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Abstract
We investigate the effect of initial conditions on the fluctuations of the integ-
rated density current across the origin (x= 0) up to a given time t in a one-
dimensional system of non-interacting run-and-tumble particles. Each particle
has initial probabilities f+ and f− to move with an initial velocity +v and
−v respectively, where v> 0. We derive exact results for the variance (second
cumulant) of the current for quenched and annealed averages over the ini-
tial conditions for the magnetization and the density fields associated with the
particles. We show that at large times, the variance displays a

√
t behavior, with

a prefactor contingent on the specific density initial conditions used. However,
at short times, the variance displays either linear t or quadratic t2 behavior,
which depends on the combination of magnetization and density initial con-
ditions, along with the fraction f+ of particles in the positive velocity state at
t= 0. Intriguingly, if f+ = 0, the variance displays a short time t2 behavior with
the same prefactor irrespective of the initial conditions for both fields.

Keywords: current fluctuations, active systems, effect of initial conditions,
run and tumble particles, annealed and quenched averages

1. Introduction

Active systems are composed of self-propelling particles that consume energy at the individual
level to perform directed motion [1–12]. The breaking of detailed balance at the microscopic
level allows such systems to exhibit behaviors that are distinct from equilibrium systems such
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as coherent motion, pattern formation, motility-induced phase separation, amongst others [13–
16]. Particularly intriguing is the run and tumble (RTP) motion, employed by certain active
particles, such as bacteria, to adeptly navigate their surroundings and explore their environ-
ment effectively [10–12, 17–24]. During the running phase, bacteria move towards favorable
conditions, while tumbling allows for random reorientation and exploration of new areas. Over
the years, the RTPmodel has attracted significant attention leading to numerous studies on act-
ive particles such as first-passage properties, clustering and phase separation, large deviations,
and collective motion [11, 14, 17, 20, 21, 25–28].

In this work, we focus on the role of initial conditions on current fluctuations in non-
interacting run and tumble particles in one dimension. To explore the effect of initial conditions
on particle systems, two types of initial density profiles can be considered: (1) a deterministic
profile where the positions of particles are initially fixed (known as the ‘quenched density’
setting), and (2) a random profile that allows for fluctuations in the initial positions (known as
the ‘annealed density’ setting). Active systems, on the other hand, also introduce an additional
degree of freedom in the form of magnetization or polarization [14, 29–32], which opens up
the possibility of two more types of initial conditions: (3) a deterministic initial magnetization
profile where the velocities of particles are fixed initially (termed ‘quenched magnetization’
setting), and (4) a random initial profile that allows for fluctuations in the initial velocities of
the particles (termed ‘annealed magnetization’ setting).

The quantity of interest is the total number of particles Q, passing into the half-infinite
line (x> 0) up to time t. There have been many studies on the statistics of Q for different
passive systems like non-interacting random walkers, symmetric simple exclusion process,
and Kipnis–Marchioro–Presutti model, amongst others using analytical methods like Bethe
ansatz, Green’s function methods and macroscopic fluctuation theory [33–39]. The effect
of initial conditions on active systems has been first analyzed systematically in [40] for non-
interacting RTPs in one dimension where the exact expression for the variance of the integrated
current Q in the annealed density and annealed magnetization setting was derived. Later, this
study was extended to incorporate the effect of annealed and quenched magnetization initial
conditions in [41], focusing on step initial density and zero initial magnetization conditions. In
this study, we derive exact expressions of the variance of the integrated current for general step
initial conditions for both the density and magnetization fields. This allows for a comparison
between the fluctuations due to the differences in initial conditions for both fields at all times.
We consider the case where all particles are uniformly distributed to the left of the origin
at time t= 0. Each particle is associated with initial probabilities f+ and f− to move with
velocities +v and −v, respectively, where v> 0. Current fluctuations in related models of run
and tumble particle systems have also been analyzed in [32, 42]. The main focus of our study
is to determine the variance of the current for annealed and quenched averages over the initial
conditions involving both the density and magnetization fields.

Through our analytical investigation, we find that the variance of the current exhibits a
√
t

behavior at large times with a prefactor contingent on the specific density initial conditions
used. This demonstrates that the fluctuations in the initial positions of particles have an ever-
lasting effect on the variance of Q, unlike the fluctuations in the initial velocities. However, at
short times, the variance shows either a linear t or a quadratic t2 behavior influenced by the
combination of initial conditions for both the density and magnetization fields, as well as the
fraction f+ of the particles with a positive velocity at t= 0. Such differences in the short-time
behavior of variance have also been observed in previous studies of a single active particle. For
example, it was shown in [43] that for asymmetric initial magnetization conditions, the mean
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squared displacement of a single active Brownian particle in two dimensions exhibits non-
diffusive behavior at short times and the growth exponent of the variance depends crucially on
the initial magnetization initial conditions. A particularly intriguing observation of our study
is that when f+ = 0, meaning there are no particles initially moving with a positive velocity,
the variance displays a t2 behavior at short times. Interestingly, this behavior remains the same
regardless of the initial conditions of the density and magnetization fields. Another intriguing
aspect is the strictly quenched scenario where both the density and magnetization fields are
quenched. In this case, the variance always exhibits a t2 behavior at short times regardless of
the values of f+ and f−. The specific scenario in which f+ = f− = 1/2 has been systematically
examined in [41], which is also the usual case studied in the literature, albeit with annealed
magnetization initial conditions. In this work, we extend the scope of these results to encom-
pass arbitrary values of both f+ and f− and focus on the actual quantitative dependence of the
fluctuations on the initial conditions in both fields. We argue that the effect of initial conditions
goes far beyond the zero magnetization case studied in [41] by considering general step initial
conditions for the magnetization field.

This paper is organized as follows. In section 2, we introduce the microscopic model and
different averages used in the study. In section 3, we provide a summary of the main results.
We present derivations of the single particle propagators for different initial bias velocities
in section 4. In section 5, we analytically compute the expressions of the variance of Q for
different annealed and quenched initial conditions involving the density and magnetization
fields. We present our conclusions from the study in section 6. Finally, we provide details
pertaining to some of the calculations in appendices A and B.

2. Microscopic model

We consider a one-dimensional box bounded between [−L,0]with N run and tumble particles.
The dynamics of each particle evolve according to the Langevin equation

∂xi (t)
∂t

= vmi (t) , v> 0, 1< i < N. (1)

The stochastic variable mi(t) switches values between +1 and −1 at a fixed rate γ. The time
scale 1/γ is the mean persistence time for the velocity of a single run and tumble particle.
For mi(t) =±1, the ith particle has a bias velocity ±v at time t. If the initial velocity of a
particle is +v, then the particle is in + state, and if the initial velocity is −v, then the particle
is in − state. This velocity behaves akin to an internal spin state, leading us to construct a
magnetization field corresponding to the active motion of the particles. We define a density
field ρ(x, t) = L−1∑N

i=1 δ(x− xi(t)) associated with the positions and a magnetization field
m(x, t) = L−1∑N

i=1mi(t)δ(x− xi(t)) associated with the velocities of these active particles.
We consider a step initial density profile where all particles are uniformly distributed to the
left of the origin with density ρ, i.e. ρ(x,0) = ρΘ(−x) where ρ= N/L and Θ is the Heaviside
theta function. Let f+ denote the fraction of particles with +v velocity and f− denote the
fraction of particles with−v velocity at time t= 0, with f+ + f− = 1. This corresponds to a step
initial magnetization profile, m(x,0) = ( f+ − f−)ρΘ(−x). For f+ = f− = 1/2, m(x,0) = 0,
and this model reduces to the model studied in [40, 41]. Even though we start with a finite-
dimensional box, we eventually take the limit N→∞, L→∞ with N/L→ ρ, fixed in our
analytical calculations.
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Figure 1. Schematic representation of the trajectories of non-interacting run and tumble
particles in one dimension. At time t= 0, all particles are uniformly distributed towards
the left of the origin. The label xi(mi) indicates the initial position(velocity) of the ith
particle. Different colors denote particles with different initial bias velocities.

We study the statistics of the number of particles Q, that cross the origin up to time t. As
a particle traverses the origin from left to right or vice versa, it adds +1 or −1 to the current,
respectively. Therefore, the integrated current up to time t is exactly equal to the number of
particles on the right side of the origin (x> 0) at time t. We provide a schematic representation
of the dynamics of the particles in figure 1. We next elucidate the various types of averages that
can be utilized to examine how the fluctuations of Q are influenced by the initial conditions.

2.1. Annealed and quenched averages

We consider various types of averages involving the initial positions and the velocities of
particles to study the effect of initial conditions on the fluctuations of Q. Annealed dens-
ity (magnetization) setting allows for fluctuations in the initial positions (velocities) of the
particles. However, in the quenched density (magnetization) setting, the initial positions (velo-
cities) are fixed. We denote the initial positions and bias states of particles by {xi} and {mi }
respectively. The angular bracket 〈· · ·〉{xi},{mi} denotes an average over the history, but with
fixed initial positions and velocities of the particles. We also use two additional averages,
denoted by · · · for an average over initial positions and

︷︸︸︷
· · · for an average over initial bias

states.
Let us denote by Pa,a(Q, t) the probability distribution of Q where both the initial positions

and velocities are allowed to fluctuate. The initial conditions for positions and velocities are
denoted by the first and second subscripts respectively where ‘a’ stands for annealed and ‘q’
stands for quenched scenarios. For this annealed density and annealed magnetization setting,
the moment-generating function can be computed as

∞∑

Q=0

e−pQPa,a (Q, t) =
︷ ︸︸ ︷
〈e−pQ〉{xi},{mi} . (2)

We next consider the case where the initial positions of the particles are allowed to fluctuate,
but the velocities are fixed. The flux distribution for this case is represented as Pa,q(Q, t). The
corresponding moment-generating function is expressed as
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∞∑

Q=0

e−pQPa,q (Q, t) = exp

[︷ ︸︸ ︷
ln〈e−pQ〉{xi},{mi}

]
. (3)

For the case where both the initial positions and velocities of particles are fixed, the flux dis-
tribution is denoted as Pq,q(Q, t). The moment-generating function for this flux distribution is
given as

∞∑

Q=0

e−pQPq,q (Q, t) = exp

[︷ ︸︸ ︷
ln〈e−pQ〉{xi},{mi}

]
. (4)

Finally, we consider the case where the initial positions of the particles are fixed, but the velo-
cities are allowed to fluctuate. The flux distribution for this case is denoted as Pq,a(Q, t). The
expression for the moment-generating function associated with this process is given as

∞∑

Q=0

e−pQPq,a (Q, t) = exp

[
ln
︷ ︸︸ ︷
〈e−pQ〉{xi},{mi}

]
. (5)

3. Summary of the main results

We focus on the role of initial conditions on the fluctuations of the integrated current Q. The
mean of Q is a self averaging property, i.e. it takes on the same characteristics regardless
of the specific initial conditions [36]. However, the variance displays interesting differences
for various averages involving the initial conditions. We first consider the annealed density
and annealed magnetization setting which allows for fluctuations in both the positions and
velocities of particles at time t= 0. Another equivalent scenario is the annealed density and
quenched magnetization setting where the positions are allowed to fluctuate, but the velocities
are fixed at time t= 0 [41]. In the infinite system size limit, the distributions of Q for both
these initial conditions become identical. This is due to the fact that whether the velocities are
kept constant or allowed to fluctuate makes no difference as the initial positions of particles
are randomized. Therefore, the fluctuations in the initial velocities do not have any effect on
the distribution of Q (and hence the variance) when the initial positions are randomized. The
exact expression for the variance of Q for these cases can be computed as

σ2
a,a (t) = σ2

a,q (t) =
ρv
4γ

[
2e−tγ tγ (III0 (tγ)+ III1 (tγ))+

(
f+ − f−

)(
1− e−2tγ)] . (6)

As before, the initial conditions for density and magnetization fields are denoted by the first
and second subscripts respectively where ‘a’ stands for annealed and ‘q’ stands for quenched
scenarios. The symbols III0 and III1 denotemodifiedBessel functions of order 0 and 1 respectively.
The expression in equation (6) is also equal to themean for all initial conditions. For f+ = f− =
1/2, we obtain the simplified expression

σ2
a,a (t) = σ2

a,q (t) =
ρv
2
te−tγ (III0 (tγ)+ III1 (tγ)) , for f+ = f− = 1/2. (7)

This is the specific case studied in [40, 41]. Unlike the symmetric case, fluctuations in the asym-
metric case involve an additional exponential term as illustrated in equation (6). Interestingly,
this term becomes exactly equal to zero in the symmetric case. This demonstrates the effect of
asymmetry in the initial magnetization initial conditions explicitly.

The third case we study is the quenched density and quenched magnetization setting where
both the positions and velocities of particles are fixed initially. For this non-trivial case, the
exact expression for the variance in real time is hard to compute. Nevertheless, it is possible to
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Table 1. Asymptotic behaviors of the variance σ2(t) of the integrated current for dif-
ferent initial conditions. The initial conditions for density and magnetization fields are
denoted by the first and second subscripts respectively where ‘a’ stands for annealed
and ‘q’ stands for quenched. Here, Deff = v2/(2γ) is the effective diffusion constant
for RTP motion in one dimension [40, 41]. The mean of Q denoted as µ(t) is equal to
σ2
a,a(t) = σ2

a,q(t) and is the same for all initial conditions when the initial positions are
randomized.

t→ 0 t→∞

ρvf+t− ρvγ
4

(
3f+ − f−

)
t2 ρ

√
Deff t
π σ2

a,a(t)

ρvf+t− ρvγ
4

(
3f+ − f−

)
t2 ρ

√
Deff t
π σ2

a,q(t)
ρvγ
4

(
3f+ + f−

)
t2 ρ

√
Deff t
2π σ2

q,q(t)

ρvf+f−t+ ρvγ
4

(
3f+ − f−

)(
f+ − f−

)
t2 ρ

√
Deff t
2π σ2

q,a(t)

compute the exact expression of the variance in Laplace space. We define the Laplace trans-
form of a function f (t) as L [f(t)] = f̃(s) =

´∞
0 dte−stf(t). We show that

σ̃2
q,q (s) = ρ



( f+ − f−
)


 v
4s(s+ 2γ)

−
vK
(
− 8γ(s+2γ)

s2

)

2π s(s+ 2γ)



+
vγ

s(s+ 2γ)
√
s(s+ 4γ)



 . (8)

In the above equation, K is the elliptic integral of the first kind defined as

K(m) =
ˆ π

2

0
dθ 1/

√
1−m sin2θ. (9)

Equation (8) can be used to extract the asymptotic behaviors of the variance in real-time and
is given in table 1. Additionally, for symmetric initial conditions with f+ = f− = 1/2, this
expression can be inverted exactly yielding [41]

σ2
q,q (t) =

ρv
4
te−2γt [(2+πLLL0 (2tγ))III1 (2tγ)−πLLL1 (2tγ)III0 (2tγ)] , (10)

where LLL0 and LLL1 are modified Struve functions of order 0 and 1 respectively.
The final case we analyze is the quenched density and annealedmagnetization setting where

the positions of particles are fixed, but the velocities are allowed to fluctuate at time t= 0.
For these initial conditions, the exact expression for the variance in Laplace space can be
obtained as

σ̃2
q,a (s) =

ρv
s3/2 (s+ 2γ)

[(
γ√
s+ 4γ

− 1
2

√
s+ 2γ

)(
f+

2
+ f−

2
)

−
(

2γ√
s+ 4γ

+
√
s+ 2γ−

√
s+ 4γ

)
f+f− +

1
2

√
s+ 2γ

−
√
s




K
(
− 8γ(s+2γ)

s2

)

2π
+

1
4




(
f+

2 − f−
2
)
+

1
2
√
s
(
f+ − f−

)


 . (11)

For symmetric initial conditions f+ = f− = 1/2, the above expression can be inverted exactly
yielding [41]

σ2
q,a (t) =

ρv
8
te−2γt [(4+πLLL0 (2tγ))III1 (2tγ)+ (2−πLLL1 (2tγ))III0 (2tγ)] . (12)
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Figure 2. Variance of the time integrated current Q plotted as a function of time t for
different values of f+ and f−. The specific cases displayed are (a) annealed density and
annealed magnetization initial conditions (b) annealed density and quenched magnetiz-
ation initial conditions. The points are obtained from direct numerical simulations and
the solid curves correspond to the exact analytical result in equation (6). These plots are
for the parameter values ρ= 20, γ = 1, v= 1. We notice that the variance exhibits sim-
ilar behavior for both annealed and quenched magnetization initial conditions. Thus we
infer that magnetization initial conditions do not influence the statistics of Q when the
density initial conditions are annealed, regardless of the value of f+. We also observe
that the case where f+ = 0 is distinct from the others, displaying a t2 behavior at short
times.

The asymptotic behaviors of the variance for each of the four cases discussed above are
listed in table 1. We also compare our analytical predictions for the variance of Q with direct
Monte Carlo simulations in figures 2 and 3. These simulations can be performed straightfor-
wardly, and the details can be found in [40]. Our theoretical predictions align remarkably well
with the results obtained from Monte Carlo simulations.

We notice from table 1 that for the special case where f+ = 0 and f− = 1, the mean and
the variance always grow as ρvγt2/4 in the small time limit irrespective of the initial condi-
tions. This results in suppressed fluctuations, and the short-time behavior of current fluctu-
ations becomes independent of the initial conditions. This independence arises because, in the
absence of particles initially in the positive state, the sole factor contributing to the current
across the origin is the flipping of particle states. Consequently, within this flipping time scale,
all initial conditions essentially become identical. The behavior of the mean can be under-
stood as explained below. Consider a single RTP starting its motion from the location −x0
with x0 > 0 at time t= 0 in − state (i.e. with velocity −v). The particle cannot cross the ori-
gin until it flips the velocity state. At short times, we can safely approximate that the mean is
dominated by trajectories with a single flip. Let τ be the time taken by the particle to flip its
velocity state. Here, τ is a stochastic variable. For the particle to be able to cross the origin
within a time t> τ , the necessary condition is

x0 + τv< (t− τ)v. (13)
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Figure 3. Variance of the time integrated current Q plotted as a function of time t for
different values of f+ and f−. The specific cases displayed are (a) quenched dens-
ity and quenched magnetization initial conditions (b) quenched density and annealed
magnetization initial conditions. The points are obtained from direct numerical simu-
lations. The solid curves for f+ = f− = 0.5 in (a) and (b) correspond to the exact ana-
lytical results in equations (10) and (12) respectively. The dashed curves correspond
to the asymptotic behaviors listed in table 1. These plots are for the parameter values
ρ= 20, γ = 1, v= 1. We observe that quenched density and quenched magnetization
initial conditions consistently result in suppressed fluctuations at short times, regardless
of the value of f+. We also notice that quenched density and annealed magnetization
initial conditions differ from the other cases, particularly in the behavior observed for
f+ = 0 and f+ = 1 cases.

That is, the distance to the location of the particle just before the first flip (before time τ )
should be less than the distance traveled by the particle in the remaining time interval t− τ .
Equation (13) can be rewritten as

τ <
1
2

(
t− x0

v

)
. (14)

Since the distribution of the time gap between consecutive flips is Poissonian, the probability
that the particle will cross the origin within a time t is given as

〈Q(t) |x0〉=
ˆ 1

2 (t−
x0
v )

0
dτ γe−γτ = 1− e−

γ
2 (t−

x0
v ). (15)

If the density of particles is ρ, the average current is then given as

〈Q〉= ρ

ˆ vt

0
dx0

(
1− e−

γ
2 (t−

x0
v )
)
= ρv



t−
2
(
1− e−

1
2 tγ
)

γ



 , (16)

which in the short time limit yields

〈Q〉−−→
t→0

ρvγ
4
t2. (17)

In section 5, we demonstrate that when the initial density conditions are annealed, the flux
distribution consistently follows a Poisson distribution. This holds true regardless of the initial
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magnetization conditions. Therefore, both Pa,a(Q, t) and Pa,q(Q, t) are Poissonian, as evid-
enced by equations (66) and (70), respectively. Consequently, the mean value of the distribu-
tion is equal to its variance in these cases. Hence, the result presented in equation (17) also
applies to the variance when the initial density conditions are annealed. This finding aligns
with the limiting behavior outlined in table 1, considering the parameter choice of f+ = 0 and
f− = 1.We also note that for initial conditions where both the density and magnetization fields
are quenched, the variance consistently follows a t2 behavior at short times, regardless of the
specific values of f+ and f−.

4. Single particle propagators

In this section, we provide expressions for the single particle propagators associated with a
RTP in one dimension.We also provide expressions for the integrals of theseGreen’s functions.
These expressions will be useful in the analytical calculations presented in the next section.We
consider symmetric and asymmetric initial bias velocities separately. An alternate method to
derive the single particle propagators has also been given in [41]. Here, we employ a Laplace
transform approach to the Fokker–Planck equations governing occupation probabilities. We
then solve these equations with initial conditions and normalization constraints. In contrast,
the derivation outlined in [41] involves solving thematrix equation associatedwith the Fourier–
Laplace transform of the occupation probabilities.

We consider an RTP starting its motion from the position x= 0 at time t= 0 in one dimen-
sion. We use the notation Pm(x, t) to represent the probability density of the particle to be at
location x at time t in the velocity state m, where m=±. The evolution equations for this
probability density are [17]

∂P+ (x, t)
∂t

= − v
∂P+ (x, t)

∂x
− γP+ (x, t)+ γP− (x, t) ,

∂P− (x, t)
∂t

= + v
∂P− (x, t)

∂x
− γP− (x, t)+ γP+ (x, t) . (18)

The total probability density of being at position x at time t is given as

P(x, t) = P+ (x, t)+P− (x, t) . (19)

Taking a Laplace transform of equation (18) yields

−P+ (x,0)+ v
∂P̃+ (x,s)

∂x
+(s+ γ) P̃+ (x,s)− γP̃− (x,s) = 0,

−P− (x,0)− v
∂P̃− (x,s)

∂x
+(s+ γ) P̃− (x,s)− γP̃+ (x,s) = 0. (20)

We consider an ansatz of the form

P̃± = A±e−λx for x> 0,

P̃± = B±e+λx for x< 0. (21)

Substituting these solutions into equation (20) (away from x= 0) yields

(s+ γ−λv)A+ = γA−,

(s+ γ+λv)B+ = γB−,

(s+ γ+λv)A− = γA+,

(s+ γ−λv)B− = γB+. (22)
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Combining the above equations yields the expression for λ as

λ=

√
s(s+ 2γ)
v

. (23)

Since the total probability density P(x, t) = P+(x, t)+P−(x, t) has to be normalised, we obtain
the condition ˆ ∞

−∞
dx
(
P̃+ + P̃−

)
=

1
s
. (24)

This implies

A+ +A− +B+ +B− =
λ

s
. (25)

This condition along with the initial conditions can be together used to evaluate the undeter-
mined coefficients A± and B± as we demonstrate in the following subsections.

4.1. Symmetric initial bias velocity

We consider symmetric initial bias velocities of the form

P+ (x,0) = P− (x,0) =
1
2
δ (x) , (26)

where the particle starts from + or − velocity state with equal probability. Integrating
equation (20) over x yields

−1
2
+

(s+ γ)

λ
(A+ +B+)−

γ

λ
(A− +B−) = 0,

−1
2
+

(s+ γ)

λ
(A− +B−)−

γ

λ
(A+ +B+) = 0. (27)

Solving equations (22), (25) and (27) yields the expressions for coefficients as

A+ =
vλ+ s
4sv

, A− =
vλ− s
4sv

,

B+ =
vλ− s
4sv

, B− =
vλ+ s
4sv

. (28)

Using the above expressions and the form of ansatz provided in equation (21), we directly
obtain [40]

P̃(x,s) = P̃+ (x,s)+ P̃− (x,s) = e−|x|λ λ

2s
, (29)

where the expression for λ is provided in equation (23).
We define the symmetric Green’s function G0(x,xi, t) as the probability density of finding

an RTP at position x at time t, given that it started from position xi at time t= 0, with an equal
chance of being in the + or − state. The superscript ‘0 ′ indicates the symmetric scenario
where the particle has an equal probability of being in the+ or− state at time t= 0. Since the
evolution equations are invariant under translations, equations (23) and (29) directly lead to

G̃0 (x,−z,s) =
e−

|x+z|
√

s(s+2γ)
v

√
s(s+ 2γ)

2vs
, z=−xi. (30)

Here, G̃0(x,−z,s) represents the Laplace transform of the Green’s function for an RTP that
starts with equal probabilities to be in both the + and − states. For step initial conditions, we
consider xi ! 0, thus z" 0.

10
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We define the integral of the Green’s function G0(x,−z, t) over the half-infinite line as

U0 (z, t) =
ˆ ∞

0
dx G0 (x,−z, t) , z" 0. (31)

The quantity U0(z, t) corresponds to the probability that a particle starting from the location
−z in a symmetrized velocity state is found towards the right side of the origin at time t.
Using the exact expression in equation (30), we derive the expression for U0(z, t) in Laplace
space as

Ũ0 (z,s) =
exp
(
−z

√
s(s+2γ)
v

)

2s
. (32)

The integral of the function Ũ0(z,s) over z yieldsˆ ∞

0
dz Ũ0 (z,s) =

v

2s3/2
√
(s+ 2γ)

. (33)

We next define the Laplace transform of the square of the function U0(z, t) as

Ṽ0 (z,s) = L
[
U0 (z, t)

2
]
. (34)

This is a useful quantity that enters the computations of the current fluctuations presented in
the next section. The integral of the function Ṽ0(z,s) over z yields

ˆ ∞

0
dz Ṽ 0 (z,s) =

v
2s3/2

(
1√

s+ 2γ
−

√
s+ 4γ

2(s+ 2γ)

)
. (35)

We provide details regarding the calculation of the above integral in appendix B.

4.2. Asymmetric initial bias velocity

We next consider asymmetric initial bias velocities where the particle is initialized in either+
or − state.

Case 1: Particle initialized in + state:
We consider asymmetric initial conditions of the form

P+ (x,0) = δ (x) , P− (x,0) = 0. (36)

Here, the particle starts from + velocity state at time t= 0. Integrating equation (20) over x
yields

−1+
(s+ γ)

λ
(A+ +B+)−

γ

λ
(A− +B−) = 0,

(s+ γ)

λ
(A− +B−)−

γ

λ
(A+ +B+) = 0. (37)

Solving equations (22), (25) and (37) yields the expressions for coefficients as

A+ =
s+ γ+ vλ

2v2λ
, A− =

γ

2v2λ
,

B+ =
s+ γ− vλ

2v2λ
, B− =

γ

2v2λ
. (38)

11
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Using the above expressions and the form of ansatz provided in equation (21), we obtain

P̃(x,s) = P̃+ (x,s)+ P̃− (x,s) =
e−|x|λ

2s

(
λ+ sgn(x)

s
v

)
, (39)

where the expression for λ is provided in equation (23) and sgn is the sign function.
Case 2: Particle initialized in − state:
We consider asymmetric initial conditions of the form

P− (x,0) = δ (x) , P+ (x,0) = 0. (40)

Here, the particle starts from − velocity state at time t= 0. Integrating equation (20) over x
yields

(s+ γ)

λ
(A+ +B+)−

γ

λ
(A− +B−) = 0,

−1+
(s+ γ)

λ
(A− +B−)−

γ

λ
(A+ +B+) = 0. (41)

Solving equations (22), (25) and (41) yields the expressions for coefficients as

A+ =
γ

2v2λ
, A− =

s+ γ− vλ
2v2λ

,

B+ =
γ

2v2λ
, B− =

s+ γ+ vλ
2v2λ

. (42)

Using the above expressions, we directly obtain

P̃(x,s) = P̃+ (x,s)+ P̃− (x,s) =
e−|x|λ

2s

(
λ− sgn(x)

s
v

)
, (43)

where the expression for λ is provided in equation (23).
We define the Green’s functionsG±(x,xi, t), which represent the probability density of find-

ing an RTP at position x at time t, given that it started from position xi at time t= 0, in a fixed
velocity state±. The superscript ‘± ′ indicates the asymmetric scenariowhere the particle starts
from either the + or − state at time t= 0 with a probability 1. Since the evolution equations
are invariant under translations, equations (23), (39) and (43) directly yield

G̃± (x,−z,s) =
e−

|x+z|
√

s(s+2γ)
v

(√
s(s+ 2γ)± s sgn(x+ z)

)

2vs
, z=−xi. (44)

We next define the integral of the Green’s function G±(x,−z, t) over the half-infinite line
x" 0 as

U± (z, t) =
ˆ ∞

0
dx G± (x,−z, t) . (45)

The quantityU±(z, t) corresponds to the probability that a particle starting from the location−z
in the velocity state± is found towards the right side of the origin at time t. Using equation (44)
and the definition provided in equation (45), we obtain the exact expression for the Laplace
transform of U±(z, t) as

Ũ± (z,s) =
e−

z
√

s(s+2γ)
v

2s

(
1± s√

s(s+ 2γ)

)
. (46)

12
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We integrate the function Ũ±(z,s) over z to yield

ˆ ∞

0
dz Ũ± (z,s) =

v
(√

s(s+ 2γ)± s
)

2s2 (s+ 2γ)
. (47)

We next define

Ṽ± (z,s) = L
[
U± (z, t)

2
]
, (48)

as the Laplace transform of the square of the function U±(z, t). After performing some algeb-
raic calculations (details are presented in appendix B), it can be shown that

ˆ ∞

0
dz Ṽ± (z,s) =

v
s(s+ 2γ)



±1
4
+

1
2

√
s+ 2γ
s

− γ√
s(s+ 4γ)

±
K
(
− 8γ(s+2γ)

s2

)

2π



 . (49)

Another useful quantity that enters the computations of current fluctuations is the Laplace
transform of the product of the functions U+(z, t) and U−(z, t). We denote

Ṽ cross (z,s) = L
[
U+ (z, t)U− (z, t)

]
, (50)

as the Laplace transform of the product of the functionsU+(z, t) andU−(z, t). As the symmetric
Green’s functionG0(x,xi, t) is the average of the asymmetric Green’s functionsG+(x,xi, t) and
G−(x,xi, t), we have

G0 (x,xi, t) =
(
G+ (x,xi, t)+G− (x,xi, t)

)
/2, (51)

and consequently

U0 (z, t) =
(
U+ (z, t)+U− (z, t)

)
/2. (52)

Using equations (34), (48), and (52) we obtain

Ṽ cross (z,s) = 2Ṽ0 (z,s)− 1
2

(
Ṽ+ (z,s)+ Ṽ− (z,s)

)
. (53)

After performing the integration over z and plugging in the expressions provided in
equations (35) and (49), we obtain

ˆ ∞

0
dz Ṽ cross (z,s) =

v
√
s(s+ 2γ)3/2



1
2
+

γ

s
+

γ
√

s(s+2γ)
s+4γ

s3/2
−
√
s(s+ 2γ)(s+ 4γ)

2s3/2



 . (54)

5. Current fluctuations for different initial conditions

In this section, we analytically compute the variance of Q for different initial conditions
involving the density and magnetization fields. Let {xi} denote the positions and {mi } denote
the velocities or bias states of particles at time t= 0. Each position xi is drawn from a uniform
distribution between −L and 0. Here, i ∈ [1,N] denotes the particle index with xi < 0.

We follow similar steps introduced in [40, 41] to compute the current fluctuations for dif-
ferent initial conditions. Let Ii(t) be an indicator function defined as

Ii (t) =
{
1, if the ithparticle is towards the right side of the origin at time t,
0, otherwise.

(55)

13



J. Phys. A: Math. Theor. 57 (2024) 285002 S Jose et al

The total number of particles N+ to the right side of the origin at time t is thus given as

N+ =
N∑

i=1

Ii (t) . (56)

As mentioned before, the number of particles that cross the origin up to time t is equal to the
number of the particles on the right side of the origin at time t. For a fixed initial realization of
the positions {xi} and the bias states {mi}, the distribution of Q is given as

P(Q, t,{xi} ,{mi}) = Prob.
(
N+ = Q

)
=

〈
δ

[
Q−

N∑

i=1

Ii (t)
]〉

{xi},{mi}

. (57)

Here, the angular bracket 〈· · ·〉{xi},{mi} denotes an average over the history, but with fixed initial
positions {xi} and bias states {mi}.

We next turn to the computation of the generating function of Q. Multiplying equation (57)
with e−pQ and summing over Q yields

∞∑

Q=0

e−pQP(Q, t,{xi} ,{mi}) = 〈e−pQ〉{xi},{mi} =

〈
exp

[
−p

N∑

i=1

Ii (t)
]〉

{xi},{mi}

. (58)

Since we focus on a non-interacting process, the motion of each particle can be considered
independently. We have the identity e−pIi = 1− (1− e−p)Ii because the indicator variable Ii
can only take values 0 or 1. Inserting this identity in equation (58) and considering the non-
interacting nature of particle motion yield

〈e−pQ〉{xi},{mi} =
N∏

i=1

[
1−

(
1− e−p)〈Ii (t)〉{xi},{mi}

]
. (59)

The average 〈Ii(t)〉{xi},{mi} is the probability that the ith particle starting from the location xi
in the bias statemi is present on the right side of the origin at time t. This quantity is connected
to the Green’s function Gmi(x,xi, t) as

〈Ii (t)〉{xi},{mi} =

ˆ ∞

0
dx Gmi (x,xi, t) = Umi (−xi, t) , xi < 0. (60)

After inserting equation (60) into equation (59), we obtain

〈e−pQ〉{xi},{mi} =
N∏

i=1

[
1−

(
1− e−p)Umi (−xi, t)

]
, xi < 0. (61)

In the following subsections, we consider the effect of the averages over initial positions and
velocities separately. By expanding the generating function in p for each of the four cases, we
demonstrate below that the mean ofQ remains the same across all initial conditions. However,
the variance displays distinct behaviors depending on the initial conditions.

5.1. Case 1: Annealed density and annealed magnetization initial conditions

We first consider an initial condition where the initial positions and bias states of particles are
allowed to fluctuate. The flux distribution for this case is denoted as Pa,a(Q, t). The moment-
generating function for this distribution is given in equation (2). The position of each particle is
distributed uniformly in the box [−L,0]. While we initially consider a system of finite size, we

14
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eventually take the limit L→∞, N→∞ with N/L→ ρ fixed in our analytical calculations.
After averaging over the initial positions in equation (61), we obtain

〈e−pQ〉{xi},{mi} =
N∏

i=1

[
1−

(
1− e−p)Umi (−xi, t)

]

=
N∏

i=1

[
1−

(
1− e−p)

ˆ 0

−L

dxi
L

Umi (−xi, t)
]

=

[
1− 1

L

(
1− e−p)

ˆ L

0
dz Umz (z, t)

]N
, z=−xi. (62)

In this context, mz represents the bias state of the particle located at xi =−z at time t= 0.
Subsequently, after averaging over the initial bias states in the above equation, we obtain

︷ ︸︸ ︷
〈e−pQ〉{xi},{mi} =

[
1− 1

L

(
1− e−p)

ˆ L

0
dz
(
f+U+ (z, t)+ f−U− (z, t)

)]N
. (63)

In the limit as N and L tend to infinity while keeping the ratio ρ= N/L fixed, we obtain
∞∑

Q=0

e−pQPa,a (Q, t) =
︷ ︸︸ ︷
〈e−pQ〉{xi},{mi} → exp

[
−µ(t)

(
1− e−p)] , (64)

where

µ(t) = ρ

ˆ ∞

0
dz
[
f+U+ (z, t)+ f−U− (z, t)

]
. (65)

This corresponds precisely to the moment-generating function of a Poisson distribution.
Consequently, Pa,a(Q= N, t) always follows a Poisson distribution with

Pa,a (Q= N, t) = e−µ(t)µ(t)
N

N!
, N = 0,1,2, · · · . (66)

The expressions for the mean and variance are thus given as

〈Q〉a,a = µ(t) ,

σ2
a,a = 〈Q2〉a,a−〈Q〉2a,a = µ(t) , (67)

where µ(t) is defined in equation (65). The mean and the variance are the same for annealed
density and annealed magnetization initial conditions which has a particularly simple form
in Laplace space. Using the expression in equation (47) to compute the Laplace transform of
equation (65), we obtain

µ̃(s) = ρ



f+
v
(√

s(s+ 2γ)+ s
)

2s2 (s+ 2γ)
+ f−

v
(√

s(s+ 2γ)− s
)

2s2 (s+ 2γ)



 . (68)

This expression can be inverted exactly yielding the expression for the mean and variance as
in equation (6).

5.2. Case 2: Annealed density and quenched magnetization initial conditions

We next consider an initial condition where the initial positions of the particles are allowed
to fluctuate, but the bias states are fixed. The flux distribution for this case is represented
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as Pa,q(Q, t). The corresponding moment-generating function is given in equation (3).
Substituting equation (62) in equation (3), we obtain

exp

[︷ ︸︸ ︷
ln〈e−pQ〉{xi},{mi}

]
= exp




︷ ︸︸ ︷

N ln
[
1− 1

L

(
1− e−p)

ˆ L

0
dz Umz (z, t)

]



= exp
[
Nf+ ln

[
1− 1

L

(
1− e−p)

ˆ L

0
dz U+ (z, t)

]]

× exp
[
Nf− ln

[
1− 1

L

(
1− e−p

)ˆ L

0
dz U− (z, t)

]]

→ exp
[
−ρ
(
1− e−p)

ˆ ∞

0
dz
[
f+U+ (z, t)+ f−U− (z, t)

]]

= exp
[
−µ(t)

(
1− e−p)] , (69)

which is same as equation (64) and µ(t) is defined in equation (65). Consequently,
Pa,q(Q= N, t) is also a Poisson distribution with

Pa,q (Q= N, t) = e−µ(t)µ(t)
N

N!
, N = 0,1,2, · · · . (70)

In the large system size limit (L→∞, N→∞, N/L→ ρ= fixed), the distribution
Pa,q(Q, t) is equivalent to the distribution Pa,a(Q, t). The distinction between keeping the velo-
cities constant or allowing them to fluctuate does not matter in the annealed density setting, as
the initial positions of particles are randomized. Thus we obtain the expressions for the mean
and variance as

〈Q〉a,q = µ(t) , (71)

σ2
a,q = 〈Q2〉a,q−〈Q〉2a,q = µ(t) , (72)

where the expression for µ(t) is provided in equation (6).

5.3. Case 3: Quenched density and quenched magnetization initial conditions

We next consider an initial condition where the initial positions and bias states of particles
are fixed. The flux distribution for this case is denoted as Pq,q(Q, t). The moment-generating
function for this flux distribution is given as in equation (4). By taking the logarithm of both
sides of equation (61), we obtain

ln
[
〈e−pQ〉{xi},{mi}

]
=

N∑

i=1

ln
[
1−

(
1− e−p)Umi (−xi, t)

]
. (73)

Subsequently, we compute the average over the initial positions. We independently and uni-
formly select each xi from the interval [−L,0] and then take the limit asN→∞, L→∞, while
keeping the ratio ρ= N/L constant. This yields

ln
[
〈e−pQ〉{xi},{mi}

]
=
N
L

ˆ 0

−L
dxi ln

[
1−

(
1− e−p)Umi (−xi, t)

]

→ ρ

ˆ ∞

0
dz ln

[
1−

(
1− e−p)Umz (z, t)

]
, z=−xi. (74)
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Next performing the average over initial bias states, we obtain

︷ ︸︸ ︷
ln
[
〈e−pQ〉{xi},{mi}

]
= ρf+

ˆ ∞

0
dz ln

[
1−

(
1− e−p)U+ (z, t)

]

+ ρf−
ˆ ∞

0
dz ln

[
1−

(
1− e−p)U− (z, t)

]
. (75)

The above expression represents the cumulant-generating function for the distribution
Pq,q(Q, t). To obtain the cumulants, we collect terms that occur at the same powers of p. This
allows us to derive the expressions for the mean and variance, which are given as

〈Q〉q,q = µ(t) ,

σ2
q,q = 〈Q2〉q,q−〈Q〉2q,q

= ρ

ˆ ∞

0
dz
[
f+U+ (z, t)

(
1−U+ (z, t)

)]
+ ρ

ˆ ∞

0
dz
[
f−U− (z, t)

(
1−U− (z, t)

)]
,

(76)

where the expression for µ(t) is provided in equation (6). To compute the variance, we take a
Laplace transform of the expression for variance provided in equation (76) which yields

σ̃2
q,q (s) = ρ

(
f+T̃1 (s)+ f−T̃2 (s)

)
, (77)

where

T̃1 (s) = L
[ˆ ∞

0
dz
[
U+ (z, t)

(
1−U+ (z, t)

)]]
=

ˆ ∞

0
dz
[
Ũ+ (z,s)− Ṽ+ (z,s)

]
, (78)

and

T̃2 (s) = L
[ˆ ∞

0
dz
[
U− (z, t)

(
1−U− (z, t)

)]]
=

ˆ ∞

0
dz
[
Ũ− (z,s)− Ṽ− (z,s)

]
. (79)

The functions Ṽ+(z,s) and Ṽ−(z,s) are defined in equation (48). Substituting the expres-
sions provided in equations (47) and (49) in the above equations, we obtain

T̃1 (s) =
v

4s(s+ 2γ)
+

vγ

s(s+ 2γ)
√
s(s+ 4γ)

−
vK
(
− 8γ(s+2γ)

s2

)

2π s(s+ 2γ)
, (80)

and

T̃2 (s) =− v
4s(s+ 2γ)

+
vγ

s(s+ 2γ)
√
s(s+ 4γ)

+
vK
(
− 8γ(s+2γ)

s2

)

2π s(s+ 2γ)
. (81)

Combining equations (77), (80) and (81), we obtain the expression for the variance in Laplace
space as in equation (8). Performing series expansions, we obtain the following expressions in
the small and large s limits,

σ̃2
q,q (s) −−→s→0

ρv
4
√
γs3/2

,

σ̃2
q,q (s) −−−→s→∞

(
3f+ + f−

) ρvγ
2s3

. (82)

The small and large s limits correspond to the large and small time behaviors respectively.
Upon inversion of the above expressions, we obtain the limiting behaviors listed in table 1.
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In particular, for the symmetric case where f+ = f− = 1/2, the variance assumes a very
simple form in Laplace space. Substituting f+ = f− = 1/2 in equation (8) yields

σ̃2
q,q (s) = ρ

vγ

s3/2 (s+ 2γ)
√
(s+ 4γ)

. (83)

In order to obtain the behavior in time, we perform the inverse Laplace transform of the above
expression. It is convenient to break up the expression as

σ̃2
q,q (s) = f̃(s) .g̃(s) , (84)

with

f̃(s) = ρ
vγ

s3/2
√
s+ 4γ

, (85)

g̃(s) =
1

s+ 2γ
.

Each of these expressions can be inverted individually yielding

f(t) = L−1 [ f̃(s)
]
= ρvγe−2γtt [III0 (2tγ)+ III1 (2tγ)] , (86)

g(t) = L−1 [g̃(s)] = e−2γt.

Using the convolution theorem

L−1 [ f̃(s) g̃(s)
]
=

ˆ t

0
dτ f(τ)g(t− τ) , (87)

we arrive at the following expression for the variance for the quenched case

σ2
q,q (t) = ρvγe−2γt

ˆ t

0
dτ τ [III0 (2τγ)+ III1 (2τγ)] . (88)

Performing this integral, we arrive at the exact expression provided in equation (10).

5.4. Case 4: Quenched density and annealed magnetization initial conditions

Finally, we consider an initial condition where the initial positions of the particles are
fixed, but the bias states are allowed to fluctuate. The flux distribution for this case is
denoted as Pq,a(Q, t). The moment-generating function associated with this process is given
in equation (5). After calculating the average across initial bias states in equation (61), we
arrive at

︷ ︸︸ ︷
〈e−pQ〉{xi},{mi} =

N∏

i=1

[
1−

(
1− e−p)︷ ︸︸ ︷

Umi (−xi, t)
]

=
N∏

i=1

[
1−

(
1− e−p)( f+U+ (−xi, t)+ f−U− (−xi, t)

)]
. (89)

Taking a logarithm of themoment generating function yields the cumulant generating function.
From the above expression, we thus directly compute the cumulant generating function as

ln
︷ ︸︸ ︷
〈e−pQ〉{xi},{mi} =

N
L

ˆ 0

−L
dxi ln

[
1−

(
1− e−p)( f+U+ (−xi, t)+ f−U− (−xi, t)

)]

→ ρ

ˆ ∞

0
dz ln

[
1−

(
1− e−p)( f+U+ (z, t)+ f−U− (z, t)

)]
, z=−xi. (90)
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Collecting the terms that appear in the first and second powers of p, we derive the expressions
for the mean and variance of Q as

〈Q〉q,a = µ(t) ,

σ2
q,a = 〈Q2〉q,a−〈Q〉2q,a

= ρ

ˆ ∞

0
dz
[(
f+U+ (z, t)+ f−U− (z, t)

)(
1−

(
f+U+ (z, t)+ f−U− (z, t)

))]
, (91)

where the expression for µ(t) is provided in equation (6). Since the computation of the variance
in real space is difficult, we turn to the computation of the variance in Laplace space. From
the above expression, we obtain

σ̃2
q,a (s) = ρ

ˆ ∞

0
dz
[
f+Ũ+ (z,s)+ f−Ũ− (z,s)− f+

2
Ṽ+ (z,s)− f−

2
Ṽ− (z,s)

−2f+f−Ṽ cross (z,s)
]
. (92)

The integral of each term in the above expression are provided in equations (47), (49) and (54).
Combining these results, we obtain the exact expression for the variance in Laplace space as
in equation (11). The asymptotic forms of this expression are remarkably simple. These are
given as

σ̃2
q,a (s) −−→s→0

ρv
4
√
γs3/2

,

σ̃2
q,a (s) −−−→s→∞

f+f−
ρv
s2

++
ρvγ
2s3

(
3f+ − f−

)(
f+ − f−

)
. (93)

The inverse Laplace transforms of the above expressions yield the limiting behaviors in time as
listed in table 1. Interestingly, we observe that the short-time behavior of current fluctuations
is determined by the product of the initially present fraction of particles in the positive and
negative states. This sets it apart from other cases where the leading linear behavior of current
fluctuations at short times is solely determined by the fraction of positive particles. Therefore
this specific initial condition induces cross-correlations between positive and negative states,
as also evidenced by the presence of the cross-term Vcross in equation (92).

For the symmetric case where f+ = f− = 1/2, the expression in equation (11) reduces to

σ̃2
q,a (s) = ρ

v
2s3/2

( √
s+ 4γ

2(s+ 2γ)

)
. (94)

We can rewrite this expression as

σ̃2
q,a (s) = ρ

v
2s3/2

1√
(s+ 2γ)

(
1
2

√
(s+ 4γ)√
(s+ 2γ)

)
. (95)

We should compare this with the exact expression for the variance for the annealed case
provided in equation (68) with f+ = f− = 1/2. We, therefore, have the identity

σ̃2
q,a (s)

σ̃2
a,a (s)

=

(
1
2

√
(s+ 4γ)√
(s+ 2γ)

)
. (96)

In the large s limit, this yields a factor of 2, and in the small s limit this yields a factor of
√
2

as also observed in previous studies [40, 41].
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In order to obtain the behavior in time, we perform the inverse Laplace transform of the
expression in equation (94). It is convenient to break up the expression as

σ̃2
q,a (s) = h̃(s) .q̃(s) , (97)

with

h̃(s) = ρ
v

2s3/2

(√
s+ 4γ

)
, (98)

q̃(s) =
1

2(s+ 2γ)
.

Each of these expressions can be inverted individually yielding

h(t) = L−1
[
h̃(s)

]
=

ρv
2
e−2γt [(4γt+ 1)III0 (2tγ)+ 4γtIII1 (2tγ)] , (99)

q(t) = L−1 [q̃(s)] =
1
2
e−2γt.

Using the convolution theorem

L−1
[
h̃(s) q̃(s)

]
=

ˆ t

0
dτ h(τ)q(t− τ) , (100)

we arrive at the following expression for the variance for the quenched case

σ2
q,a (t) =

ρv
4
e−2γt

ˆ t

0
dτ [(4γτ + 1)III0 (2τγ)+ 4γτIII1 (2τγ)] . (101)

Performing this integral, we arrive at the exact expression in equation (12).

6. Conclusion and discussion

In this paper, we have studied the fluctuations (variance) of the integrated current Q across the
origin up to time t in a one-dimensional system of non-interacting run and tumble particles.
Our analysis involved performing annealed and quenched averages over general step initial
conditions for both density and magnetization fields associated with the motion of particles.
Our analytical findings provide valuable insights into the dynamic behavior of the fluctuations
of Q. At large times, we observed that these fluctuations grow as

√
t, which indicates the

effective diffusive nature of the system during these times. The behavior of the fluctuations
at large times is independent of the magnetization initial conditions and depends only on the
density initial conditions. Annealed density conditions display larger fluctuations with a factor
of

√
2 consistent with previous findings in the literature [35, 36, 40, 44].

The situation is significantly different at short times, where the magnetization initial condi-
tions play a crucial role in determining the growth exponent of the fluctuations. When we have
a non-zero fraction f+ of particles in the+ velocity state at time t= 0, the fluctuations display
a quadratic t2 growth for quenched density and quenched magnetization initial conditions. On
the other hand, if we employ annealed initial conditions in either of the fields, the fluctuations
exhibit a linear t growth. Notably, the prefactor for each of these cases strongly depends on the
type of density and magnetization initial conditions used. Interestingly, when f+ = 0, meaning
there are no particles in the + velocity state at time t= 0, the fluctuations exhibit a t2 growth
regardless of the type of initial conditions employed.

Our results highlight how slight variations in initial conditions can result in significant dis-
parities in the behavior of active systems over time. Although the techniques outlined in this
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paper are specific to non-interacting RTPs in one dimension, they can also be extended to sys-
tems with multiple degrees of freedom at the particle level, even in higher spatial dimensions.
One approach to defining a current in higher dimensions involves considering N particles uni-
formly distributed within a specific regionR in space. We define the space outside this region
as S . At any given time t, the current of the system, denoted as Q, represents the number of
particles that have exited regionR up to time t, or equivalently, the number of particles present
in the region S at time t. It is possible to generalize many of our results to such a situation,
which could help in understanding the transport properties of non-interacting particles and
the influence of various initial conditions and geometries. Furthermore, despite the effective
diffusive behavior of the fluctuations at late times, previous studies [40] have shown that the
fingerprints of activity are visible in the full large deviation function in the quenched density
and the annealed magnetization setting. It would therefore be interesting to study the large
deviation function for the case where both the density and magnetization fields are quenched
and analyze how the effects of activity persist in such cases.
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Appendix A. Laplace transform of the square of a function

In this appendix, we show that the knowledge of the Laplace transform of a function U(z, t)
also yields the Laplace transform of the square of the function. Let us define

Ṽ(z,s) = L
[
U(z, t)2

]
, (A.1)

as the Laplace transform of the square of the function U(z, t). The expression for V(z,s) can
be rewritten as

Ṽ(z,s) =
ˆ ∞

0

ˆ ∞

0
dt dt ′ U(z, t)U(z, t ′)e−

s
2 (t+t

′)δ (t− t ′) . (A.2)

Using the integral representation of the Dirac delta function in the above expression, we obtain

Ṽ(z,s) =
1
2π

ˆ ∞

0

ˆ ∞

0

ˆ ∞

−∞
dt dt ′ dk U(z, t)U(z, t ′)e−

s
2 (t+t

′)eik(t−t ′)

=
1
2π

ˆ ∞

−∞
dk
(ˆ ∞

0
dt U(z, t)e−(

s
2−ik)t

)(ˆ ∞

0
dt ′ U(z, t ′)e−(

s
2+ik)t ′

)
. (A.3)
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This is the product of two Laplace transforms, which can be written as

Ṽ(z,s) =
1
2π

ˆ ∞

−∞
dk Ũ

(
z,
s
2
− ik

)
Ũ
(
z,
s
2
+ ik

)
. (A.4)

The above expression is extremely useful as it directly computes the Laplace transform of the
square of a function from the knowledge of the Laplace transform of the function itself.

Appendix B. Details of calculations

In this appendix, we provide details regarding the calculations presented in the main text based
on the identity provided in equation (A.4).

Let us first derive the expression provided in equation (35). Using equations (32) and (A.4),
the explicit expression of Ṽ0(z,s) can be computed as

Ṽ0 (z,s) =
1
2π

ˆ ∞

−∞
dk

exp

(
−

z
√
( s

2−ik)( s
2−ik+2γ)

v −
z
√
( s

2+ik)( s
2+ik+2γ)

v

)

4
(
s
2 − ik

)(
s
2 + ik

) . (B.1)

We next compute the integral of the above function over z. This yields

ˆ ∞

0
dz Ṽ0 (z,s) =

1
2π

ˆ ∞

0
dz
ˆ ∞

−∞
dk

exp

(
−

z
√
( s

2−ik)( s
2−ik+2γ)

v −
z
√
( s

2+ik)( s
2+ik+2γ)

v

)

4
(
s
2 − ik

)(
s
2 + ik

) .

(B.2)

The integral becomes simpler if we first perform the z integral and this yields
ˆ ∞

0
dz Ṽ0 (z,s) =

1
2π

ˆ ∞

−∞
dk

2v

(s2 + 4k2)
(√

(s− 2ik)(s+ 4γ− 2ik)+
√

(s+ 2ik)(s+ 4γ+ 2ik)
)

(B.3)

The integral above can be done in closed form and has a particularly simple answer. Let us
define the function I 0(k) as

I0 (k) =
ˆ

dk
2

(
s2 + 4k2

)(√
(s− 2ik)(s+ 4γ− 2ik)+

√
(s+ 2ik)(s+ 4γ+ 2ik)

) . (B.4)

The indefinite integral I 0(k) can be explicitly computed as

I 0(k) =
1

2s3/2(s+ 2γ)
√

−(2k+ is)

×
[
√

(2k+ is)(s+ 2γ)

(
tanh−1

(√
(2k+ is)(s+ 2γ)√
s(2k+ i(s+ 4γ))

)
− tanh−1

(√
(2k− is)(s+ 2γ)√
s(2k− i(s+ 4γ))

))

+
√

(2k+ is)(s+ 4γ)

(
tanh−1

(√
(2k− is)(s+ 4γ)√
s(2k− i(s+ 4γ))

)
− tanh−1

(√
(2k+ is)(s+ 4γ)√
s(2k+ i(s+ 4γ))

))]
.

(B.5)
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Figure B1. The integral I 0(k) provided in equation (B.5) plotted as a function of k for
fixed s= 1, γ = 1 (solid purple curve). The integral has a discontinuity across the origin.
The limiting forms limk→∞ I 0(k), limk→−∞I 0(k), limk→0+ I

0(k) and limk→0− I
0(k) are

provided in equations (B.7) and (B.8).

The function I 0(k) has the typical behavior provided in figure B1. The definite integral in
equation (B.3) can be computed simply as

ˆ ∞

0
dz Ṽ0 (z,s) =

v
2π

(
lim
k→∞

I 0 (k)− lim
k→0+

I 0 (k)+ lim
k→0−

I 0 (k)− lim
k→−∞

I 0 (k)
)
. (B.6)

We need to extract the asymptotic behaviors of I 0(k). These can be computed as

I 0 (k)−−−−→
k→±∞

∓
π
(√

s+4γ
s+2γ − 1

)

2s3/2
√
s+ 2γ

, (B.7)

and

I 0 (k)−−−−→
k→0±

∓
π
√

s+4γ
s+2γ

4s3/2
√
s+ 2γ

. (B.8)

Combining equations (B.6), (B.7) and (B.8), we obtain the desired result in equation (35).
Let us next derive the expression provided in equation (49). One can use the equations (46)

and (A.4) and proceed exactly like the symmetric case. It is possible to show that

ˆ ∞

0
dz Ṽ± (z,s) =

v
2π

(
lim
k→∞

I± (k)− lim
k→0+

I± (k)+ lim
k→0−

I± (k)− lim
k→−∞

I± (k)
)
, (B.9)

where I±(k) has the limiting behaviors

I+ (k)−−−−→
k→±∞

∓



 2πγ
s3/2 (s+ 2γ)

√
s+ 4γ

−
π + 2K

(
− 8γ(s+2γ)

s2

)

4s(s+ 2γ)



 , (B.10)
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I− (k)−−−−→
k→±∞

∓



 2πγ
s3/2 (s+ 2γ)

√
s+ 4γ

+
π + 2K

(
− 8γ(s+2γ)

s2

)

4s(s+ 2γ)



 , (B.11)

I+ (k)−−−−→
k→0±

∓
π
(

1
2
√
s+2γ + γ

(s+2γ)
√
s+4γ

)

s3/2
, (B.12)

and

I− (k)−−−−→
k→0±

∓
π
(

1
2
√
s+2γ + γ

(s+2γ)
√
s+4γ

)

s3/2
. (B.13)

Combining equations (B.9)–(B.13), we obtain the result provided in equation (49).

ORCID iD

Stephy Jose https://orcid.org/0000-0002-5089-9873

References

[1] Vicsek T, Czirók A, Ben-Jacob E, Cohen I and Shochet O 1995 Novel type of phase transition in a
system of self-driven particles Phys. Rev. Lett. 75 1226

[2] Czirók A, Barabási A-L and Vicsek T 1999 Collective motion of self-propelled particles: kinetic
phase transition in one dimension Phys. Rev. Lett. 82 209

[3] Tailleur J and Cates M E 2008 Statistical mechanics of interacting run-and-tumble bacteria Phys.
Rev. Lett. 100 218103

[4] Lindner B and Nicola EM 2008 Diffusion in different models of active brownian motion Eur. Phys.
J. Spec. Top. 157 43–52

[5] Cavagna A, Cimarelli A, Giardina I, Parisi G, Santagati R, Stefanini F and Viale M 2010 Scale-free
correlations in starling flocks Proc. Natl Acad. Sci. 107 11865–70

[6] Cates M E 2012 Diffusive transport without detailed balance in motile bacteria: does microbiology
need statistical physics? Rep. Prog. Phys. 75 042601

[7] Ramaswamy S 2010 The mechanics and statistics of active matter Annu. Rev. Condens. Matter
Phys. 1 323–45

[8] Romanczuk P and ErdmannU 2010Collectivemotion of active brownian particles in one dimension
Eur. Phys. J. Spec. Top. 187 127–34

[9] Romanczuk P, Bär M, Ebeling W, Lindner B and Schimansky-Geier L 2012 Active brownian
particles-from individual to collective stochastic dynamics Eur. Phys. J. Spec. Top. 202 1–162

[10] Martens K, Angelani L, Di Leonardo R and Bocquet L 2012 Probability distributions for the run-
and-tumble bacterial dynamics: an analogy to the Lorentz model Eur. Phys. J. E 35 1–6

[11] Angelani L, Di Leonardo R and Paoluzzi M 2014 First-passage time of run-and-tumble particles
Eur. Phys. J. E 37 1–6

[12] Evans M R and Majumdar S N 2018 Run and tumble particle under resetting: a renewal approach
J. Phys. A: Math. Theor. 51 475003

[13] Cates M E and Tailleur J 2013 When are active brownian particles and run-and-tumble particles
equivalent? consequences for motility-induced phase separation Europhys. Lett. 101 20010

[14] Kourbane-Houssene M, Erignoux C, Bodineau T and Tailleur J 2018 Exact hydrodynamic descrip-
tion of active lattice gases Phys. Rev. Lett. 120 268003

[15] Merrigan C, Ramola K, Chatterjee R, Segall N, Shokef Y and Chakraborty B 2020 Arrested states
in persistent active matter: Gelation without attraction Phys. Rev. Res. 2 013260

[16] Fan Lee C F 2013 Active particles under confinement: aggregation at the wall and gradient forma-
tion inside a channel New J. Phys. 15 055007

[17] Malakar K, Jemseena V, Kundu A, Vijay Kumar K, Sabhapandit S, Majumdar S N, Redner S and
Dhar A 2018 Steady state, relaxation and first-passage properties of a run-and-tumble particle
in one-dimension J. Stat. Mech. 2018 043215

24

https://orcid.org/0000-0002-5089-9873
https://orcid.org/0000-0002-5089-9873
https://doi.org/10.1103/PhysRevLett.75.1226
https://doi.org/10.1103/PhysRevLett.75.1226
https://doi.org/10.1103/PhysRevLett.82.209
https://doi.org/10.1103/PhysRevLett.82.209
https://doi.org/10.1103/PhysRevLett.100.218103
https://doi.org/10.1103/PhysRevLett.100.218103
https://doi.org/10.1140/epjst/e2008-00629-7
https://doi.org/10.1140/epjst/e2008-00629-7
https://doi.org/10.1073/pnas.1005766107
https://doi.org/10.1073/pnas.1005766107
https://doi.org/10.1088/0034-4885/75/4/042601
https://doi.org/10.1088/0034-4885/75/4/042601
https://doi.org/10.1146/annurev-conmatphys-070909-104101
https://doi.org/10.1146/annurev-conmatphys-070909-104101
https://doi.org/10.1140/epjst/e2010-01277-0
https://doi.org/10.1140/epjst/e2010-01277-0
https://doi.org/10.1140/epjst/e2012-01529-y
https://doi.org/10.1140/epjst/e2012-01529-y
https://doi.org/10.1140/epje/i2012-12084-y
https://doi.org/10.1140/epje/i2012-12084-y
https://doi.org/10.1140/epje/i2014-14059-4
https://doi.org/10.1140/epje/i2014-14059-4
https://doi.org/10.1088/1751-8121/aae74e
https://doi.org/10.1088/1751-8121/aae74e
https://doi.org/10.1209/0295-5075/101/20010
https://doi.org/10.1209/0295-5075/101/20010
https://doi.org/10.1103/PhysRevLett.120.268003
https://doi.org/10.1103/PhysRevLett.120.268003
https://doi.org/10.1103/PhysRevResearch.2.013260
https://doi.org/10.1103/PhysRevResearch.2.013260
https://doi.org/10.1088/1367-2630/15/5/055007
https://doi.org/10.1088/1367-2630/15/5/055007
https://doi.org/10.1088/1742-5468/aab84f
https://doi.org/10.1088/1742-5468/aab84f


J. Phys. A: Math. Theor. 57 (2024) 285002 S Jose et al

[18] Mori F, Le Doussal P, Majumdar S N and Schehr G 2020 universal survival probability for a d-
dimensional run-and-tumble particle Phys. Rev. Lett. 124 090603

[19] Mori F, Le Doussal P, Majumdar S N and Schehr G 2020 universal properties of a run-and-tumble
particle in arbitrary dimension Phys. Rev. E 102 042133

[20] Jose S, Mandal D, Barma M and Ramola K 2022 Active random walks in one and two dimensions
Phys. Rev. E 105 064103

[21] Jose S 2022 First passage statistics of active random walks on one and two dimensional lattices J.
Stat. Mech. 2022 113208

[22] Santra I, Basu U and Sabhapandit S 2020 Run-and-tumble particles in two dimensions: marginal
position distributions Phys. Rev. E 101 062120

[23] Mori F, Le Doussal P, Majumdar S N and Schehr G 2021 Condensation transition in the late-time
position of a run-and-tumble particle Phys. Rev. E 103 062134

[24] Dean D S,Majumdar S N and Schawe H 2021 Position distribution in a generalized run-and-tumble
process Phys. Rev. E 103 012130

[25] Das S, Gompper G and Winkler R G 2018 Confined active brownian particles: theoretical descrip-
tion of propulsion-induced accumulation New J. Phys. 20 015001

[26] Sevilla F J, Arzola A V and Puga Cital E P 2019 Stationary superstatistics distributions of trapped
run-and-tumble particles Phys. Rev. E 99 012145

[27] Caprini L and Marini Bettolo Marconi U 2019 Active chiral particles under confinement: surface
currents and bulk accumulation phenomena Soft Matter 15 2627–37

[28] De Bruyne B, Majumdar S N and Schehr G 2021 Survival probability of a run-and-tumble particle
in the presence of a drift J. Stat. Mech. 2021 043211

[29] Agranov T, Ro S, Kafri Y and Lecomte V 2021 Exact fluctuating hydrodynamics of active lattice
gases-typical fluctuations J. Stat. Mech. 2021 083208

[30] Agranov T, Sunghan R, Kafri Y and Lecomte V 2023 Macroscopic fluctuation theory and current
fluctuations in active lattice gases SciPost Phys. 14 045

[31] Agranov T, Cates M E and Jack R L 2022 Entropy production and its large deviations in an active
lattice gas J. Stat. Mech. 2022 123201

[32] Jose S, Dandekar R and Ramola K 2023 Current fluctuations in an interacting active lattice gas J.
Stat. Mech. 2023 083208

[33] Derrida B, Douçot B and Roche P-E 2004 Current fluctuations in the one-dimensional symmetric
exclusion process with open boundaries J. Stat. Phys. 115 717–48

[34] Derrida B and Gerschenfeld A 2009 Current fluctuations of the one dimensional symmetric simple
exclusion process with step initial condition J. Stat. Phys. 136 1–15

[35] Derrida B and Gerschenfeld A 2009 Current fluctuations in one dimensional diffusive systems with
a step initial density profile J. Stat. Phys. 137 978–1000

[36] Krapivsky P L and Meerson B 2012 Fluctuations of current in nonstationary diffusive lattice gases
Phys. Rev. E 86 031106

[37] Mallick K, Moriya H and Sasamoto T 2022 Exact solution of the macroscopic fluctuation theory
for the symmetric exclusion process Phys. Rev. Lett. 129 040601

[38] Rahul Dandekar P L K and Mallick K 2023 Dynamical fluctuations in the riesz gas Phys. Rev. E
107 044129

[39] Dean D S, Majumdar S N and Schehr G 2023 Effusion of stochastic processes on a line J. Stat.
Mech. 2023 063208

[40] Banerjee T, Majumdar S N, Rosso A and Schehr G 2020 Current fluctuations in noninteracting
run-and-tumble particles in one dimension Phys. Rev. E 101 052101

[41] Jose S, Rosso A and Ramola K 2023 Generalized disorder averages and current fluctuations in run
and tumble particles (https://doi.org/10.1103/PhysRevE.108.L052601)

[42] Chakraborty T and Pradhan P 2023 Time-dependent properties of run-and-tumble particles. II:
current fluctuations (https://doi.org/10.1103/PhysRevE.109.044135)

[43] Basu U, Majumdar S N, Rosso A and Schehr G 2018 Active brownian motion in two dimensions
Phys. Rev. E 98 062121

[44] Banerjee T, Jack R L and Cates M E 2022 Role of initial conditions in 1D diffusive systems: com-
pressibility, hyperuniformity and long-term memory Phys. Rev. E 106 L062101

25

https://doi.org/10.1103/PhysRevLett.124.090603
https://doi.org/10.1103/PhysRevLett.124.090603
https://doi.org/10.1103/PhysRevE.102.042133
https://doi.org/10.1103/PhysRevE.102.042133
https://doi.org/10.1103/PhysRevE.105.064103
https://doi.org/10.1103/PhysRevE.105.064103
https://doi.org/10.1088/1742-5468/ac9bef
https://doi.org/10.1088/1742-5468/ac9bef
https://doi.org/10.1103/PhysRevE.101.062120
https://doi.org/10.1103/PhysRevE.101.062120
https://doi.org/10.1103/PhysRevE.103.062134
https://doi.org/10.1103/PhysRevE.103.062134
https://doi.org/10.1103/PhysRevE.103.012130
https://doi.org/10.1103/PhysRevE.103.012130
https://doi.org/10.1088/1367-2630/aa9d4b
https://doi.org/10.1088/1367-2630/aa9d4b
https://doi.org/10.1103/PhysRevE.99.012145
https://doi.org/10.1103/PhysRevE.99.012145
https://doi.org/10.1039/C8SM02492H
https://doi.org/10.1039/C8SM02492H
https://doi.org/10.1088/1742-5468/abf5d5
https://doi.org/10.1088/1742-5468/abf5d5
https://doi.org/10.1088/1742-5468/ac1406
https://doi.org/10.1088/1742-5468/ac1406
https://doi.org/10.21468/SciPostPhys.14.3.045
https://doi.org/10.21468/SciPostPhys.14.3.045
https://doi.org/10.1088/1742-5468/aca0eb
https://doi.org/10.1088/1742-5468/aca0eb
https://doi.org/10.1088/1742-5468/aceb53
https://doi.org/10.1088/1742-5468/aceb53
https://doi.org/10.1023/B:JOSS.0000022379.95508.b2
https://doi.org/10.1023/B:JOSS.0000022379.95508.b2
https://doi.org/10.1007/s10955-009-9772-7
https://doi.org/10.1007/s10955-009-9772-7
https://doi.org/10.1007/s10955-009-9830-1
https://doi.org/10.1007/s10955-009-9830-1
https://doi.org/10.1103/PhysRevE.86.031106
https://doi.org/10.1103/PhysRevE.86.031106
https://doi.org/10.1103/PhysRevLett.129.040601
https://doi.org/10.1103/PhysRevLett.129.040601
https://doi.org/10.1103/PhysRevE.107.044129
https://doi.org/10.1103/PhysRevE.107.044129
https://doi.org/10.1088/1742-5468/acdac4
https://doi.org/10.1088/1742-5468/acdac4
https://doi.org/10.1103/PhysRevE.101.052101
https://doi.org/10.1103/PhysRevE.101.052101
https://doi.org/10.1103/PhysRevE.108.L052601
https://doi.org/10.1103/PhysRevE.109.044135
https://doi.org/10.1103/PhysRevE.98.062121
https://doi.org/10.1103/PhysRevE.98.062121
https://doi.org/10.1103/PhysRevE.106.L062101
https://doi.org/10.1103/PhysRevE.106.L062101

	Effect of initial conditions on current fluctuations in non-interacting active particles
	1. Introduction
	2. Microscopic model
	2.1. Annealed and quenched averages

	3. Summary of the main results
	4. Single particle propagators
	4.1. Symmetric initial bias velocity
	4.2. Asymmetric initial bias velocity

	5. Current fluctuations for different initial conditions
	5.1. Case 1: Annealed density and annealed magnetization initial conditions
	5.2. Case 2: Annealed density and quenched magnetization initial conditions
	5.3. Case 3: Quenched density and quenched magnetization initial conditions
	5.4. Case 4: Quenched density and annealed magnetization initial conditions

	6. Conclusion and discussion
	Appendix A. Laplace transform of the square of a function
	Appendix B. Details of calculations
	References


