates) occurs after every Poisson
distributed time interval.

In Fig. 2, we compare the expression in Eq. (14) with
kinetic Monte Carlo simulation results for the occupation
probability P(x, t ), of a RTP on a one-dimensional infinite lat-
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FIG. 2. Occupation probability of a RTP on a one-dimensional
infinite lattice P(x, t ), obtained from performing continuous time ki-
netic Monte Carlo simulations (points) plotted against the theoretical
result for the continuum limit of the occupation probability given in
Eq. (14) (solid curves) at different times, t . In the long time limit
(t � 1

γ
), both the results agree well. The fixed parameter values

used are γ = 0.1, ε = 0.5, and D1d = 0.5. The simulation data is
averaged over 107 realizations.

tice with lattice spacing a = 1. In the long time limit (t � 1
γ

),
active particle motion in discrete space converges to the mo-
tion in continuous space.

B. Two dimensions

Analogous to the one-dimensional case discussed above,
the occupation probabilities for the four states in two di-
mensions are governed by the following coupled differential
equations:

∂Pm

∂t
= D2d∇2Pm − εm̂ · �∇Pm + γ

2
(Pm+1 + Pm−1 − 2Pm),

(15)

where D2d refers to the intrinsic diffusion constant associ-
ated with the active particle motion in two dimensions. Here,
Pm = Pm(x, y, t ) and the subscript m denotes the internal state
(m = 0, 1, 2, 3). The modulo operator mod (m, n) repre-
sents the remainder when m is divided by n. We also define
m+1 = mod (m + 5, 4) and m−1 = mod (m + 3, 4). �∇ is
the discrete gradient operator and ∇2 is the discrete Laplacian
operator on the square lattice defined as

x̂ · �∇Pm(x, y, t ) = Pm(x + 1, y, t ) − Pm(x − 1, y, t ),

ŷ · �∇Pm(x, y, t ) = Pm(x, y + 1, t ) − Pm(x, y − 1, t ),

∇2Pm(x, y, t ) = Pm(x + 1, y, t ) + Pm(x − 1, y, t )

+ Pm(x, y + 1, t ) + Pm(x, y − 1, t )

− 4Pm(x, y, t ). (16)

Here, m̂ denotes the bias direction which is x̂, ŷ, −x̂, or −ŷ
for states 0, 1, 2, and 3, respectively. The intrinsic diffusion
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constant associated with run and tumble particle motion in two
dimensions is denoted as D2d.

We define the Fourier transform of the occupation
probability of a RTP in the mth state on a two-
dimensional infinite square lattice as P̃m(kx, ky, t ) =∑∞

x=−∞
∑∞

y=−∞ ei(kxx+kyy)Pm(x, y, t ) and the Laplace trans-
form of P̃m(kx, ky, t ) as P̃m(kx, ky, s) = ∫∞

0 dte−st P̃m(kx, ky, t ).
Taking the Fourier transform of Eq. (15) yields

∂

∂t
|P̃m(kx, ky, t )〉 = Q(kx, ky)|P̃m(kx, ky, t )〉, (17)

where the ket |P̃m(kx, ky, t )〉 represents the column vector
given as

|P̃m(kx, ky, t )〉 =

⎛
⎜⎜⎜⎜⎝

P̃0(kx, ky, t )

P̃1(kx, ky, t )

P̃2(kx, ky, t )

P̃3(kx, ky, t )

⎞
⎟⎟⎟⎟⎠,

and the matrix Q(kx, ky) is defined as

Q(kx, ky) =

⎛
⎜⎜⎜⎝

μ γ /2 0 γ /2

γ /2 ν γ /2 0

0 γ /2 μ∗ γ /2

γ /2 0 γ /2 ν∗

⎞
⎟⎟⎟⎠. (18)

The coefficients μ ≡ μ(kx, ky) and ν ≡ ν(kx, ky) are given as

μ(kx, ky ) = 2D2d[cos kx + cos ky − 2] − γ + i2ε sin kx,

ν(kx, ky ) = 2D2d[cos kx + cos ky − 2] − γ + i2ε sin ky.

(19)

Next, taking the Laplace transform of Eq. (17) yields

[sI − Q(kx, ky)] |P̃m(kx, ky, s)〉 = |P̃m(kx, ky, t = 0)〉. (20)

Here, I is the four-dimensional identity matrix. We as-
sume symmetric initial conditions with equal probabili-
ties of being in any of the four possible internal states.
Thus, the initial conditions in the Fourier space reduce to
|P̃m(kx, ky, t = 0)〉 = (

1
4

1
4

1
4

1
4

)T
. We next solve Eq. (20) along

with the initial conditions to obtain the occupation probabil-
ity in Fourier-Laplace domain, P̃(kx, ky, s) = P̃0(kx, ky, s) +
P̃1(kx, ky, s) + P̃2(kx, ky, s) + P̃3(kx, ky, s). This expression is
quite large, and we provide the exact expression for
P̃(kx, ky, s) in Eq. (B1).

Unfortunately, it is hard to invert the Fourier-Laplace
transform exactly and obtain the full two-dimensional oc-
cupation probability, P(x, y, t ). Hence, we study the x and
y motion separately. We define the marginal occupation
probabilities in x and y as P(x, t ) = ∑∞

y=−∞ P(x, y, t ) and
P(y, t ) = ∑∞

x=−∞ P(x, y, t ). We use the same symbol for the
occupation probability in one dimension and the marginal
occupation probability in two dimensions to avoid a prolif-
eration of symbols. We focus on the marginal function in x,
which is the same as the marginal function in y because of
the symmetric initial conditions. The Fourier-Laplace trans-
form of the marginal occupation probability in x defined as

P̃(kx, s) = ∑∞
x=−∞

∫∞
0 dteikxx−st P(x, t ) can be obtained from

the two-dimensional occupation probability given in Eq. (B1)
by setting ky = 0. This expression is provided in Eq. (B2).
Performing the Laplace inversion of Eq. (B2) yields the
marginal occupation probability in Fourier space, P̃(kx, t ) =
L−1[P̃(kx, s)]. We find

P̃(kx, t ) =
{

γ 2 − 2ε2 sin2(kx )

R(kx )2 cosh [tR(kx )] − 2ε2 sin2(kx )

R(kx )2

+ γ

R(kx )
sinh [tR(kx )]

}
e−t[2D2d(1−cos kx )+γ ], (21)

where the function R(kx ) is defined in Eq. (10). The occu-
pation probability in real space P(x, t ), can be obtained by
performing the inverse Fourier transform of P̃(kx, t ).

We next take the continuum limit of Eq. (21) and analyze
the marginal distributions in the continuum limit. In the limit
kx → 0, this expression converges to the result in Ref. [33] for
the Fourier transform of the marginal occupation probability
distribution in two dimensions for a four state RTP model in
continuous space with velocity v = 2ε (except for the diffu-
sion term which is absent in their model). Similar to the case
in one dimension, the terms kx

2D2d and kxε are held fixed.
Keeping the relevant terms up to O(kx

2) in Eq. (21) yields

lim
kx→0

P̃(kx, t ) =
{

γ 2 − 2ε2kx
2

Rc(kx )2 cosh [tRc(kx )] − 2ε2kx
2

Rc(kx )2

+ γ

Rc(kx )
sinh [tRc(kx )]

}
e−t (D2dkx

2+γ ),

(22)

where Rc(kx ) is the continuum limit of R(kx ) defined as
Rc(kx ) = limkx→0 R(kx ) =

√
γ 2 − 4ε2kx

2. The Fourier trans-
form in Eq. (22) can be inverted exactly as in Ref. [33],
which gives the marginal distribution in continuous space,
P(x, t )cont = ∫∞

−∞ dyP(x, y, t )cont.

IV. MOMENTS, CUMULANTS, AND LARGE
DEVIATION FUNCTIONS

We next analyze the moments and cumulants associated
with RTP motion on the lattice and in the continuum, and
show that they follow a large deviation principle. Using the
exact forms of the occupation probabilities in Fourier and
Fourier-Laplace domain, we analyze the large deviation free-
energy and rate functions in one and two dimensions.

A. One dimension

In one dimension, the Fourier transform of the occupation
probability in Eq. (9) is equivalent to the moment generating
function. The moments can be computed as

〈xn(t )〉 = 1

in

∂nP̃(k, t )

∂kn

∣∣∣∣
k=0

. (23)

From symmetry, the odd moments are zero. We have

〈x2n+1(t )〉 = 0, n = 0, 1, 2, 3, ... . (24)

064103-5



JOSE, MANDAL, BARMA, AND RAMOLA PHYSICAL REVIEW E 105, 064103 (2022)

The second moment has the explicit form

〈x2(t )〉 = −∂2P̃(k, t )

∂k2

∣∣∣∣
k=0

= 2D1dt − 2ε2

γ 2
(1 − e−2γ t ), (25)

where D1d is the modified diffusion constant due to activity in
one dimension given as

D1d = D1d + 2ε2

γ
, (26)

and D1d is the intrinsic diffusion constant associated with the
particle motion in one dimension. We note that D1d is the same
effective diffusion constant that appears in the continuum
version of the model in Ref. [21]. The Supplemental Material
[55] lists the first few nonzero moments in one dimension for
both the discrete and continuum cases. We observe that the
moments for the discrete and continuum cases are the same
up to the third order. In the t → 0 limit, Eq. (25) reduces to

〈x2(t )〉 −−→
t→0

2D1dt + 4ε2t2 − 8
3ε2γ t3 + O(t4). (27)

Therefore, RTP motion is diffusive at very short timescales
(〈x2(t )〉 ∝ t , till t ≈ D1d

2ε2 ) and ballistic at intermediate
timescales (〈x2(t )〉 ∝ t2, for t ≈ 1

γ
). In the t → ∞ limit, the

variance of the position of an active lattice walk in one dimen-
sion converges to that of a one-dimensional Brownian motion
with the modified diffusion constant D1d and 〈x2(t )〉 −−−→

t→∞
2D1dt . Therefore, at large times, the behavior is once again
diffusive but with an enhanced diffusion coefficient (〈x2(t )〉 ∝
t , for t � 1

γ
). In Fig. 3, we display the plot of the mean square

displacement 〈x2(t )〉 given in Eq. (25) as a function of time for
fixed parameter values γ and ε.

We next study the cumulant generating function G̃(k, t ),
which is the logarithm of the moment generating function. We
have

G̃(k, t ) = log[P̃(k, t )]

= −t[2D1d(1 − cos k) + γ ]

+ log

{
cosh [tR(k)] + γ

R(k)
sinh [tR(k)]

}
, (28)

where R(k) is defined in Eq. (10). The cumulants associated
with the displacements at any time t can be computed as

〈xn(t )〉c = 1

in

∂nG̃(k, t )

∂kn

∣∣∣∣
k=0

. (29)

Once again from symmetry, the odd cumulants are zero. We
provide the list of a first few nonzero cumulants in the Supple-
mental Material [55]. It is easy to show, using the expression
in Eqs. (28) and (29) that the magnitude of all cumulants
grow as t in the large time limit. This observation points to
a large deviation principle. We investigate the large deviation
free-energy function λ1d(k), which is the scaled cumulant gen-
erating function. To be consistent with the standard notations,
let us replace k with −ik. We define

λ1d(k) = lim
t−→∞

1

t
G̃(−ik, t ). (30)
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107

10-1 100 101 102 103

t

γ = 0.01 = 0.4

t

t2

x
2
(t

)

x2(t)

FIG. 3. Mean-square displacement of a RTP in one dimen-
sion 〈x2(t )〉, given in Eq. (25), as a function of time. The values
in the x and y axes are given in log10 scale. The figure dis-
plays three scaling regimes where the motion is diffusive at very
short timescales (〈x2(t )〉 ∝ t , till t ≈ D1d

2ε2 ), ballistic at intermediate
timescales (〈x2(t )〉 ∝ t2, for t ≈ 1

γ
) and again diffusive but with an

enhanced diffusion coefficient at large timescales (〈x2(t )〉 ∝ t , for
t � 1

γ
). The fixed parameters used in the plot are γ = 0.01 and

ε = 0.4. The intrinsic diffusion constant D1d is set equal to 0.5.

The large deviation free-energy function λ1d(k) is differen-
tiable and the subsequent derivatives with respect to k give
the cumulants of the distribution P(x, t ) in the long time limit.
We have

lim
t−→∞ 〈xn(t )〉c = t

∂nλ1d(k)

∂kn

∣∣∣∣
k=0

. (31)

The large deviation free-energy function λ1d(k) can be identi-
fied to be the largest eigenvalue of the Markov matrix M(−ik)
given in Eq. (6). This can be seen from Eq. (A4) where P̃(k, t )
can be expressed in terms of the eigenvalues of the evolution
matrix. The asymptotic behavior of P̃(k, t ) is determined by
the largest eigenvalue of M(−ik). As the large time limit
involves the exponential of the eigenvalue, another route to
arrive at λ1d(k) is by computing the poles of P̃(−ik, s) in the
variable s. Determining the relevant pole of the expression in
Eq. (8), we arrive at the following form for the large deviation
free-energy function for a RTP on a one-dimensional lattice:

λ1d(k) = 2D1d(−1 + cosh k) − γ +
√

γ 2 + 4ε2 sinh2 k,

(32)
which is the same form that appears in Ref. [42] for a gen-
eralized one-dimensional model. The asymptotic limits of the
first few cumulants computed using the expression in Eq. (31)
are matched with the asymptotic limits of the exact expres-
sions for the cumulants valid at all times computed using
Eq. (29) in the Supplemental Material [55]. We next analyze
the continuum limit of the large deviation free-energy function
by computing the small k limit [keeping the relevant terms
up to O(k2)] of the above equation with k2D1d and kε held
fixed. This yields the large deviation free-energy function in
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FIG. 4. The large deviation free-energy function λ1d(k) com-
puted using Eqs. (32) and (33) plotted as a function of k for a
RTP in one dimension for the discrete and continuum cases, respec-
tively. The fixed parameter values used are γ = 0.1, ε = 0.1, and
D1d = 0.5.

the continuum limit,

λ1d(k)cont = D1dk2 − γ +
√

γ 2 + 4k2ε2. (33)

The above expression has the following asymptotic limits:

λ1d(k)cont −−→
k→0

D1dk2 (34)

and

λ1d(k)cont −−−→
k→∞

D1dk2 + 2εk, (35)

where the expression for D1d is provided in Eq. (26). The large
deviation free-energy function for the discrete and continuum
cases for fixed parameter values γ and ε is plotted in Fig. 4.
A fundamental quantity of interest is the large deviation func-
tion or rate function I1d(X ), which describes the asymptotic
behavior of the occupation probability P(X = x

t , t ). We have

lim
t→∞ P(X, t ) = e−t I1d(X ), (36)

where X = x
t . In the rest of this section, we work with the

scaled coordinate X to represent the position. As the exact
expressions for the probability distributions are not always
available, another route to deriving the large deviation func-
tion is through the large deviation free-energy function that
is easier to compute. This is accomplished using the Gartner-
Ellis Theorem [41,56] which states that if λ1d(k) exists and is
differentiable, then P(X, t ) obeys a large deviation principle,
with the rate function I1d(X ) given by the Legendre-Fenchel
transform of λ1d(k):

I1d(X ) = max
k

{kX − λ1d(k)}. (37)

In the continuum limit, the above equation reduces to

I1d(X )cont = max
k

{kX − λ1d(k)cont}. (38)

As the exact occupation probability distribution in the con-
tinuum limit is known [given in Eq. (14)], we can alternatively
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FIG. 5. The exact large deviation function I1d(X )cont computed
using Eq. (38) for a RTP in one dimension in the continuum limit
plotted as a function of X for fixed parameter values; γ = 0.01, ε =
0.4, and D1d = 0.5 (the dashed line). The values in the y axis are
given in log10 scale. The function displays two regimes with differing
diffusive behaviors. The plot is symmetric in X and hence follows
the same pattern for negative X values. The solid curves are obtained
by performing the numerical integration of Eq. (39) using the explicit
expression for P(X, t )cont given in Eq. (14) at different times. At large
times, the numerical integration results converge to the theoretical
prediction in Eq. (38). The inverted peaks in the solid curves near the
crossover point between the two regimes at finite times reflect the
peaks in the occupation probability at short times (refer to Fig. 2).

use this result to compute the large deviation function in the
long time limit as

I1d(X )cont = lim
t→∞ −1

t
log [P(X, t )cont]. (39)

In Fig. 5, we plot − 1
t log[P(X, t )cont] at different times com-

puted using the expression for P(X, t )cont given in Eq. (14).
We find that they converge to the right large deviation function
computed using Eq. (38) in the long time limit.

In Fig. 6, we display the plot of the continuum limit large
deviation function I (X )cont, as a function of X which by defi-
nition is the Legendre-Fenchel transform of λ1d(k)cont given in
Eq. (33) for different parameter values. For small X , the rate
function I1d(X )cont scales as X 2

4D1d
and for large X , it scales as

(X−2ε)2

4D1d
. We have

I1d(X )cont =

⎧⎪⎪⎨
⎪⎪⎩

X 2

4D1d
, for X � 2ε

1−
√

D1d
D1d

,

(X−2ε)2

4D1d
, for X � 2ε

1−
√

D1d
D1d

.
(40)

Using Eq. (40) along with the continuum limit of Eq. (36), we
arrive at the large deviation form:

lim
t→∞ P(X, t )cont =

⎧⎪⎪⎨
⎪⎪⎩

e−t X2

4D1d , for X � 2ε

1−
√

D1d
D1d

,

e−t (X−2ε)2

4D1d , for X � 2ε

1−
√

D1d
D1d

.
(41)
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FIG. 6. The large deviation function I1d (X )cont for a RTP in one
dimension in the continuum limit computed using Eq. (38) plotted as
a function of X for different flipping rates γ . The values in the x and
y axes are given in log10 scale. The bias ε is fixed to be 0.1 and the
intrinsic diffusion constant D1d is set equal to 0.5. The rate function
grows as X 2

4D1d
in the small X limit (up to a scale of X ≈ 2ε

1−
√

D1d
D1d

)

and then it grows as (X−2ε)2

4D1d
. The plot is symmetric in X and hence

follows the same pattern for negative X values.

Although the exact closed form expression for the large de-
viation function can be derived using Eq. (38), this expression
is rather long, and we have not quoted this result here. Instead,
it is instructive to examine the behavior of the large deviation
function in the limit of zero diffusion. We first analyze the zero
diffusion limit of the free-energy function in one dimension.
Setting the intrinsic diffusion constant, D1d to zero yields the
free-energy function for a purely active process as

λ1d(k)cont,0 = −γ +
√

γ 2 + 4k2ε2. (42)

Here, the subscript “cont, 0” indicates the continuum limit for
the zero diffusion case. Expanding Eq. (42) about k = 0 yields

λ1d(k)cont,0 −−→
k→0

D1d,0k2, (43)

where

D1d,0 = 2ε2

γ
, (44)

is the effective diffusion constant for a purely active lattice
walk without diffusion in one dimension. In the limit of large
k, we find

λ1d(k)cont,0 −−−→
k→∞

2εk. (45)

The Legendre-Fenchel transform of Eq. (42) yields the rate
function

I1d(X )cont,0 = γ

(
1 −

√
1 − X 2

4ε2

)
, (46)

which is nonzero only in the bounded interval X ∈ [−2ε, 2ε].
This can also be seen from the linear behavior of the large

deviation free-energy function in the large k limit implying
a bound on the maximum scaled displacement. The linear
behavior sets a cutoff distance Xmax = limk→∞ λ1d(k)cont,0/k
beyond which the function kX − λ1d(k)cont,0 in Eq. (38) is un-
bounded and the maximum does not exist for X �∈ [−2ε, 2ε].
The expression for the large deviation function provided in
Eq. (46) has been previously derived in Refs. [43,44,57] for a
purely active run and tumble particle without diffusion in one
dimension.

An expansion of I1d(X )cont,0 around X = 0 yields

I1d(X )cont,0 −−→
X→0

X 2

4D1d,0
+ X 4

64ε2D1d,0
+ X 6

512ε4D1d,0
+ . . . ,

(47)

where the expression for D1d,0 is provided in Eq. (44). There-
fore, at late times, the distribution P(X, t ) ∼ exp[−t I1d(X )]
is Gaussian near the origin whereas the tails of the distribu-
tion are highly non-Gaussian. We next present an alternative
method to arrive at the limiting forms of the large deviation
function in one dimension given in Eq. (40). The run and
tumble particle motion we consider is the sum of two inde-
pendent random processes; active motion without diffusion
and a completely diffusive process [21]. The total probability
density P(X, t )cont can therefore be written as the convolution
of the probability densities corresponding to the two separate
processes,

P(X, t )cont =
∫ ∞

−∞
fA(Y, t )cont fB(X − Y, t )contdY, (48)

where fA(Y, t )cont and fB(X − Y, t )cont represent the position
distributions arising from RTP motion without diffusion and
diffusion without activity, respectively. We next consider the
limiting distributions for both the processes separately. From
the exact expression for the rate function given in Eq. (46)
for a purely active process, we arrive at the following limiting
form for the occupation probability in the long time limit:

lim
t→∞ fA(X, t )cont = e

−tγ
(

1−
√

1− X2

4ε2

)
�(2ε − |X |), (49)

where the Heaviside step function � represents a bound on the
spatial extent of the particle, as the distribution fA(X, t )cont is
nonzero only in the bounded interval X ∈ [−2ε, 2ε]. In the
small X limit, Eq. (49) can be approximated as

lim
t→∞,x→0

fA(X, t )cont = e
−t X2

4D1d,0 �(2ε − |X |). (50)

For a completely diffusive process with diffusion constant
D1d, the probability density, fB(X, t )cont in the long time limit
assumes the following form:

lim
t→∞ fB(X, t )cont = e−t X2

4D1d . (51)

Using Eq. (50) and Eq. (51) in Eq. (48), we obtain

lim
t→∞ P(X, t )cont =

exp
(− tX 2γ

4D1dγ+8ε2

)√
2πD1dε√

t (D1dγ + 2ε2)
f (X, t ), (52)
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FIG. 7. The large deviation function I1d(X )cont computed using
Eq. (38) for a RTP in one dimension in the continuum limit plotted
as a function of X for fixed parameter values γ = 0.01, ε = 0.1,

and D1d = 0.5 (the dashed curve). The values in the x and y axes
are given in log10 scale. The solid curves correspond to the function
− 1

t log[P(X, t )cont] at different times, where the explicit form of the
function P(X, t )cont is given in Eq. (52). At large times, the solid
curves converge to the dashed curve.

where

f (X, t ) = erf

⎡
⎣D1dγ + ε(−X + 2ε)√

(2D1d(D1dγ+2ε2 )
t

⎤
⎦

+ erf

⎡
⎣D1dγ + ε(X + 2ε)√

(2D1d(D1dγ+2ε2 )
t

⎤
⎦, (53)

and erf is the error function. The expression in Eq. (52) along
with Eq. (53) gives a good approximation to the large devia-
tion function in one dimension (refer to Fig. 7).

The distribution in Eq. (52) naturally accounts for the two
regimes in the rate function of an active particle with diffu-
sion, suggesting an interplay between activity and diffusion
in the long time limit. In the first regime, the behavior is
diffusive with the diffusion constant having an explicit depen-
dence on the flip rate. In the second regime, the behavior is
once again diffusive with a bias-induced shift with no explicit
dependence on the flip rate. This can be interpreted as follows:
pure active motion can take the particle from the origin to a
maximum scaled distance of X = 2ε (which corresponds to a
scenario where the particle has not flipped its state up to the
time under consideration). The particle can explore regions
beyond this scaled distance only through a combination of
diffusion and active motion. As we are considering the process
in continuous time, the number of steps in a time interval
is determined by the microscopic rates, and the individual
processes can be considered independently. We can decom-
pose the motion of the particle into a series of active and
diffusive steps, where the order of the steps does not affect
the final position of the particle. We can therefore analyze the

process first with the active steps, which take the particle to
a location Y < 2ε, and then perform the diffusive steps from
this location. Each of these locations Y therefore represents
the source of diffusion, which is precisely the form of the
convolution in Eq. (48). Summing the contribution from each
of the sources at Y , leads to an effective shift in the origin of
the diffusion by the typical scale of Y .

The large deviation function becomes sharper around X =
2ε as the flipping rate γ is reduced. This occurs because for
small γ , the distribution of Y is sharply peaked around 2ε,
becoming a delta function as γ → 0. Therefore, in the γ → 0
limit, the large deviation function of the full process converges
to a Gaussian shifted by 2ε. This represents the lower enve-
lope in Fig. 6, with the large deviation functions for larger
γ displaying a crossover between these two regimes. Such
transitions in the different regimes of the total displacement
R in the large deviation function have also been observed in
recent studies of different models of active particles [43–45].

B. Two dimensions

We next analyze the moments, cumulants and the large
deviation functions associated with active random walks in
two dimensions. In this case, the Fourier transform of the
occupation probability P̃(kx, ky, t ), is not readily available
in a simple form. Therefore, to compute the moments of
the displacements, we utilize the exact expression for the
Fourier-Laplace transform of the occupation probability given
in Eq. (B1). The moments and the cross correlations between
the displacements along x and y directions can then be com-
puted as

〈xn(t )ym(t )〉 = L−1

[
1

(i)n+m

∂n∂mP̃(kx, ky, s)

∂kx
n∂ky

m

∣∣∣∣
kx=ky=0

]
. (54)

The fourfold rotational symmetry of the distribution of the
occupation probability leads to

〈x2n+1(t )ym(t )〉 = 〈xm(t )y2n+1(t )〉 = 0, (55)

where m, n = 0, 1, 2, 3, . . . . The second moment has the ex-
plicit form

〈x2(t )〉 = 〈y2(t )〉 = 2D2dt − 4ε2

γ 2
(1 − e−γ t ), (56)

where D2d is the modified diffusion constant due to activity in
two dimensions given as

D2d = D2d + 2ε2

γ
. (57)

In the t → 0 limit, the variance of the position along the x
direction has the form

〈x2(t )〉 −−→
t→0

2D2dt + 2ε2t2 − 2
3γ ε2t3 + O(t4). (58)

In the t → ∞ limit, the variance in the position of an active
lattice walk in two dimensions reduces to that of a two-
dimensional Brownian motion with the modified diffusion
constant D2d and 〈r2(t )〉 = 〈x2(t ) + y2(t )〉 −−−→

t→∞ 4D2dt . We

provide the list of a first few nonzero moments and cumulants
(computed using the expressions for the moments) in two
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FIG. 8. The large deviation free-energy function, λ2d(kx, ky )
computed using Eq. (59) for a RTP on a two-dimensional square
lattice plotted as a function of kx and ky. The fixed parameter values
used are γ = 0.1, ε = 0.2, and D2d = 0.25.

dimensions, as well as a match with direct numerical simula-
tions in the Supplemental Material [55]. As in one dimension,
the cumulants in two dimensions vary linearly with t in the
large time limit suggesting a large deviation form. Following
the same procedure as in one-dimension, the large deviation
free-energy function in two dimensions λ2d(kx, ky ) can be
determined from the largest eigenvalue of the Markov matrix
Q(−ikx,−iky) in Eq. (18). We obtain

λ2d(kx, ky)

= 1

2

[√
2[γ 2 − 4ε2 + 2ε2g(2kx, 2ky ) + f (kx, ky)]

− 2γ − 8D2d + 4D2dg(kx, ky)
]
, (59)

where the functions g(kx, ky) and f (kx, ky ) are defined as

g(kx, ky ) = cosh kx + cosh ky, (60)

f (kx, ky) = [γ 4 − 8γ 2ε2 + 4ε4 + 4γ 2ε2g(2kx, 2ky)

+2ε4g(4kx, 4ky) − 8ε4 cosh(2kx ) cosh(2ky)]1/2.

(61)

The above exact form for the large deviation free-energy
function demonstrates that the cross-correlations between the
x and y motion in two dimensions persist at large times, as the
above function does not reduce to a simple product form. In
Fig. 8, we display a plot of the two-dimensional free-energy
function λ2d(kx, ky), for fixed parameter values γ and ε.

We next turn our attention to the cumulants of the displace-
ments in x and y, which carry the signatures of the correlations
between x and y motion. Formally, these can be obtained as

〈xn(t )ym(t )〉c = 1

(i)n+m

∂n∂m log[P̃(kx, ky, t )]

∂kx
n∂ky

m

∣∣∣∣
kx=ky=0

. (62)

As the exact expression for P̃(kx, ky, t ) is known only in terms
of its Laplace transform, we use the expressions for the mo-
ments given in Eq. (54) to compute the first few cumulants

at all times. An alternative way of obtaining the asymptotic
behavior of the cumulants is by using the exact form of the
large deviation free-energy function. We can compute the
asymptotic limit of the cumulants as

lim
t−→∞ 〈xn(t )ym(t )〉c = t

∂n∂mλ2d(kx, ky)

∂kn
x ∂km

y

∣∣∣∣
kx=0, ky=0

. (63)

We show that the asymptotic limits of the cumulants com-
puted using the above expression match with the asymptotic
limits of the exact expressions for the first few cumulants in
the Supplemental Material [55].

We next analyze the continuum limit of the large deviation
free-energy function in Eq. (59), by taking the k → 0 limit
and keeping terms up to O(k2). We have

λ2d(kx, ky)cont =
[

1√
2

√
γ 2 + 4

(
kx

2 + ky
2
)
ε2 + f (kx, ky)cont

+ D2d
(
kx

2 + ky
2
) − γ

]
, (64)

where

f (kx, ky)cont =
√

γ 4 + 8
(
kx

2 + ky
2
)
γ 2ε2 + 16

(
kx

2 − ky
2
)2

ε4.

(65)

While taking the continuum limit with kx → 0, ky → 0, the
terms kx

2D2d, ky
2D2d, kxε, and kyε are held fixed.

This large deviation free-energy function has a much sim-
pler form in polar coordinates, given as

λ2d(k, θ )cont = γ

√
1 + k2δ +

√
1 + 2k2δ + k4δ2 cos2(2θ )√

2

− γ + D2dk2, (66)

where k =
√

kx
2 + ky

2, θ = tan−1 ky

kx
, and δ = 4 ε2

γ 2 . The above
expression has the following asymptotic limits:

λ2d(k, θ )cont −−→
k→0

D2dk2, (67)

where D2d is given in Eq. (57) and

λ2d(k, θ )cont −−−→
k→∞

D2dk2 + kg(θ ), (68)

where

g(θ ) =
√

2ε
√

1 + |cos(2θ )|. (69)

It is clear from Eq. (66) that the projections of the free-
energy function along various angles are different (as shown
in Fig. 9), pointing to the fact that at large times, the large
deviation functions associated with the process are not rota-
tionally invariant.

Although the Gartner-Ellis theorem can be extended to
higher dimensions, we follow the procedure used by us in the
one-dimensional case to analyze the two-dimensional case,
using the marginal distributions. We focus on the marginal
probability distributions which arise by an integration over
one of the spatial coordinates. We use the exact large deviation
free-energy function to derive the rate functions associated
with the marginal occupation probability distributions in two
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FIG. 9. The large deviation free-energy function projected along
the θ direction, λ2d(k, θ )cont plotted as a function of k for two differ-
ent directions θ = 0, π

4 . These have been computed using Eq. (66)
for a RTP in two dimensions in the continuum limit. The fixed
parameter values used are γ = 0.1, ε = 0.2, and D2d = 0.25.

dimensions. For example, the marginal distribution along the
θ direction can be computed as

P2D,θ (r, t ) =
∫ ∞

−∞
dx

∫ ∞

−∞
dyP(x, y, t )cont

× δ(r − x cos θ − y sin θ ). (70)

It is easy to show that the large deviation free-energy func-
tion associated with the projected distribution is related to the
free-energy function in polar coordinates given in Eq. (66).
The large deviation free-energy function at a particular θ

yields the free-energy function corresponding to the probabil-
ity distribution projected along the θ direction in real space,
λ2d(k, θ )cont. This can be seen by substituting kx = k′

x cos θ −
k′

y sin θ and ky = k′
x sin θ + k′

y cos θ in Eq. (64) and setting one
coordinate (say k′

y) to zero
As in one dimension, we analyze the zero diffusion limit

of the free-energy function in Eq. (66) where we could derive
exact closed form expressions for the rate functions associated
with the marginal occupation probability distributions in two
dimensions. If the diffusion constant is zero in Eq. (66), then
we have

λ2d(k, θ )cont,0

= γ

√
1 + k2δ +

√
1 + 2k2δ + k4δ2 cos2(2θ )√

2
− γ . (71)

The above expression follows a quadratic dispersion relation
in the small k limit

λ2d(k, θ )cont,0 −−→
k→0

D2D,0k2, (72)

where

D2D,0 = 2ε2

γ
(73)

0 0.1 0.2 0.3 0.4

R
θ

FIG. 10. Polar plot of the angular dependence of the bound on
the marginal rate function in the zero diffusion limit, g(θ ) given in
Eq. (69). Here, ε is fixed to be 0.2. The shape of the function g(θ ) is
a consequence of the inherent square symmetry associated with the
two-dimensional process. The function g(θ ) represents the arc traced
out by the corners of a square as it is rotated by an angle θ , which
yields the limits of the projected occupation probability distribution
along the θ direction.

is the modified diffusion constant due to a purely active pro-
cess in two dimensions. In the large k limit, we find a linear
dispersion relation

λ2d(k, θ )cont,0 −−−→
k→∞

kg(θ ). (74)

Here, g(θ ) sets a bound on the spatial extent of the marginal
rate function without diffusion in real space. In Fig. 10, we
display the polar plot of this function g(θ ) for the fixed
parameter value ε = 0.2. This function displays a fourfold
symmetry, which is a consequence of the inherent square sym-
metry associated with the two-dimensional process. This can
be understood as follows: the position distribution of the two-
dimensional RTP motion without diffusion is bounded within
a square shaped region given by �(2εt − |x|)�(2εt − |y|).
The function g(θ ) therefore represents the arc traced out by
the corners of this square as it is rotated by an angle θ , which
yields the limits of the projected occupation probability distri-
bution along the θ direction. We next focus on the marginal
large deviation function

I2d,θ (R)cont = lim
t→∞ −1

t
log [P2d,θ (R, t )cont], (75)

where R = r
t is the scaled displacement along the θ direc-

tion. Similar to the procedure in one dimension, we can
utilize the Gartner-Ellis theorem to derive the large devia-
tion rate functions associated with the marginal distributions
I2d,θ (R)cont in two dimensions, as the marginal distributions
under consideration involve a single variable. The rate func-
tions corresponding to the marginal distribution along the θ

direction can be computed as

I2D,θ (R)cont = max
k

{kR − λ2d,θ (k)cont}. (76)
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Next, we derive the large deviation function for active
motion without diffusion in two dimensions, projected along
an arbitrary direction θ . In the large k regime, the large
deviation free-energy function displays linear behavior in k
as given in Eq. (74). Similar to the one-dimensional case,
this implies a bound on the maximum scaled displacement
in the large deviation function, when projected along the
direction θ . This can be seen through the inversion of the free-
energy function using the Gartner-Ellis theorem in Eq. (76).
The linear behavior therefore sets a cutoff distance Rmax =
limk→∞ λ2d,θ (k)cont,0/k. At distances greater than Rmax, the
function kR − λ2d,θ (k)cont,0 is unbounded, and therefore the
maximum does not exist, implying that the large deviation
function does not exist for distances R > Rmax. Therefore, for
arbitrary θ and for small R, Eq. (76) predicts

I2d,θ (R)cont,0 ≈ R2

4D2d,0
�[g(θ ) − R], (77)

where D2d,0 = 2ε2

γ
. The expressions for the exact large devia-

tion functions are greatly simplified along the directions θ = 0
and π

4 in the zero diffusion limit. We have the following closed
form expressions:

I2d,0(R)cont,0 = γ

(
1 −

√
1 − R2

4ε2

)
�(2ε − R),

I2d, π
4
(R)

cont,0
= γ

2

(
1 −

√
1 − R2

2ε2

)
�
(√

2ε − R
)
. (78)

The details of the above calculations are given in Appendix C.
Clearly, the large deviation function in two dimensions is not
isotropic. This is because the underlying process we consider
remains anisotropic even at large times. This is different from
the two-dimensional cases studied in Refs. [43,44] where the
direction of movement of the particle is chosen isotropically
after each tumble.

Analogous to the one-dimensional case, the corresponding
rate functions with diffusion have the form

I2d,θ (R)cont =

⎧⎪⎨
⎪⎩

R2

4D2d
, for R � g(θ )

1−
√

D2d
D2d

,

[R−g(θ )]2

4D2d
, for R � g(θ )

1−
√

D2d
D2d

.
(79)

We therefore conclude that the marginal distributions display
the large deviation form

lim
t→∞ P2d,θ (R, t )cont =

⎧⎪⎪⎨
⎪⎪⎩

e−t R2

4D2d , for R � g(θ )

1−
√

D2d
D2d

,

e−t [R−g(θ )]2

4D2d , for R � g(θ )

1−
√

D2d
D2d

.

(80)

In Fig. 11, the large deviation function in the continuum
limit I2d,0(R)cont projected along the θ = 0 direction is plotted
for fixed parameter values. For small R, the rate function
I2d,0(R)cont scales as R2

4D2d
and for large R, it scales as (R−2ε)2

4D2d
.

This is similar to the behavior of the large deviation function
of the one-dimensional case, where two regions with differing
diffusive behaviors are observed. The scale of R at which
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FIG. 11. The large deviation function projected along the θ = 0
direction, I2d,0(R)cont plotted as a function of R for different flipping
rates γ (solid curves). The values in the x and y axes are given in log10

scale. These have been computed using Eq. (76) for a RTP in two
dimensions in the continuum limit. The bias ε is fixed to be 0.2 and
the intrinsic diffusion constant D2d is equal to 0.25. The rate function
grows as R2

4D2d
in the small R limit (upto a scale of R ≈ 2ε

1−
√

D2d
D2d

) and

then it grows as (R−2ε)2

4D2d
. The plot is symmetric in R and hence follows

the same pattern for negative R values.

the crossover between the two regimes occur along differ-
ent directions θ is determined by the function g(θ ) plotted
in Fig. 10. The symmetry associated with the function g(θ )
points to the inherent square symmetry associated with the
two-dimensional process.

V. DISCUSSION

In this paper, we have investigated active lattice walks in
one and two spatial dimensions. We analyzed the occupation
probability of an arbitrary site on the lattice and showed that
the lattice version of active particle motion can also be used to
derive the distributions in continuous space by taking appro-
priate limits. We computed the moments, cumulants and cross
correlations in the position of the active random walker. Next,
we computed the exact large deviation free-energy function
in both one and two dimensions, which we used to compute
the moments and the cumulants of the displacements exactly
at late times. We also demonstrated that the large deviation
rate function associated with an active particle with diffu-
sion displays two regimes, with differing diffusive behaviors.
Specifically in two dimensions, we analyzed the large devi-
ation rate functions projected along a given direction θ , and
demonstrated the emergence of these two regions. The two
regimes can naturally be explained as a consequence of the
two underlying processes in play: diffusion and active motion.
At small values of the scaled length, the process is described
by effective diffusion arising from both processes, while at
large length scales the process may be interpreted as receiving
contributions primarily from active motion followed by diffu-
sion. This leads to the second regime in the large deviation
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function described by shifted diffusion. We also demonstrated
that in the two-dimensional process, the cross-correlations
between the x and y motion persist in the large deviation
function. Finally, we also verified our analytic results with
kinetic Monte Carlo simulations of an active lattice walker
in one and two dimensions.

It would be interesting to extend our results for active
random walks to higher dimensions as well as to different
types of underlying lattices. As we have shown that non-
trivial corrections to diffusion can emerge at large length
scales, it would also be of interest to study the first passage
statistics of active random walks to better understand the
nature of these regimes, as has been recently investigated in
Refs. [21,28,58,59]. Lattice models of interacting particle sys-
tems have also been used as paradigmatic models to study the
nontrivial collective effects associated with dense particulate
matter [60,61]. It has recently been shown that phase tran-
sitions resembling motility-induced phase separation can be
realized in lattice models with activity [15,62], however, with
microscopic rules different from our case. It would therefore
be interesting to generalize our study to interacting active
lattice walks to better understand the nature of the nonequi-
librium phases that appear in collections of active particles.
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APPENDIX A: FOURIER TRANSFORM OF THE
OCCUPATION PROBABILITY OF A GENERAL SITE

ON A ONE-DIMENSIONAL LATTICE

Equation (5) can also be solved by diagonalizing the matrix
M(k) given in Eq. (6). Let λ+(k) and λ−(k) be the two eigen-
values of the matrix M(k). The eigenvalues can be expressed
as

λ±(k) = 2d1d(cos k − 1) − γ ± R(k), (A1)

where R(k) is defined in Eq. (10). Solution of Eq. (5) can then
be written as

|P̃m(k, t )〉 = c+(k) �X+(k)eλ+(k)t + c−(k) �X−(k)eλ−(k)t , (A2)

where �X+(k) and �X−(k) are the eigenvectors of the matrix
M(k) corresponding to the eigenvalues λ+(k) and λ−(k),
respectively. These are given as

�X+(k) =
(

i2ε sin k+R(k)
γ

1

)
, �X−(k) =

(
i2ε sin k−R(k)

γ

1

)
. (A3)

Here, c+(k) and c−(k) are the prefactors to be deter-
mined from the initial conditions. We use symmetric initial
conditions; P0(x, t = 0) = P1(x, t = 0) = 1

2δx,0. That is, the
particle has equal initial probabilities to be in the state 0 or
the state 1. The total probability can then be written as

P̃(k, t ) = P̃0(k, t ) + P̃1(k, t ) = a+(k)eλ+(k)t + a−(k)eλ−(k)t ,

(A4)

where

a+(k) = 1

2

[
1 + γ

R(k)

]
, a−(k) = 1

2

[
1 − γ

R(k)

]
. (A5)

After simplification, we obtain the expression in Eq. (9).

APPENDIX B: MOMENT GENERATING FUNCTION IN TWO DIMENSIONS

The Laplace transform of the moment generating function in two dimensions is given as

P̃(kx, ky, s) = (−2 f + s + γ )(4 f 2 + (s + γ )(s + 2γ ) − 2 f (2s + 3γ ) + (2 − g)ε2)

(2 f − s)(2 f − s − 2γ )(−2 f + s + γ )2 + 2(2 − g)(−2 f + s + γ )2ε2 + 4(1 − g)ε4 + 4ε4 cos (2kx ) cos (2ky)
,

(B1)

where f ≡ f (kx, ky) = D2d(−2 + cos kx + cos ky) and g ≡ g(kx, ky) = cos(2kx ) + cos(2ky). Setting ky = 0 yields P̃(kx, s) =
P̃(kx, ky = 0, s). We obtain

P̃(kx, s) = (−2 f + s + γ )(4 f 2 + (s + γ )(s + 2γ ) − 2 f (2s + 3γ ) + (2 − g)ε2)

(2 f − s)(2 f − s − 2γ )(−2 f + s + γ )2 + 2(2 − g)(−2 f + s + γ )2ε2
, (B2)

where f ≡ f (kx, ky) = D2d(−1 + cos kx ) and g ≡ g(kx, ky) = 1 + cos(2kx ).

APPENDIX C: MARGINAL RATE FUNCTION IN TWO DIMENSIONS

Let us take the free-energy function in Eq. (71) and substitute δ
4 k2 = z and β = 1 + cos 4θ . Thus, we obtain

λ2d,β (z)cont,0 =
γ

√
1 + 4z +

√
1 + 8z + 8z2β

√
2

− γ . (C1)

Using the transformation 1 + 8z + 8z2β = g2 gives

λ2d,β (g)cont,0 = γ
√

1 + 4z(g) + g√
2

− γ , (C2)
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in which z(g) = −2+
√

4+2(−1+g2 )β
4β

. Gartner-Ellis theorem in the transformed coordinates yields

I2d,β (R)cont,0 = max
g

{
2

√
z(g)

δ
R − λ2d,β (g)cont,0

}
. (C3)

For β = 2, 0, we get the closed form expressions in Eq. (78).
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