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Synopsis

Introduction

Systems that are at the threshold of instability between order and disorder have been

of continued interest in the field of Statistical Physics. In this thesis we discuss two models:

the spin-S Kitaev model in the limit of large S where the spins become classical 3-vector

(Heisenberg) spins and the hard square lattice gas model. We investigate whether in this

classical limit the Kitaev model diplays order-by-disorder, a phenomenon whereby a sys-

tem that is disordered at strictly zero temperature acquires a fluctuation induced order at

temperatures just above zero. In addition, we analyse properties of a quantum spin-S chain

related to the Kitaev model. We then study the lattice gas of 2 × 2 hard squares on the

square lattice, where there is a vacancy-induced sliding instability that makes the crystalline

order unstable, but a partial order survives in the form of columnar order where only two

of the four possible ordered states mix with each other. We also analyse the nature of the

transition from fluid to columnar order as a function of density in this system.

In the order-by-disorder mechanism, the relative weights of different ground states in

the zero temperature limit of the partition function from finite temperatures differs from

the actual sum over ground states that contribute at zero temperature. In this context

we study the Kitaev model, an exactly soluble two dimensional quantum model in the

classical limit. We find that this model has a manifold of ground states whose dimension

is proportional to the size of the system and all ground states have an equal weight in the

zero temperature limit. In the spin-S quantum Kitaev model Baskaran et. al. [1] argued

that the quantum fluctuations about the ground states induce an ordering in the system

for large S. We investigate whether the thermal fluctuations in the S → ∞ limit of this

model behave in the same way. We find that although the existence of order-by-disorder in

the finite-S quantum model seems plausible, the classical limit case does not behave in the

same fashion. For the classical model, we develop an exact mapping to a height model and

using this we are able to analyse the zero temperature limit without invoking a quadratic

or quartic approximation to include the effects of fluctuations. We study this system at

all temperatures and show that there is no incipient long range order in this system at

temperatures tending to zero. At zero temperature the model is equivalent to a height

v
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model which remains in the rough phase, this leads to a power law decay of the spin-spin

correlation function with distance, with an exponent −2. We also develop exact bounds on

the ground state energy of the quantum model in the large-S spin limit.

In addition, we investigate properties of the spin-1 analogue of the Kitaev model on a

1D chain. We use a mapping to a classical lattice gas model to estimate the ground state

energies and the energy gap of this 1D quantum spin chain.

In the second half of this thesis we study a classical lattice gas model of particles with

nearest and next nearest neighbour exclusion (hard squares) on the square lattice. This

problem has been the subject of several studies in the past [2] [3], however many aspects of it

are still not well understood. The high density phase of this model displays columnar order,

where the sublattice ordered state is unstable at large densities and particles preferrentially

align themselves along columns but do not have sublattice order. The columnar ordered

state is difficult to treat theoretically in detail, and there have been few studies so far. For

example, it has not been possible to develop a Peierls-type argument to show the stability

of this phase. In this context we developed an exact series expansion about a state with

perfect columnar order but no sublattice order. This expansion is a singular perturbation

expansion, and contains fractional powers of fugacity. To understand the nature of the

ordering in this system, we develop a novel Monte Carlo algorithm that avoids jamming

problems effectively and can efficiently simulate the system near close-packed densities. We

argue that the critical properties of this model corresponds to one point on the parameter

space of a more general Ashkin-Teller model which possesses a line of critical points with

continuously variable critical exponents. We locate the position of the hard squares critical

point on this line by determining the sign of the coupling between the coarse grained Ising

energy densities in the Ashkin-Teller description by simulations on lattices of sizes upto

1600×1600. We also obtain estimates for the critical exponents and other relevant quantities

of this system.

The Kitaev Model with Classical Spins

There has been a lot of interest in the Kitaev model in recent years as it is the first

genuinely interacting two dimensional quantum spin model which is equivalent to a 3D

classical statistical mechanical model. The quantum mechanical spin-1/2 Kitaev model can

be exactly solved in 2D. The Hamiltonian can be diagonalized exactly in terms of Majorana

fermions [4]. The model exhibits a phase transition from a phase with finite correlation

length to one with long-range correlations as the ratios of coupling constants in different

directions are varied [5, 6]. It has topological excitations, and their robustness with respect

to noise makes it an interesting candidate for quantum computing [7]. Kitaev’s pioneering

work has led to a large amount of further research. The spectrum of the different phases

of this model have been extensively studied [8]. Proposals for experimentally realising this
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model using polar molecules and ultracold atoms trapped in optical lattices have recently

been made [9, 10].

In a recent paper, Baskaran et al. studied a generalization of this model with spin-S

at each site and identified mutually commuting plaquette variables taking values ±1 that

are constants of motion for arbitrary S [1]. For large S, the spins can be approximated as

classical O(3) vector spins. Baskaran et al. showed that the classical ground state of the

model has a large degeneracy. They argued that for large S, the quantum fluctuations of

spins have lower energy for a subset of the classical ground states. These states get more

weight in the quantum mechanical ground state, and the quantum model shows long-range

order in the ground state, an example of quantum order-by-disorder. It seems interesting

to investigate whether the classical limit also shows order-by-disorder.

There is a fair amount of earlier work on order-by-disorder in classical systems [11, 12].

It has been studied a lot in the context of magnetic systems with frustration, such as spin

systems with nearest neighbour antiferromagnetic interactions on different lattices[13, 14].

The prototypical example is the system of Heisenberg spins on a kagome lattice, with

nearest neighbour antiferromagnetic couplings. The expectation of order-by-disorder in

this classical system comes from theoretical and Monte Carlo studies, that suggest that at

low temperatures, the spins lie on a single plane as T → 0 [15],[16]. By mapping this system

to a height model at its critical point it can be shown that a single long-range ordered state

(the
√
3×

√
3 state) is selected even amongst the coplanar ordered states [17],[18].
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Figure 1: (Left) A hexagonal lattice depicting the labelling scheme for sites, and the x, y
and z bond classes. Sites in the A- and B- sublattices are denoted by filled and open circles
respectively. (Right) Figure depicting the definition of the ǫ and h variables on the bonds
and plaquettes around an A-site s.

We consider classical Heisenberg spins on a hexagonal lattice with Kitaev couplings. The

bonds of the lattice are divided into three classes, X,Y and Z, according to their orientation

(Fig. 2.1). At each lattice site i there is a three dimensional vector spin ~Si = (Si
x, Si

y, Si
z)

of unit magnitude. Thus Si
x2 + Si

y2 + Si
z2 = 1 at every site. The Hamiltonian of the

system is given by

H = −J
∑

a∈A
[Sx

aS
x
a+ex + Sy

aS
y
a+ey + Sz

aS
z
a+ez ] (1)
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This Hamiltonian has spatially anisotropic interactions with spins interacting via their

x, y and z components in the ex, ey and ez directions respectively. We begin by character-

ising the ground state manifold of this model. We find that for a lattice of 2N sites with

periodic boundary conditions, the ground states form an (N + 1)-dimensional manifold.

Due to the bipartite nature of the lattice we can integrate out the spins on one of

the sublattices in the partition function, yielding an effective Hamiltonian in terms of A-

sublattice spins. For a given configuration of spins {Sα}, to each bond (l,m;α) of the

lattice, we assign a bond-energy vector ǫ(l,m;α)~eα, with ǫ(l,m;α) given by

ǫ(l,m;α) =
(

Sα
a(l,m)

)2
− 1

3
. (2)

Clearly, the divergence of the field ǫ at any site on the A-sublattice is 0. We find that

the ground state ensemble is characterised by the constraint that the sum of bond energies

at every B-site is also equal to 0. We thus have a divergence-free vector field on the bonds

of the lattice at zero temperature. This allows us to map the zero temperature partition

function of this model onto that of a height model with continuously variable heights. These

height variables {f(hi)} are associated with the hexagonal plaquettes of the lattice, where

the hi denotes a plaquette of the lattice. In the rough phase of this height model the

correlations of the height field vary logarithmically. This leads to a power law decay of the

spin-spin correlation function.

At finite temperatures, the ground state constraint is violated at every B-site. If we

think of the {ǫ} field as an electric field in two dimensions which at T = 0 satisfies the

divergence-free constraint ∇.ǫ = 0, this is in effect equivalent to introducing finite charges

at every B-site. We define a continuously variable charge at every B-site as follows

Qb(l,m) = −
∑

α

ǫ(b(l,m) − eα;α). (3)

We thus need additional variables to characterise the non-ground state configurations

of the system. This can be achieved by introducing an electrostatic scalar potential φ(s)

at every site, where s denotes a site of the lattice. Given a configuration of spins on the

A-sublattice, the f and φ configurations can be generated using the corresponding lattice

greens functions on the hexagonal lattice. We now take the zero temperature limit of this

partition function using the height variables f and the charges Q. The partition function

takes the form

Z[β] = (Const.)





∏

l,m

∫

dfl,m

∫

dQb(l,m)





[

∏

bonds

(

1

3
+ ǫ(bond)

)−1/2
]

× exp





∑

l,m

F
(

β
√

1 +Qb(l,m)

)



 , (4)



ix

where, Πbonds denotes the product over all bonds (l,m, α) of the lattice and

F (x) = log

[

sinh(x)

x

]

. (5)

The linear term in Q in the above exponential vanishes due to the overall charge neutral-

ity of the system. Hence the leading behaviour of the integral over the range of Q at large

β can be determined exactly using a saddle point computation. While the range of the Qs

integrals depend on {fl,m}, for large β, when the width of the peak is much smaller than the

range of integration, and the peak is away from the end points of the range, each integra-

tion to leading order is independent of the configuration {fl,m} and gives a factor Cβ−1/2

where C is a constant. Thus for all fixed {f(l,m)}, the integration over fluctuations in {Q}
produces the same temperature-dependent weight factor, in the limit of large β. Thus we

see that none of the ground states acquire a larger weight in the zero temperature limit of

the partition function and this model does not exhibit thermal order-by-disorder.

The zero temperature height model has the symmetry that changing all heights by the

same constant leaves the Hamiltonian unchanged. Though the interaction is a strongly

non-linear function of difference of the heights, one expects that in the high-temperature

phase of the height model, the long-wavelength hydrodynamical modes in the system will

still be sound-like, with effective Hamiltonian |∇f |2, which gives rise to the spectrum given

by ω2 ∝ k2. Therefore for two sites s1 and s2 separated by a large distance R we have

〈(fs1 − fs2)
2〉 ∼ logR which implies that 〈(Sα

s1)
2(Sβ

s2)
2〉c ∼ 1

R2
. (6)

As the temperature is increased, the height fluctuations are still logarithmic, but the

spin correlators decay exponentially. At infinite temperature we are able to evaluate this

quantity exactly, we have

〈(fR − f0)
2〉β=0 =

2
√
3

45π
log[R] +O(1) for large R. (7)

We perform Monte Carlo simulations on this model to verify our predictions. We sim-

ulate the effective Hamiltonian obtained by integrating out spins on the B-sublattice. For

the finite temperature simulations, two kinds of moves were employed—single spin moves

and 6-spin cluster moves (that efficiently thermalized the system at low temperatures). We

looked for possible signatures of ordering in the system as the temperature was decreased

by measuring various correlation functions and did not find any long range ordering in the

system. The gauge symmetry of the model has a consequence that all correlation functions

of the type 〈Sα
s1S

β
s2〉 with sites s1 and s2 not nearest neighbours are zero [19]. The simplest

nontrivial correlation functions, for non-neighbour s1 and s2 are of the type 〈(Sα
s1)

2(Sβ
s2)

2〉.
We computed correlations of the (Sα)2, f and φ fields at various temperatures. The φ field

was generated from the spin configuration by solving the discrete Poisson equation on the

triangular lattice.
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In addition, we also studied the quantum spin-S version of this model with the Hamil-

tonian

H = − J

S(S + 1)

∑

a∈A
[Sx

aS
x
a+ex + Sy

aS
y
a+ey + Sz

aS
z
a+ez ] (8)

We derived an exact lower bound for the ground state energy of this model. We have

〈ψ|H|ψ〉 ≥ −JN
√

S

S + 1
. (9)

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

 1  10

C
(r

)

r

Figure 2: (Left): Plot of the zero temperature correlation function C(~r) = 〈Sx
A
2(0)Sx

A
2(~r)〉−

1
9 versus distance, r along the êx direction. These correlations follow a power law behaviour
with exponent ≃ −2. The line has a slope of −2. (Right): Graph showing the finite
temperature correlation function 〈(f(0) − f(r))2〉 versus distance, r for various values of
β = T−1. The correlations are logarithmic at all temperatures, with the coefficient of log(r)

varying between (2.45 ± 0.05) × 10−2 ≃ 2
√
3

45π at β = 0 and (4.12 ± 0.05) × 10−2 at β = ∞.

Spin-1 Kitaev Chain

Continuing with our study of the spin-S Kitaev model, we analyse the 1D spin chain

with the following Hamiltonian

H =
∑

n

(

J2n−1S
x
2n−1S

x
2n + J2nS

y
2nS

y
2n+1

)

(10)

This is the Hamiltonian of the Kitaev model with the coupling in the ez direction set

to zero. The cases where S is integer and half-odd-integer are qualitatively different. We

notice that there is a Z2 valued conserved quantityWn = Σy
nΣx

n+1 for each bond (n, n+1) of

the system, where Σa
n = eiπS

a
n . The Hilbert space thus breaks up into sectors corresponding

to different eigenvalues {Wn} with n = 1 to N , where N is the number of sites on the chain.

For integer S, the Hilbert space can be decomposed into 2N sectors, of unequal sizes.

We use the standard transfer matrix technique to count the number of states in each

sector. In the limit when all the Wn are either +1 or −1, the dimension of this subspace
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can be computed explicitly. The number of states in the sector with all Wn = +1 for the

case S = 1 grows as γN , where γ = (1+
√
5)/2 is the golden ratio. For other sectors, given

a {Wi}, the dimension can be expressed as a trace of explicit products of 2 × 2 transfer

matrices.

We next study the system with S = 1. We use exact diagonalizations of small systems

and find that the ground state of this spin chain lies in the sector with all Wn = +1

with an energy per site Eg = −0.60356058, and that the energy gap remains finite in the

thermodynamic limit. In the ground state sector, the system can be mapped onto a spin-1/2

model and the excitations within the ground state sector about the fully polarised state in

the z direction can be thought of as a dimer evaporation-deposition process. We develop

variational wave functions to study the lowest energy states in the ground state and other

sectors. We postulate a variational wavefunction of the type

|ψ〉 =
∑

C

√

Prob(C) |C〉 (11)

where Prob(C) is chosen as the probability of the lattice gas configuration C in some

classical equilibrium ensemble corresponding to a suitably chosen lattice gas Hamilto-

nian.The simplest choice of the lattice-gas Hamiltonian is that of a classical lattice gas

with nearest-neighbor exclusion, and a chemical potential µ. Using this trial Hamiltonian

state already gives a rather good estimate of the ground state energy of −0.60057. Ex-

tending the range of interaction to further neighbours and optimizing using the parameters

yields better estimates of the ground state energy. An extension to the next nearest neigh-

bour yields an estimate of −0.60333 which agrees with the exact value obtained from exact

diagonalization of finite size systems with an error < 0.1%.

We then consider the sector with oneW negative to obtain an estimate of the gap in the

excitation spectrum. A single W = −1 can be created on a bond by polarizing one of the

bond spins in the x or y directions. We therefore use a trial wave function of the following

type to study the ground state in the sector with one W negative and all others positive

|ψ〉 = 1√
2

[

∑

U

√

Prob(U)|xU〉 −
∑

V

√

Prob(V )|V y〉
]

(12)

Here U and V are strings of length N − 1, consistent with W = +1 at each bond,

The x and y in the wavefunction above represent spins polarised in the x and y direc-

tions respectively. Using this trial state with position dependent weights for dimer evap-

oration/deposition and the probabilities derived from nearest neighbour lattice gas exclu-

sion configurations, we are able to estimate the gap to the first excited state of this sys-

tem. The energy gap converges quickly, and with a ten parameter wavefunction we obtain

∆ ≃ 0.15556.
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The Hard Square Lattice Gas

In the second half of the thesis, we study the system of particles with nearest and

next-nearest-neighbour exclusion on the square lattice (hard squares). Equivalently, each

particle is a 2 × 2 square that occupies 4 elementary plaquettes of the square lattice (Fig.

4.1). Transfer matrix techniques indicate the existence of a phase transition in this model

[2], [3], [20], [21]. Variational, density functional methods and virial expansions have also

been used to study this problem [3], [22], [23]. These studies indicate that at high densities

the sublattice ordered state is unstable but a “columnar ordered” state wherein one of the

even or odd rows or columns is preferentially occupied over the others survives at high

density (Fig. 4.1). Recent Monte Carlo evidence suggests that the transition from fluid

to columnar order in this system is of second order, with exponents very close to the two

dimensional Ising model [24], [25], [26].

Figure 3: A typical configuration of hard squares on the lattice at (Left) low fugacity and
(Right) high fugacity. The light green squares correspond to particles on row A, whereas
the dark green squares correspond to particles on row B. At high densities, the system is in
a columnar ordered phase.

The instability of the sublattice state at high densities is caused by the fact that a

single square vacancy can break up into half-vacancies and be moved arbitrarily far apart

in the horizontal or vertical direction. This is illustrated in Fig. 4 where, starting from a

sublattice 1 ordered state we introduce a finite density of vacancies. The dark blue rectangles

represent half-vacancies. The empty region is plaquettes covered by squares on sublattice 1,

the horizontal rods are made of squares on sublattice 2 and the vertical rods are composed

of squares on sublattice 3. The breaking of vacancies into half vacancies causes the standard

high density expansion in powers of 1/z to fail. It was realised quite early that the leading

order correction to the high activity expansion is of order 1/
√
z [27], where z is the fugacity

associated with each particle, but a systematic expansion has not been developed so far.

We note that there is as yet no rigorous proof of the existence of this type of order in this

system. In this context it is worthwhile to develop exact series expansions in this phase and

study their convergence.

We first develop a systematic expansion of the free energy in inverse powers of fugacity
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in the columnar ordered state. This is a singular perturbation series in powers of 1/
√
z.

We introduce explicit symmetry breaking by ascribing different fugacities zA and zB to the

particles on even and odd rows. The point zB = 0 corresponds to a fully columnar ordered

configuration. The perturbation expansion about the ordered state in powers of zB is a

standard Mayer-like series [28].
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Figure 4: (i) We define four sublattices 1 through 4 on the square lattice. Rows containing
the sites of sublattice 1 and 2 (3 and 4) will be called A (B) rows. Similarly, columns with
sublattice sites 1 and 4 (2 and 3) will be called C (D) columns. (ii) A configuration near
full packing consisting only of horizontal and vertical rod defects. (iii) Objects contributing
to the expansion at order 1/z. These are vertical rods with all the defects aligned along the
Y direction.

We write the partition function of the system Ω(zA, zB) as a formal expansion in terms

of the fugacities of the particles on the B rows (defects) and the corresponding partition

functions of the A rows. The partition function expansion about the columnar ordered state

Ω(zA, 0) is

Ω(zA, zB)

Ω(zA, 0)
= 1 + zBW1(zA) +

zB
2

2!
W2(zA) + ... (13)

Wn corresponds to the term arising from placing n B-particles on the lattice. Now,

taking the logarithm of Eqn. 4.10 we arrive at the cumulant expansion

1

NB
log

Ω(zA, zB)

Ω(zA, 0)
= zBκ1(zA) +

zB
2

2!
κ2(zA) + ... (14)

where NB = N/2 = L2/2 is the total number of B-sites in the system and κn denotes

the connected part of the n’th term in the expansion. When there are no B-particles in

the lattice, the partition function of the system breaks up into a product of 1D partition

functions of particles on the A-rows (particles on different A-rows do not interact). These

A-particles thus behave as a 1D lattice gas with nearest neighbour exclusion. In general,

any term involving an arbitrary number of B-particles can be decomposed into a product

over 1D partition functions and hence can be evaluated using a product over two-particle

correlators. We are thus able to exactly compute the first few terms in the cumulant

expansion in defect fugacities. The contribution from a single B defect in the expansion



xiv SYNOPSIS

is given by the first term of the cumulant expansion κ1(zA)zB , with κ1(zA) =
(

ρ1d(zA)
zA

)2
,

where ρ1d(zA) is the density of particles in an infinite periodic chain of particles with nearest

neighbour exclusion. When we set zA = zB = z, we obtain an expansion in inverse powers

of z which contains fractional powers with the first term being of order 1/z and the next

being 1/z3/2. Similarly the two particle term also yields an expansion in terms of 1/
√
z

with the first correction of order 1/z and so on. In general, terms at each order in inverse

powers of z get contributions from an arbitrarily large number of defects.

For the case zA = zB = z, we find that the terms of the series can be regrouped and the

resulting series can be thought of as a Mayer-like expansion of extended objects (vertical

rods), but of arbitrary size. The order 1/z term gets contributions only from defects aligned

along the vertical direction (this excludes the least volume of A-particles). This is in effect

the same object as a pair of half-vacancies separated by a vertical “rod” of B-sublattice

particles. The term of order 1/z
n+1

2 involves at most n such objects and get contributions

from all possible sizes of these objects.

We evaluate explicitly the contribution of terms corresponding to two rods which yields

the exact high-activity expansion for the free energy per site f(z) and the density ρ(z) of

the hard square lattice gas upto order 1/z3/2. We have

− f(z) =
1

4
log z +

1

4z1/2
+

1

4z
+

(

3 log
(

9
8

)

+ 11
96

)

z3/2
+O

(

1

z2

)

and

ρ(z) =
1

4
− 1

8z1/2
− 1

4z
−
(

9
2 log

(

9
8

)

+ 11
64

)

z3/2
+O

(

1

z2

)

(15)

We next investigate the nature of the phase transition from fluid to columnar order in this

system. The correlations in the columnar ordered state are hard to describe theoretically

using mean field like descriptions. All the well-known approximation schemes like the mean

field theory and cluster variational approximations underestimate the value of the critical

point zc by an order of magnitude. Monte Carlo simulations are thus an important tool for

analysing the nature of this transition.

At high densities the system can order in any one of four columnar ordered states. The

four columnar ordered states are related to each other by a π
2 rotational transformation

about the centre of a plaquette. An anticlockwise rotation of an A-row ordered phase about

a plaquette centre transforms the phase into a C-column ordered phase and so on. Hence

these states belong to the symmetry group Z4 and the transition is expected to lie in the

universality class of a Z4 transition. We define the following complex order parameter

OZ4 = 4
√
2[(ρ1 − ρ3) + i(ρ2 − ρ4)] (16)

where ρi is the density of particles in the ith sublattice. The phase of the complex order
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parameter OZ4 takes the values π/4,−3π/4,−π/4 and 3π/4 in the A, B, C, and D phases

respectively.
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Figure 5: (Left) We coarse grain the system using a grid at an angle π
4 with respect to the

lattice. This ensures that the surface tensions between any two phases is symmetric. We
assign a single phase label to each resulting diamond. (Right) The phase diagram of the
Ashkin-Teller model depicting the critical lines and the position of the phase transition of
the Hard Square lattice gas.

We now coarse grain the system using a grid at an angle π
4 with respect to the lattice

axes. We assign a single phase label to each resulting diamond corresponding to the majority

rule (Fig. 4.8). In this coarse grained model, the phases have a finite surface tension with

respect to each other. From symmetry we see that there are two types of surface tensions

in this high density phase. These two surface tensions are σAB = σCD, where σAB denotes

the surface tension between the A-phase and the B-phase, and σAC = σCB = σBD = σDA.

We can relate this 4 state model to the Ashkin-Teller model with a Hamiltonian that has

Z4 symmetry. The Ashkin-Teller model is best described as a model of two coupled Ising

models with a varying strength of interaction with the Hamiltonian

H = −





∑

〈i,j〉
J2σiσj + J2τiτj + J4σiσjτiτj



 (17)

This model has a line of critical points with continuously variable critical exponents,

depending on the strength of the interactions. The surface tensions between the phases

in the hard square gas correspond to the surface energies K and 2J − K of the above

Ashkin-Teller model, where J = βJ2 and K = βJ4. Thus a likely universality class for the

transition of this system is Ashkin-Teller criticality.

In the simulations of high density states of exclusion gases, one often encounters the

problem of “jamming”, where the number of available local moves for a system become very

small. Since the transition to the columnar ordered phase in this system occurs at densities

very close to full packing, it becomes necessary to use efficient non-jamming algorithms. We

devised the following novel Monte Carlo algorithm to simulate the hard square lattice gas.
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We evaporate all particles that lie on an arbitrarily chosen 1D line (horizontal or vertical) of

the system. The resulting empty line of particles breaks up into regions that are occupiable

by particles and regions forbidden for occupation, depending on the configuration of particles

on the lines immediately above and below. We then refill these smaller occupiable line

segments using a configuration selected from the configuration space of a system of particles

with nearest neighbour exclusion on a 1D chain of the corresponding length. Clearly, this

update scheme obeys detailed balance. This algorithm thus updates an entire row or column

at once, and is able to efficiently sample the phase space even at very high densities. Using

this algorithm, we are able to obtain reliable estimates of thermodynamic quantities from

lattices upto size 1600 × 1600.
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Figure 6: Variance of the observables V1 (Left) and V3 (Right). We see that the Variance
of V1 rises with a detectable power with increasing system size whereas that of V3 saturates
to a finite value.

Using finite size scaling, and Binder cumulant data, we obtain an estimate of the critical

point as zc = 97.5 ± 0.5. The symmetry of the hard square lattice gas model suggests

observables that are linear combinations of the sublattice densities ρi that have simple

transformations under rotations by π
2 as relevant quantities. These are Vi = ρ1 + ωiρ2 +

ωi
2ρ3 + ωi

3ρ4, where ωi with i = 1 to 4 are the fourth roots of unity given by 1, i,−1 and

−i respectively.
We measure the variance of these quantities in the system. At the critical point the

variance of Vi varies as L
ai where L is the size of the system, with a1 ≃ 0.16, a2 = a4 = 7

4

and a3 = 0. We see that the variance of the observable V1 grows as a power law at large

distances and the variance of V3 saturates to a finite value (Fig. 6). We are able to verify

that the scaling exponent γ/ν is equal to 7/4 to very high accuracy, consistent with the

critical behaviour of the Ashkin-Teller model. Due to the large correlation lengths in the

columnar ordered phase, the determination of the exponent ν is slightly harder. At present

out best estimates are ν = 0.92±0.05. Using a mapping of the microscopic particle densities

to a coarse grained Ising energy density, we are able to tentatively place the critical point

of this model slightly to the ferromagnetic side of the Ising point on the critical line of the

Ashkin-Teller model.
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Chapter 1

Introduction

Systems that display phase transitions from disordered to long range ordered behaviour

when thermodynamic parameters such as the temperature and density are varied are of

fundamental importance in the field of Statistical Physics. Phase transitions represent an

abrupt change in the macroscopic behaviour of a system. The phases are usually char-

acterised by the existence of an order parameter that acquires a macroscopic value in an

ordered phase, and is zero in the disordered phase. The best studied examples of phase

transitions are the transitions from a ferromagnetic to a paramagnetic state in magnetic

systems, and the melting of solids to a liquid state as the temperature is increased. Experi-

mentally several novel phase transitions have been observed such as the transition of liquids

to superfluid states and the insulator-superconductor transition. The onset of order in such

systems is characterised by the existence of a critical point, that separates two phases. Sys-

tems approaching a critical point exhibit several characteristic features, which are manifest

as diverging thermodynamic quantities such as the magnetic susceptibility or compressibil-

ity. Systems at criticality display the remarkable property of universality, in which several

systems with different microscopic behaviour, display the same critical properties [1].

Simple theoretical models that capture the qualitative features of different phases across

a transition are important tools to study critical behaviour. However, although such models

are relatively easy to construct, theoretical results are harder to obtain. Simple theories such

as the mean-field theory and cluster approximation techniques are usually insufficient to

capture the complex nature of the scaling in these systems. In this context, two dimensional

systems offer a fertile arena in which models that display non-trivial critical behaviour can be

treated analytically. The best studied universality classes arise from the study of models of

magnetism and lattice gases. Models that can be exactly solved are particularly interesting

as they allow an accurate determination of the singular nature of the free energy of the

system near the critical point [2], [3]. Although, very few models are integrable, there exist

several models in two dimensions for which theoretical predictions can be made.

This thesis mainly deals with two models, The spin-S Kitaev model, and the hard square

lattice gas model. We analyse the spin-S Kitaev model in the limit of large S where the

1
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spins become classical 3-vector (Heisenberg) spins, and the hard square lattice gas model.

We investigate whether in this classical limit the Kitaev model displays order-by-disorder,

a phenomenon whereby a system that is disordered at strictly zero temperature acquires a

fluctuation induced order at temperatures just above zero. We also analyse properties of

a quantum spin-S chain related to the Kitaev model. We show that this model, with an

added parameter, displays a quantum phase transition from a phase with a finite energy

gap to a gapless phase. We then study the lattice gas of 2 × 2 hard squares on the square

lattice, where there is a vacancy-induced sliding instability that makes the crystalline order

unstable, but a partial order survives in the form of columnar order where only two of

the four possible ordered states mix with each other. We also analyse the nature of the

transition from fluid to columnar order as a function of density in this system.

We now introduce a few well studied models that are relevant to the work presented in

this thesis.

1.1 Spin Models

The magnetic properties of materials arise from the magnetic moments of individual spins in

the system. To understand the cooperative nature of magnets at low temperatures, models

that have interactions between the various spins at different sites of the system are needed.

A simple interacting magnetic system can be modelled as spins at the vertices of a lattice

interacting via the Hamiltonian

H = −
∑

(i,j)

JijSiSj (1.1)

where (i, j) represents a sum over any two sites on the lattice. The S variables represent

the spin degrees of freedom in the system, which could be classical vectors or quantum

mechanical operators. Different types of interactions yield different magnetic behaviour

in the system. There are several well known models that describe magnetic ordering in

systems. We describe a few such models below.

The simplest model in this context is the Ising model where at each site, the spin is

represented by a Z2 variable that can take values +1 or −1. When we limit ourselves to

nearest neighbour interactions, this model can be exactly solved on a square lattice, i.e.-

an analytic expression for the free energy of the system in the thermodynamic limit can be

found [4], [5]. Exact solutions can also be obtained for all planar periodic two dimensional

lattices [6],[7]. This model undergoes a transition from a long range magnetic ordered phase

at low temperatures to a disordered phase above the critical temperature Tc. For the square

lattice model the inverse critical temperature is βc =
1
2J log(1+

√
2)). The critical exponents

of this model define the Ising universality class. Several experimental systems have been

observed to be Ising-like near their critical points [8].
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1.1.1 The XY and Heisenberg Models

The spins in a magnetic system can also be represented as unit vectors that can have any

orientation. Such a Hamiltonian is given by

H = −
∑

〈i,j〉
J ~Si. ~Sj (1.2)

where ~Si represents a classical unit vector at each site i, 〈i, j〉 represents the sum over all

nearest neighbour spins i and j, and the spins are coupled via a scalar product of the two

vectors. For models with such continuous degrees of freedom and short range interactions,

in two dimensions, the spontaneous magnetization remains zero at all finite temperature

[10]. When the spins are classical three dimensional vectors, the model is referred to as the

Heisenberg model. When the Hamiltonian involves only coupling in the x- and y- planes

we arrive at the XY model [9].

The XY model does not display magnetic order at low temperatures, however the corre-

lations between the spins decays algebraically at long distances, with a power that depends

on the temperature of the system. This is sometimes referred to as ‘quasi long range order’

as the system does not possess true long range order, but the spin correlations are not

short ranged. Above a critical temperature, the spins become uncorrelated, and the system

is in a disordered phase. This is due to the creation of topological defects in the system,

called vortices, that proliferate above the critical temperature. This is referred to as the

Kosterlitz-Thouless transition, where vortices unbind and destroy the correlations between

the spins [11], [12]. A very similar phase transition that is in the same universality class,

arises in the problem of surface roughening which is described in Section 1.2.4.

The XY model is often used to model systems that have order parameters that possess

symmetries of the same type, like superfluid helium and hexatic liquid crystals. These tran-

sitions are not accompanied by a symmetry breaking but by the proliferation of topological

defects that leads to a vortex-unbinding transition from the low-temperature phase to the

high-temperature disordered phase.

1.1.2 The Ashkin-Teller Model

Systems that have competing interactions between the various spins display a very rich

phase structure, as, depending on the values of different parameters, the system can display

several types of ordering. An interesting model of this type is the Ashkin-Teller-Potts

model on the square lattice. This model describes a system with two Ising degrees of

freedom at every site with a four spin coupling that has a varying strength of interaction.

The Hamiltonian of the isotropic square lattice Ashkin-Teller model is given by

H = −





∑

〈i,j〉
J2σiσj + J2τiτj + J4σiσjτiτj



 (1.3)
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Figure 1.1: The phase diagram of the Ashkin-Teller model representing the different phases
as the coupling parameters are varied.

where σ and τ represent Ising spins at each site i of the square lattice. This model has

several phases, separated by lines of critical points. The different phases of this model are

characterised by the expectation values of the different Ising components [13]. Fig. 1.1

shows the phase diagram for this system for the different values of the coupling. In the case

where K = βJ4 is large and the individual Ising couplings J = βJ2 are zero, the model can

be thought of as a single Ising model with with variables στ at each site. In this case the

expectation value 〈στ〉 is nonzero, showing ferromagnetic order for large K (above the Ising

critical value K∗ = 1
2 log(1 +

√
2), and antiferromagnetic order at large negative values of

K. The individual fields remain disordered, i.e.- 〈σ〉 = 〈τ〉 = 0. In the paramagnetic phase

〈στ〉, 〈σ〉 and 〈τ〉 are all zero. These phases extend above the K = 0 line for a finite value

of the coupling J . The phase in which both J and K are large is sometimes referred to as

the ‘Baxter Phase’, in this phase 〈σ〉, 〈τ〉 and 〈στ〉 all acquire a nonzero expectation value.

The line separating this phase from the paramagnetic phase is an exactly known critical

curve with continuously varying critical exponents which terminates in the four-state Potts

point (J = K) where it bifurcates. The scaling exponent γ/ν is equal to 7/4 along this

entire line.

1.1.3 The Kitaev Model

An interesting model that has various competing interactions is the two-dimensional frus-

trated spin-1/2 model introduced by Kitaev [14]. The Hamiltonian of this system is given

by

H = Jx
∑

〈ij〉x
Sx
i S

x
j + Jy

∑

〈ij〉y
Sy
i S

y
j + Jz

∑

〈ij〉z
Sz
i S

z
j , (1.4)
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Figure 1.2: (Left) A hexagonal lattice depicting the coupling directions for the spins in the
Kitaev model. (Right) The zero temperature phase diagram of the Kitaev model, showing
the transition from a gapless to gapped phases as the coupling are varied.

where 〈ij〉α denote the nearest-neighbour bonds in the αth direction (α ≡ x, y, z) (Figure.

1.2). The couplings in this model are anisotropic and the Hamiltonian does not possess

spin-rotation symmetry. A similar model, called the compass model, although not exactly

solvable, was introduced by Kugel and Khomskii many years ago [15] to understand the

magnetic properties of transition metal oxides which have orbital degeneracies.

In the spin-1/2 Kitaev model, a set of mutually commuting Z2 valued constants of

motion can be constructed on each hexagon of the lattice. This leads to a remarkable sim-

plification in the structure of the model, and in fact this model can be exactly solved.

This model has several fascinating properties which have been studied in great detail

[16, 17, 18, 19, 20, 21, 22]. For instance, the model and its variants constitute the only

known class of spin models in two dimensions or more dimensions that is fully integrable,

being reducible to a system of non-interacting Majorana fermions. The Kitaev model has

topological excitations, and their robustness with respect to noise makes it an interesting

candidate for applications in quantum computation [14, 23, 24, 25]. Topological order im-

plies the existence of invariants which, for topological reasons, are robust against a large

class of perturbations. Such systems are often associated with a novel structure of the

ground state and low-lying excitations.

The ground state of this model has recently been conjectured to be a spin liquid at the

point Jx = Jy = Jz [26]. At zero temperature, the system can be in several possible phases,

with finite correlation length and excitations with a finite energy gap, or one with long-

range correlations, depending on the ratios of the coupling constants in different directions

[16, 27]. As the couplings are varied, quantum phase transitions between the different phases

are observed (Fig. 1.2). A quantum phase transition transition describes an abrupt change

in the ground state of a many-body system due to its quantum fluctuations at strictly zero

temperature [28].

Recently physical realizations of the spin-1/2 Kitaev model have been proposed in optical
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lattice systems [29] and in quantum circuits [30].

1.1.4 Order-by-Disorder

Systems that possess competing interactions do not have a unique ground state, because

not all interactions can be satisfied at the same time. The word ‘frustration’ is sometimes

used to refer to such systems with competing interactions that have a large number of

states with energy near the minimum energy. Classical frustrated systems with a large

degeneracy of ground states are interesting problems of study. In some cases, the system at

T = 0 is disordered (i.e.- a simple average over all the ground states has no order), whereas

in the limit T → 0 some states acquire a higher weight over others because of a different

density of nearby states and the system may exhibit signatures of order. This phenomenon

is termed thermal “order-by-disorder” [31, 32]. In the T → 0 limit, ordered states have

a larger entropy as compared to disordered states. Order-by-disorder in classical systems

has been studied in the context of magnetic systems with frustration, such as spin systems

with nearest neighbour antiferromagnetic interactions on different lattices. Entropy driven

order in frustrated systems has been studied extensively for models on lattices such as the

pyrochlore, diamond and face-centered cubic lattices [33],[34].

The extensive classical ground state degeneracy can also be lifted due to quantum fluc-

tuations in the corresponding quantum spin model at T = 0, a phenomenon termed as

quantum order-by-disorder. Quantum fluctuations typically remove this degeneracy with a

linear superposition of ground states having a lower energy than the rest. In approximate

calculations this is often done by looking at the density of low lying excited states (e.g. spin

waves) about a classical ground state.

1.2 Lattice Gas Models

Real gases display a complex and rich phase diagram. To model even the behaviour of

a large collection of simple molecules such as hydrogen represents a theoretical challenge.

Although the ideal gas model, in which particles interact purely via elastic collisions yields

qualitatively accurate results at low densities and high temperature, at high densities real

gases display significant deviations from ideal behaviour. Lattice gas models, in which par-

ticles are constrained to be on the sites of a lattice, serve as the simplest models of complex

physical systems such as simple fluids, structural glasses and granular materials. Lattice

gas models provide an accurate description of physical systems such as gases adsorbed on

substrates (e.g. adlayers of noble gases such as Xenon on graphite).

1.2.1 Hard-Core Lattice Gases

Real gases interact via complicated two body potentials that are repulsive at short distances

and attractive at moderate distances. Since melting is dominated by strong short ranged
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repulsive forces, a lattice gas in which particles interact exclusively through an extended

hard core, where a particle on one site prevents the neighbouring sites from being occupied, is

a good first approximation. In these systems temperature plays no role since the interaction

energy is infinite inside the exclusion region and vanishes outside.

The Ising model can also be represented as a model of a lattice gas, where the excitations

above the state with all spins +1 can be thought of as particles on the lattice [35]. These

particles have a finite energy of interaction between nearest neighbours, and two particles

cannot sit directly on top of each other. This model represents a hard core lattice gas with

nearest neighbour interaction.

When the interaction energy is set to infinity, the phase transitions in these systems as

a function of density are the result of geometrical effects of excluded volume interactions.

These have been called geometrical phase transitions, the best studied of which are the

percolation transition [36] and phase transitions in assemblies of hard spheres [37]. Many

systems with different shapes of particles have been studied in the literature, for example

squares [38], rods [39], triangles [40] and L-shaped molecules [41]. The computation of the

partition function of particles with finite exclusion volumes on a lattice remains an out-

standing problem [42] [2]. The model of hard hexagons on the triangular lattice and related

models are the only known exactly soluble systems of this kind [43], [44]. The difficulty and

the scarcity of exact solutions have led to the development of various approximate theories

to deal with more complex interaction potentials. Examples of these are the high and low

activity expansions [45].

1.2.2 The Hard Square Lattice Gas

As the range of exclusion is varied, the universality class of the transition from the low

density fluid state to a high density ordered state also changes. As we have seen, the nearest

neighbour exclusion lattice gas belongs to the Ising universality class. The identification of

the universality classes of gases with different exclusion radii is an interesting question.

In this thesis we study the lattice gas of particles with exclusion up to the next nearest

neighbour on the square lattice. Equivalently, each particle is a 2× 2 square that occupies

4 elementary plaquettes of the lattice. This is known as the hard square lattice gas. This

model has been the subject of many studies in the past. Unlike the nearest-neighbour

exclusion lattice gas, this model does not have a sublattice ordered state at high densities

[46, 47]. Transfer matrix techniques indicate the existence of a phase transition in this

model [48, 49, 50, 51]. Variational, density functional methods and virial expansions have

also been used to study this problem [49, 52, 53]. These studies indicate that at high

densities the system is not sublattice ordered but exhibits “columnar order” wherein one of

the even (odd) rows or columns is preferentially occupied over the other. However, there is

as yet no rigorous proof of the existence of this type of order in this system. In this context

it is worthwhile to develop exact series expansions and try to prove their convergence in

this phase.
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The nature of the transition from the low density disordered state to the columnar

ordered state at high densities has been the subject of several studies. The hard square

lattice gas also arises as a limiting case of spin models with interactions up to the second

nearest neighbour on the square lattice [54, 55, 56]. In the Landau theory paradigm, the four

columnar ordered states in this system give rise to an XY model with four fold anisotropy

[57]. Such models are known to display non-universal behaviour with critical exponents

that are governed by marginal operators, and naturally fall into the class of Ashkin-Teller-

Potts models that exhibit such behaviour [58, 59, 60]. However, the critical exponents of

this model have been hard to pin down from Monte Carlo simulations on small system sizes

[51]. Recent Monte Carlo evidence suggests that the transition from fluid to columnar order

in this system is of second order, with exponents very close to the two dimensional Ising

model. In fact, the transition has been identified to be the Ising point in some studies [61],

however, this does not seem to be the case [56, 62].

1.2.3 Columnar Order

There are several systems in which particles do not order into a periodic spatial pattern,

but still display a long ranged ordered state. In some cases these particles are ordered

in a particular orientation, such as nematic and smectic phases in liquid crystals [63]. A

particularly interesting type of order in this category is columnar order, where the particles

align along one dimensional lines that have weak correlations between them. There are sev-

eral theoretical systems that display such ordered behaviour such as dimers with attractive

interactions between them [64],[65] and the hard square lattice gas.

There have been only a few theoretical studies of the columnar ordered state in the hard

square lattice gas so far, and the present understanding is not very satisfactory. Correlations

in the columnar ordered state are hard to capture using mean-field like descriptions. For

example, all the well-known approximation schemes like the mean-field theory and cluster

variational approximations underestimate the value of the critical point zc for the hard

squares problem by an order of magnitude.

In many cases, the high density states exhibit crystalline order where one sublattice is

preferentially occupied (for example hard hexagons on the triangular lattice and the nearest-

neighbour-exclusion lattice gas on the square lattice). In such cases it is straightforward to

develop high activity expansions for thermodynamic quantities [45]. In the case of the hard

square lattice gas, the standard high density expansion in powers of 1/z breaks down, and

it was realised quite early that the leading order correction to the high activity expansion is

of order 1/
√
z [66], where z is the fugacity associated with each particle, but a systematic

expansion has not been developed so far.



1.3. OUTLINE 9

1.2.4 Solid-on-Solid Model and Surface Roughening

The condensation of fluids into crystalline structures is characterised by the coexistence of

the two phases separated by an interface that grows as the system condenses. The properties

of the interface between the two phases can be described well by a solid-on-solid model. The

crystallization process occurs in steps in which layers are added to the growing surface. The

heights {hi} of the number of particles deposited at different lattice sites is represented by

the height of the stack at each lattice site. The interaction between the different deposited

items is of the type

HSOS =
∑

〈i,j〉
V (hi − hj) (1.5)

where V is a function of the difference in heights between the nearest neighbour columns.

The energy of the surface is lowest when it is flat. The solid-on-solid model has a natural

description in terms of the XY universality class, and can infact be exactly mapped to the

XY model via a duality transformation [67]. At low temperatures, the system is in a periodic

state, where the surface is flat. At high temperatures, the variance in the difference of the

height variables grows logarithmically with distance and the surface is said to be ‘rough’.

This is sometimes referred to as the surface roughening transition.

1.3 Outline

This thesis is organised as follows. In Chapter 2 we analyse the low temperature properties of

a system of classical Heisenberg O(3) spins on a hexagonal lattice interacting via the Kitaev

Hamiltonian. We show that for a lattice of 2N sites with periodic boundary conditions,

the ground states form an (N + 1) dimensional manifold. We then map the ensemble of

ground states onto a solid-on-solid model with continuously variable heights and nearest

neighbour interactions. We see that the spin model at zero temperature maps onto the

solid-on-solid model that is in its rough phase. We argue that the bond-energy bond-energy

correlations at distance R decay as 1
R2 at zero temperature. We find that as the temperature

T tends to zero, all ground states have equal weight, and there is no order-by-disorder in

this model. We perform Monte Carlo simulations to verify our predictions. We then discuss

the quantum spin-S Kitaev model for large S, and obtain a lower bound on the ground

state energy of the quantum model.

In Chapter 3 we study a one-dimensional version of the Kitaev model on a ring of size

N , in which there is a spin S > 1/2 at each site. We find that cases where S is integer and

half-odd-integer are qualitatively different. We show that there is a Z2 valued conserved

quantity for each bond of the system. For integer S, the Hilbert space can be decomposed

into 2N sectors, of unequal sizes. The number of states in most of the sectors grows as dN ,

where d depends on the sector. The largest sector contains the ground state, and for this

sector, for S = 1, we show that d = (
√
5 + 1)/2. In the ground state sector, the system
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can be mapped to a spin-1/2 model. We develop variational wave functions to study the

lowest energy states in the ground state and other sectors. The first excited state of the

system is the lowest energy state of a different sector and we estimate its excitation energy.

We consider a more general Hamiltonian, adding a term λ
∑

iWi, and show that this has

gapless excitations in the range λc1 ≤ λ ≤ λc2. We use the variational wave functions to

study how the ground state energy and the defect density vary near the two critical points

λc1 and λc2.

In Chapter 4 we study the lattice gas model of particles on a square lattice with nearest

and next-nearest-neighbour exclusion (hard squares). In order to understand the nature of

the columnar ordered phase in this model, we develop a high activity perturbation expansion

for the free energy per site about a state with perfect columnar order. This is a singular

perturbation series in powers of 1/
√
z, where z is the fugacity associated with each particle.

We show that the different terms of the series can be regrouped to get a Mayer-like series for

a polydisperse system of interacting vertical rods in which the n-th term is of order z−(n+1)/2.

We sum this series to get the exact expansion to order 1/z3/2. We then analyse the nature

of the transition from the columnar ordered phase at high density to the fluid phase at

low density. Using a simple coarse grained picture, we argue that the critical properties of

the model are that of a more general Ashkin-Teller model. We find a mapping of the local

densities of the hard square lattice gas to the Ising energy densities in the corresponding

Ashkin-Teller model. We then use Monte Carlo simulations to test our predictions. We

locate the critical point of the system as zc = 97.5 ± 0.5. We also study the correlations

between various quantities in the system in order to precisely locate the position of the

transition on the Ashkin-Teller critical line.
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Chapter 2

The Kitaev Model with Classical

Spins

2.1 Introduction

In this chapter, we analyse the low temperature properties of a system of classical Heisenberg

spins on a hexagonal lattice with Kitaev couplings. The simple nature of the Hamiltonian

allows us to perform many calculations that are not possible in other, more complex spin

models.

We investigate whether this model displays order-by-disorder, wherein the thermal fluc-

tuations at low temperatures induce a long range order in the system. We are able to

parametrise the ground states and excitations of the system exactly and we show that the

ground states for a lattice of 2N sites with periodic boundary conditions form an (N + 1)

dimensional manifold. Our parametrisation allows us to take the temperature T → 0 limit

of the partition function exactly and prove that there is no incipient long range order as

the temperature approaches zero. For T tending to zero we find that all ground states have

equal weight, and there is no order-by-disorder in this model. We show that at zero tem-

perature, the ensemble of ground states is equivalent to that of a solid-on-solid model with

continuously variable heights and nearest neighbour interactions at a finite temperature.

We argue that the bond-energy bond-energy correlations at distance R decay as 1
R2 at zero

temperature. This is verified by Monte Carlo simulations. We also discuss the relation to

the quantum spin-S Kitaev model and obtain a lower bound on the ground state energy of

the quantum model.

In a recent interesting paper, Baskaran et al. studied a generalisation of this model with

spin-S at each site and identified mutually commuting Z2 variables that are constants of

motion for arbitrary S [1]. For large S, the spins can be approximated as classical O(3)

vector spins. Baskaran et al. showed that the classical ground state of the model has

a large degeneracy. They argued that though a naive averaging over these ground state

configurations would suggest that the system is disordered at zero temperature, for large

15
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S, the quantum fluctuations of spins have lower energy for a subset of the classical ground

states. These states acquire a larger weight in the quantum mechanical ground state, and

the quantum model shows long-range order in the ground state, an example of quantum

order-by-disorder.

The finite-temperature fluctuations in the classical model behave qualitatively like the

zero-point fluctuations in the quantum model, and it is interesting to ask if temperature

fluctuations can induce order-by-disorder in the model of classical Heisenberg spins with

Kitaev couplings, just as the quantum fluctuations are expected to in the large-S quantum

model. We see that there is a qualitative difference between the classical and quantum

mechanisms of order-by-disorder. For the classical Kitaev model, the contribution of nearby

states to the restricted partition function in the limit of very small temperature, with states

summed only over the neighbourhood of a given classical ground state, is exactly the same

for almost all ground states.

2.2 The Model

We consider classical Heisenberg spins on a hexagonal lattice. We consider a finite lattice,

with periodic boundary conditions. There are L hexagons in each row, and M rows of

hexagons (L and M both assumed even). The total number of hexagons is N = LM , and

the number of sites is 2N . The bonds of the lattice are divided into three classes, X,Y and

Z, according to their orientation (Fig. 2.1). The hexagonal lattice consists of two sublattices

denoted by A and B. We label sites in the A sublattice by a(l,m) and the corresponding

B sublattice site connected to it via a Z bond by b(l,m). We define three bond vectors

ex, ey, ez as the vectors from any A-site to its three neighbours via the X,Y and Z bonds

respectively (Fig. 2.1). Thus we have a(l,m)+ex = b(l,m−1), a(l,m)+ey = b(l+1,m−1)

and a(l,m)+ez = b(l,m). We define the hexagonal plaquette (l,m) to be the hexagon whose

topmost point is a(l,m). A bond will be specified by the (l,m) coordinate of its A-lattice

end point and its class X, Y or Z. For instance, (a(l,m);x) ≡ (l,m;x) is an X-bond with

a(l,m) at one of its ends. The periodic boundary conditions are implemented by making

a(l,m) = a(l + L,m) = a(l − M
2 ,m+M).

At each lattice site i there is a three dimensional vector spin ~Si = (Si
x, Si

y, Si
z) of unit

magnitude. Thus Si
x2 + Si

y2 + Si
z2 = 1 at every site. The Hamiltonian of the system is

given by

H = −J
∑

a∈A
[Sx

aS
x
a+ex + Sy

aS
y
a+ey + Sz

aS
z
a+ez ] (2.1)

As the hexagonal lattice is bipartite, for classical spins, without loss of generality we

assume J > 0. The Hamiltonian does not have rotational symmetry in the spin space, but

it has a local symmetry : for any bond (l,m;α), the Hamiltonian is invariant under the

transformation Sα
a(l,m) → −Sα

a(l,m), S
α
a(l,m)+eα

→ −Sα
a(l,m)+eα

.
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Figure 2.1: A hexagonal lattice depicting the labelling scheme for sites, and the x, y and
z bond classes. Sites in the A- and B- sublattices are denoted by filled and open circles
respectively.

2.3 The Ground States

We begin by obtaining the ground states of this system. We express the Hamiltonian H as

a sum of individual Hamiltonians at every B-site

H =
∑

(l,m)

Hb(l,m), (2.2)

where Hb(l,m) is a Hamiltonian containing only the couplings of the B-sublattice site b(l,m).

We have

Hb(l,m) =− J
(

Sx
a(l,m+1)S

x
b(l,m) + Sy

a(l−1,m+1)S
y
b(l,m) + Sz

a(l,m)S
z
b(l,m)

)

.

Each B-sublattice spin ~Sb experiences a field ~F =
(

Sx
a(l,m+1), S

y
a(l−1,m+1), S

z
a(l,m)

)

due

to the surrounding A-sites. The Hamiltonian for every B-site is thus Hb = −J ~Sb. ~F . This

energy is minimised when ~Sb is parallel to the vector ~F , with the minimum energy equal to

−J
√

Sx
b−ex

2 + Sy
b−ey

2
+ Sz

b−ez
2.

Now, given a specified configuration of spins on the A-sublattice {~Sa} we can obtain

Emin({~Sa}), the minimum value of H for the configuration {~Sa}, by minimising over the

B-spins as above (since the B-spins are uncoupled in the Hamiltonian, each minimisation

can be performed independently). We thus obtain the minimum energy for a given config-

urations of A-spins. We have

Emin({~Sa}) = −J
∑

(l,m)

√

Sx
a(l,m+1)

2 + Sy
a(l−1,m+1)

2
+ Sz

a(l,m)
2.
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Now,
√
x is a convex function of x for all real positive x. We use the convexity inequality

N
∑

i=1

√
xi ≤ N

√

∑N
i=1 xi
N

, (2.3)

with equality holding when all the xi are equal. Using this identity for the sum of the square

roots above we immediately get

Emin({~Sa}) ≥ −JN. (2.4)

Here we have used the fact that the sum of the spin squared components of all the

A-spins is equal to N , the number of A-sites. It is easy to see that there exist spin states

of the Hamiltonian for which the above energy is actually attained, for instance, when all

spins are aligned along the z direction. Thus, the ground state energy is −JN . In fact

Baskaran et al. studied such states terming them “Cartesian States”, but no proof that

these were the true ground states was given.

In the inequality (2.3), the equality sign holds when all the terms within the square root

are equal. Thus the ground state condition is

Sx
a(l,m+1)

2 + Sy
a(l−1,m+1)

2
+ Sz

a(l,m)
2 = 1, for each b ∈ B. (2.5)

The above conditions are necessary and sufficient to attain the ground state. For each

given configuration of A-site spins {~Sa}, there is a unique configuration of B-spins {~Sb}
that minimises the Hamiltonian. The components of each B-spin are Sα

b = Sα
b−eα

.

2.4 Effective Hamiltonian

We next derive an effective Hamiltonian for the model by integrating out the contributions

from the B-sublattice sites. The partition function of the system at finite temperature Z[β]

is given by

Z[β] =

∫

∏

s

(

d
−→
Ss
4π

)

exp[−βH] (2.6)

where β−1 = T . The index s runs over all sites of the lattice. The integral over each B-site

is of the form Wl,m =
∫

d
−→
S b(l,m) exp[−β

−→
S b(l,m).

−→
F ] where

−→
F = Sa(l,m+1)î + Sa(l−1,m+1)ĵ +

Sa(l,m)k̂. This can in turn be evaluated as

Wl,m =
1

2

∫ 1

−1
d(cos θ) exp

(

−β cos θ
√

Sx
a(l,m+1)

2 + Sy
a(l−1,m+1)

2
+ Sz

a(l,m)
2

)

,
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where θ is the angle between the vector
−→
S b(l,m) and

−→
F . This immediately yields

Wl,m =
sinh

(

β
√

Sx
a(l,m+1)

2 + Sy
a(l−1,m+1)

2
+ Sz

a(l,m)
2
)

β
√

Sx
a(l,m+1)

2 + Sy
a(l−1,m+1)

2
+ Sz

a(l,m)
2

. (2.7)

Therefore

Z[β] =

∫

∏

(l,m)

d
−→
S a(l,m)

4π

∏

(l,m)

Wl,m. (2.8)

We thus obtain the effective Hamiltonian for the spins on the A-sublattice alone as

Heff ({~Sa}, β) = − 1

β

∑

(l,m)

F

(

β
√

Sx
a(l,m+1)

2 + Sy
a(l−1,m+1)

2
+ Sz

a(l,m)
2

)

, (2.9)

where

F (x) = log

(

sinh(x)

x

)

. (2.10)

We note that the temperature of the Kitaev Hamiltonian enters as a parameter in Heff

in a nontrivial manner.

2.5 Two Dimensional Electrostatics

In this section we map the model of A-spins interacting via an effective Hamiltonian onto

that of a two dimensional electrostatics problem with continuously variable real valued

charges at every B-site. For a given configuration of A-spins {Sα
a }, to each bond (l,m;α)

of the lattice, we assign a vector ǫ(l,m;α)~eα, with ǫ(l,m;α) given by

ǫ(l,m;α) = Sα
a(l,m)

2 − 1

3
. (2.11)

We define the discrete divergence of the ǫ-field on the sites of the lattice as the sum of

the ǫ’s on the bonds attached to the site, we have

∇.ǫ ≡
∑

α

ǫ(a(l,m);α) at site a(l,m), (2.12)

≡
∑

α

ǫ(b(l,m)− eα;α) at site b(l,m). (2.13)

Clearly, the divergence of the field ǫ at any site on the A-sublattice is 0. The flux of the

ǫ field out of any polygon on the dual lattice is therefore zero. In addition, from Eq. (2.5)
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we see that for ground state configurations even for bonds meeting at any site, b ∈ B, we

have

∑

α

ǫ(b(l,m) − eα;α) = 0, for all sites b ∈ B. (2.14)

We thus have a divergence-free vector field living on the bonds of the lattice. This can

be thought of as an electric field configuration with no net charges present on the lattice

sites. For non-ground state configurations, the sum of ǫ variables at each B-site is no longer

zero, and possesses a finite divergence. We parametrise this deviation using a real valued

charge variable Q placed on the B-sublattice sites, defined as

Qb(l,m) = −
∑

α

ǫ(b(l,m) − eα;α). (2.15)

There are no charges on the A-sites and we define Qa(l,m) = 0, for all sites a(l,m). Given

the values of these charges, we can construct the corresponding electrostatic potential field

φ defined at all sites s of the lattice such that

∇2φ(s) = −Qs; for all sites s. (2.16)

Here ∇2 is the discrete laplacian on the lattice, and the above equation is just the

discrete Poisson equation on the lattice. These equations can be solved explicitly and the

potential φ(s) can be determined completely, up to an overall additive constant, so long as

the total charge in the system is zero. Explicitly, we have

φ(s) =
∑

s′

G(s, s′)Qs′ , (2.17)

where G(s, s′) is the lattice Green’s function. Then, as ∇2φ(s) = −Qs = −∇.ǫ(s), we see

that ǫ + ∇φ has no divergence and can be expressed in terms of the curl of a new scalar

field {f}. We define the height field f(l,m) ≡ fl,m attached to the hexagonal plaquettes

of the lattice (as shown in Fig. 2.2) such that the difference in the f -field between two

neighbouring plaquettes is equal to the value of ǫ+∇φ along the shared bond. This satisfies

the divergence-free condition for the field ǫ+∇φ. Let s be any site on the A-sublattice with

its neighbours as sites s+ ex, s+ ey, s+ ez. We label the three hexagons to which s belongs

as h1, h2 and h3 (Fig. 2.2).

If the site s ≡ a(l,m), then h1 will have coordinates (l− 1,m+1), and similarly for the

other hexagons. Then, for all sites s, the f - field is defined by

ǫ(s, x) = φ(s)− φ(s+ ex) + f(h1)− f(h2)

ǫ(s, y) = φ(s)− φ(s + ey) + f(h2)− f(h3)

ǫ(s, z) = φ(s)− φ(s+ ez) + f(h3)− f(h1) (2.18)
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Given the fields ǫ(s, α) and φ(s), we assign any fixed value to f(l,m) at one particular

hexagon, then the value of the f -field at neighbouring hexagons is completely determined.

Thus for a given configuration {Sα
a }, we can determine the f -fields at all hexagons up to

an overall additive constant.

h(s
,z

)
ε

s+e

s+e

s+e

s

h

h

2

31

yx

z

ε(s,x) (s,y)
ε

Figure 2.2: Figure depicting the definition of the ǫ and h variables on the bonds and
plaquettes around an A-site s.

We will now use the values of {Qs} and {fl,m}, instead of {Sα
a
2} to specify the spin-

configurations. The number of variables Sα
a
2 are 3N in number, with N constraints between

them, thus there are 2N independent real variables. As the variables Qs satisfy the con-

straint
∑

sQs = 0, there are N − 1 independent parameters Qs. Also, there are only

(N − 1) independent parameters f(l,m), as these are defined only up to an overall additive

constant. We need two additional linearly independent variables to complete our new set

of coordinates. We choose these to be R1 =
∑

l ǫ(l,m; z) + φ(b(l,m)) − φ(a(l,m)) and

R2 =
∑

m ǫ(l,m; y) + φ(b(l + 1,m− 1))− φ(a(l,m)), which lead to

f(l + L,m) = f(l,m) +R1

f(l− M

2
,m+M) = f(l,m) +R2 (2.19)

Assuming that the φ-field, obtained in Eq.(2.17) is periodic on the torus, with φ(a(l,m)) =

φ(a(l + L,m)) = φ(a(l −M/2,m +M)), R1 is independent of m (and R2 of l), and these

correspond to fixing the boundary conditions for the f(l,m).

The range of each Sα
a
2 is [0, 1], which leads to the condition 2/3 ≥ ǫ(s, α) ≥ −1/3 at

each bond. This implies constraints on the allowed range of f(l,m) and Q(l,m). Now,

given the values of the Q-, f - and φ-fields, one can systematically reconstruct the ǫ-field

(and thus the spin configuration). The value of ǫ at any bond in the bulk can be evaluated

from the f ’s at the neighbouring plaquettes and the φ at the ends of the bond as shown

in Eq. (2.18). The ǫ’s at the edges of the lattice are determined by the values of f at the

plaquettes next to the edge, which can be obtained from R1 (or R2) using Eq. (2.19). Thus,

in the allowed range, the transformation from {Q, f,R} to {Sα
a
2} is invertible.
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2.6 Characterising the Ground State Manifold

In this section we use the new height variables {f} to completely characterise the ground

state manifold of the system. Baskaran et al. defined Cartesian states as states where each

spin is aligned in the direction along a Cartesian axis (x-, y- or z-) [1]. We can construct

a Cartesian ground state of H, by constructing a dimer covering of the hexagonal lattice.

Spins at the ends of a dimer lying on a bond of type α (α = X,Y or Z) are aligned parallel

to each other in the direction α (either both having Sα = +1 or both having Sα = −1).

This state has an energy −NJ . Then corresponding to a dimer covering, there are 2N

Cartesian ground states. The number of dimer coverings of the hexagonal lattice increases

as 1.38N [2], hence the number of Cartesian ground states increases as 2.76N . Baskaran

et al. also showed that for any two Cartesian states, there is a one-parameter family of

ground states that connects them, thus forming a network of ground states. In this section

we characterise the entire set of ground states of this model, which is a larger manifold than

the network described above. The derivation of the ground state energy and constraint was

provided in section 2.3. We provide an alternative derivation below.

In the large β limit, F (x) in the effective Hamiltonian for the A-sites can be replaced

by x. Therefore the ground state energy E0 of the system is given by

E0 = −J Max





∑

(l,m)

√

1 +Q(l,m)



 . (2.20)

Once again, as the energy is a sum of square roots, we can use the convexity inequality

(Eq. (2.3)) and arrive at the ground state energy of the system (Eq. (2.4)). Alternatively,

we can also obtain the ground state constraint by noting that F (β
√
x) is itself a convex

function for all β, x > 0. As the sum in Eq. (2.20) is maximised when all the terms are

equal, the necessary and sufficient condition for the ground state configuration is

Qb = 0, for all sites b ∈ B. (2.21)

Since the Q-field, and hence also the φ-field are exactly zero everywhere in the ground

states, the manifold is described only by the f -field. Correspondingly, the equations (2.18)

simplify to

ǫ(s, x) = f(h1)− f(h2)

ǫ(s, y) = f(h2)− f(h3)

ǫ(s, z) = f(h3)− f(h1) (2.22)

The set of states forms an N + 1 dimensional manifold, parametrised by the variables

{f}, with the boundary conditions on these given by R1 and R2. It is a convex set whose

extremal points correspond to the Cartesian states studied by Baskaran et al.
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2.7 Finite Temperature Partition Function

In this section we express the partition function of the model in terms of the new {Q}, {f}
and {φ} variables. We begin by analysing the phase space factors in the partition function

as we change variables from {~S} to {f,Q}. The phase space integral for each A-site spin is

∫

d~S =

∫

dSx
adS

y
adS

z
aδ(S

x
a
2 + Sy

a
2 + Sz

a
2 − 1). (2.23)

We now change our integration variables from Sx
a to Sx

a
2. We have dSx

a = dSx
a
2/(2

√

Sx
a
2)

and similarly for the y and z components. The f ’s and Q’s are linear functions of the Sα
a
2’s

(with α = x, y, z), hence the Jacobian matrix of transformation for this change of variables

is a 2N × 2N constant matrix. Also, the determinant is non-zero as the transformation is

invertible. The partition function at finite temperature, up to an unimportant constant, is

thus given by

Z[β] = Const.

∫

dR1dR2

∫

∏

l,m

dfl,m

∫

dQb(l,m)

(

∏

bonds

(

1

3
+ ǫ(bond)

)

−1/2
)

× exp





∑

l,m

F
(

β
√

1 +Qb(l,m)

)



 , (2.24)

where Πbonds denotes the product over all bonds (l,m;α) of the lattice, with the ǫ, Q and

f variables defined in Section 2.5 and F (x) defined by Eq. (2.10).

2.8 The Temperature Tending to Zero Limit

In this section we take the limit of temperature tending to zero in the partition function by

integrating over the variables that quantify the deviation about the ground state configura-

tions, namely the charges {Q}. Our exact characterisation of the ground state manifold and

excitations allow us to take this limit without any approximation. We define the restricted

partition function for a fixed configuration of heights {fl,m} by integrating over the charges

{Q} as

Z [{fl,m}, β] =
∫

∏

(l,m)

dQb(l,m)exp (−βHeff [{f,Q}) . (2.25)

For large β, the integrand in Eq.(2.25) is sharply peaked at Qs = 0. We can use the

method of steepest descent to find the value of this integral (integrating over the N − 1 Q

variables). We expand Heff in a power series in Q’s

Heff = E0 +
∑

s

Qs
2 + . . . (2.26)



24 2. THE KITAEV MODEL WITH CLASSICAL SPINS

The linear term in Q in the function Heff vanishes since
∑

sQs = 0. While the range of

the Qs integrals depend on {fl,m}, for large β, when the width of the peak is much smaller

than the range of integration, and the peak is away from the end points of the range, each

integration to leading order is independent of {fl,m} and gives a factor Cβ−1/2 where C is a

constant. The restricted partition function Z[{f}, β] in the limit of very small temperature

to leading order in β, is β−(N−1)/2Z0[{f}]. Where Z0[{f}] is given by

Z0[{f}] = lim
β→∞

β(N−1)/2Z[{f}, β] = Const.

[

∏

bonds

(

1

3
+ ǫ(bond)

)−1/2
]

. (2.27)

Thus for each configuration {fl,m}, the integration over fluctuations in {Q} produces

the same temperature dependent weight factor in the limit of large β. In order to evaluate

averages in the limit of low temperatures we can thus ignore the Q-degrees of freedom, and

set them equal to zero. Now, the zero-temperature partition function, i.e.- the partition

function in the limit β → ∞ defined as

Z0 = lim
β→∞

β(N−1)/2Z[β] =

∫

dR1dR2

∫

∏

(l,m)

dfl,mZ0[{f}] (2.28)

can be expressed as

Z0 =

∫

dR1dR2

∫

∏

(l,m)

dfl,m exp



−
∑

〈i,j〉
V (fi − fj)



 , (2.29)

where

V (x) =
1

2
log

(

1

3
+ x

)

, for − 1/3 ≤ x ≤ +2/3;

= +∞, otherwise. (2.30)

and the sum over 〈i, j〉 denotes the summation over all nearest neighbour hexagons i and j.

2.9 Mapping to a Solid-on-Solid Model

We note that Z0 may be interpreted as the partition function of a solid-on-solid (SOS) model,

with a real height variable fl,m located at sites (l,m) of a triangular lattice and interacting

via an effective Hamiltonian HSOS. This Hamiltonian depends on the temperature T of

the spin model. At a finite temperature HSOS is determined by integrating over the Q

variables in the restricted partition function in Eq. (2.25). HSOS(T > 0) has some weak

long range couplings. However at T = 0 the Q-field is identically zero, which leads to a
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purely nearest-neighbour, but non-quadratic coupling between the height variables given by

HSOS(T = 0) = −
∑

(l,m)

[V (fl,m−1 − fl−1,m) + V (fl,m − fl,m−1) + V (fl−1,m − fl,m)] .

We note that the Hamiltonian has a term log
(

1
3 + ǫ(bond)

)

, which diverges when

ǫ(bond) tends to −1/3. Thus the Cartesian states of Baskaran et al. have a large relative

weight, which has a divergent density. However, this divergence is an integrable divergence,

and the actual measure of the Cartesian states in the ensemble of states at zero temperature

is zero.

2.10 Correlations

The model has the following local symmetry: the Hamiltonian is invariant under the trans-

formation Sα
a(l,m) → −Sα

a(l,m), S
α
a(l,m)+eα

→ −Sα
a(l,m)+eα

on each bond (l,m;α) of the lattice.

This implies that all correlation functions of the type 〈Sα
s1S

β
s2〉 with sites s1 and s2 not near-

est neighbours are zero [3]. The simplest non-trivial correlation functions, for non-neighbour

s1 and s2 are of the type 〈Sα
s1

2Sβ
s2

2〉. The convergence of the high temperature expansion

of the partition function implies that these correlations fall exponentially with distance,

at small β. As there is no phase transition as β → ∞, we expect this behaviour for all

0 ≤ β <∞ as well, with the correlation length increasing as a function of β.

We now discuss the asymptotic behaviour of the height and spin-squared correlations at

zero temperature. The SOS model has the symmetry that changing all heights by the same

constant leaves the Hamiltonian unchanged. Though the interaction is a strongly non-linear

function of fb(l,m)+eα −fb(l,m)+eα′
, we expect that in the high-temperature phase of the SOS

model, the long-wavelength hydrodynamical modes in the system will still be sound-like,

with effective Hamiltonian |∇f |2, which gives rise to the spectrum given by ω2 ∝ k2. This

implies that, for two sites s1 and s2 separated by a large distance R

〈(fs1 − fs2)
2〉 ∼ logR, (2.31)

which leads to

〈∇fs1 .∇fs2〉 ∼
1

R2
. (2.32)

Since the energy density variables Sα
s
2 are proportional to ∇f (at zero temperature),

we conclude that the connected part of the bond-energy bond-energy correlation function

〈Sα
s1

2Sβ
s2

2〉c ∼ 1

R2
. (2.33)

At infinite temperature, the spins at different sites are completely uncorrelated. This
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is not true for the f variables, which have non-trivial correlations even for β = 0. In the

Appendix A we calculate the leading behaviour of 〈(fR − f0)
2〉 at large R for β = 0. We

have, at infinite temperature

〈(fR − f0)
2〉β=0 =

2
√
3

45π
log[R] +O(1) for large R. (2.34)

2.11 Monte Carlo Simulations

In this section we present results from Monte Carlo studies of this model for zero temper-

ature as well as for non-zero temperatures. We simulated the effective Hamiltonian Heff

(Eq. 2.9), obtained by integrating out spins on the B-sublattice. For the finite temperature

simulations, two kinds of moves were employed—single spin moves and cluster moves.

Single Spin Moves

We discuss single spin moves first. In any given state, we choose a site, a(l,m). We generate

a gaussian random vector ~r = (rx, ry, rz), whose variance is proportional to the temperature

T . The proposed single spin move is then to change the spin at site a(l,m) from ~Sa(l,m) to

~S′
a(l,m), given by

~S′
a(l,m) =

~Sa(l,m) + ~rs

|~Sa(l,m) + ~rs|
. (2.35)

If the change in the effective Hamiltonian by the move is ∆H, the move is accepted

according to the Metropolis rule, i.e.- with probability Min[1, e−β∆H ]. Clearly, this satisfies

the detailed balance condition.

Plaquette Moves

While the single spin moves, in principle, are sufficient for correctly sampling the entire

phase space, we also employed hexagon update moves to speed up the simulations at low

temperatures. Given any configuration, we randomly choose a hexagon on the honeycomb

lattice. To obtain the new configuration of spins we move along this hexagon, alternately

adding and subtracting a quantity, ∆, to the bond-energies, and then computing the spin

components which give rise to these bond-energies. In Fig. 2.3, suppose the topmost A-site

is s1, then ǫ1 = Sx
s1

2 − 1
3 and ǫ2 = Sy

s1
2 − 1

3 . Now ǫ1 is changed to ǫ1 +∆ and ǫ2 to ǫ2 −∆.

This then fixes the new Sx
s1 and Sy

s1 (up to a randomly chosen sign), leaving Sz
s1 unchanged.

Clearly, this leaves the sum of squares of the spin components unchanged. This change is also

made to the four other bonds on the hexagon [Fig. 2.3]. The value of ∆ is chosen uniformly

in the interval [−a, a], where a is a parameter. The proposed move is rejected if any of the

bond-energies fall outside the interval [−1
3 ,

2
3 ]. Since the sum of bond-energies at each site

(A and B) remains constant, these hexagon update moves leave the value of the effective
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Figure 2.3: The hexagon update move in the Monte Carlo simulations. The ǫ’s depict the
bond-energy variables associated with each A-site (depicted by filled circles). A random
number uniformly distributed between −a and +a is alternately added to and subtracted
from the bond energies on the hexagon. The move is rejected if any of the bond energies
fall outside the interval [−1

3 ,
2
3 ].

Hamiltonian unchanged. These moves therefore play a crucial role in efficiently sampling

the configurations close to the ground states at very low temperatures. We take the ratio

of the phase space factors of the two states and accept or reject the proposed configuration

according to the Metropolis rule. Clearly, this also satisfies the detailed balance condition.

For the zero temperature simulations only the hexagonal updates were used.

Results

Monte Carlo simulation data presented in this section has been computed for L×L triangular

lattices of A-sublattice spins of various sizes, with L ranging from 30 to 256. 6× 106 Monte

Carlo updates were made per site of which the first 6× 105 were not used in computing the

correlation functions. Correlation functions were calculated after every 6 updates per site.

We calculated the correlation function C(~r) = 〈Sz
a(l,m)

2Sz
a(l′,m′)

2〉 - 1
9 for various lattice

sizes and temperatures. Here ~r is the vector from site a(l,m) to a(l′,m′). We find that

this correlation decays quite fast, and at finite temperatures, is very small except for a few

points around the origin. At zero temperature, C(~r) is oscillatory along the (1, 0) direction

(and is periodically negative). We observe a clear 1
R2 behaviour along the êz direction, as

plotted in Fig. 2.4.

We looked for a signal of possible order in the ground state ensemble of the type proposed

by Baskaran et al. but did not detect any signal of long range order. One way of determining

if there is any periodic order in the system is to study the structure factor which we define

as the Fourier transform of C(~r)

S(~k) =
1√
LM

∑

(l′,m′)

(

〈Sz
a(l,m)

2Sz
a(l′,m′)

2〉 − 1

9

)

exp (i~k.~r), (2.36)

where the summation is over all sites a(l′,m′) for a fixed a(l,m) with ~r as defined earlier.

If there was an ordering of the type suggested in [1], the structure factor S(~k) would have a

peak at ~k = (2π3 ,−2π
3 ) and ~k = (−2π

3 ,
2π
3 ), with the heights scaling as a power of the system
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Figure 2.4: Plot of the zero temperature correlation function C(~r) = 〈Sx
A
2(0)Sx

A
2(~r)〉 − 1

9
versus distance, r along the êx direction. These correlations follow a power law behaviour
with exponent ≃ −2. The line has a slope of −2. The data plotted is for a lattice of size
L = 120.

size. On calculating the structure factor for various (k1, k2) at zero temperature, we find

that S(~k), apart from some fluctuation all through, has two clearly visible peaks at wave

vectors (2π3 ,−2π
3 ) and (−2π

3 ,
2π
3 ), see Fig. 2.5. However, the height of these peaks are only

about three times the average value, and they do not become sharper with system size.

Thus, we find no evidence of even incipient long-range order (hexatic-like, with power-law

decay of the two-point correlation function) in the system at T = 0.

We also computed correlations of the f - and φ-fields at various temperatures. At the end

of each Monte Carlo step the φ-field was generated from the spin configuration by solving the

discrete Poisson equation on the triangular lattice (Eq. (A.4)). This was done by inverting

the Poisson equation in Fourier space as shown in Eq.(A.5). The Fourier transforms were

calculated using the fast Fourier transform code provided in [4]. The spin configuration and

the φ-field was then used to generate the f -field using Eq.(2.18). In Fig. 2.6, we have plotted

the zero temperature correlation function 〈(fl,m − fl′,m′)2〉 ≡ 〈(f(0) − f(r))2〉 versus log r

where r is the distance between the two sites. We see that this correlation function increases

logarithmically with distance. Note that a logarithmic dependence of this function implies a

1/r2 dependence of the bond-energy bond-energy correlation function (Eq. (2.33)). Fig. 2.7

shows the correlation function 〈(f(0)−f(r))2〉 at various values of β. These correlations vary
as log(r) at all temperatures with the coefficient varying between (2.45±0.05)×10−2 ≃ 2

√
3

45π

at β = 0 and (4.12 ± 0.05) × 10−2 at β = ∞.
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Figure 2.5: Plot of |S(~k)|, the szA
2 structure factor, defined as S(~k) =

1√
LM

∑

~r (〈szA2(0)szA
2(~r)〉 − 1

9) exp (i
~k.~r), where the ~r summation extends over all lattice

sites. Two prominent peaks are visible at (−2π
3 , 2π3 ) and (2π3 ,

−2π
3 ). However, these peaks

do not diverge with system size in our simulations.

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 1  10  100

<
[f

(0
)-

f(
r)

]2
 >

r

L = 60
L = 90

L = 120
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distance, r, for different lattice sizes L, showing a log r dependence in accordance with the
mapping to a height model at a finite temperature.
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Figure 2.7: Graph showing the finite temperature correlation function 〈(f(0) − f(r))2〉
versus distance, r for various values of β = T−1. The correlations are logarithmic at all

temperatures, with the coefficient of log(r) varying between (2.45 ± 0.05) × 10−2 ≃ 2
√
3

45π at
β = 0 and (4.12 ± 0.05) × 10−2 at β = ∞. The data plotted is for a lattice of size L = 120

2.12 The Spin-S Quantum Kitaev Model

In this section we discuss the ground state energy of the quantum spin-S Kitaev model,

where there is a spin-S at each site interacting via the Kitaev Hamiltonian. This model has

been studied by Baskaran et al. [1] where they identified mutually commuting Z2 plaquette

variables that are the invariants of this system. However, this model is not exactly soluble

as in the spin-1/2 case and thus needs to be treated using different techniques. We derive

an exact lower bound for the ground state energy of this system below. Our quantum

mechanical Hamiltonian is normalised by the size of the spins. We have

H = − J

S(S + 1)

∑

a∈A

(

Sx
aS

x
a+ex + Sy

aS
y
a+ey + Sz

aS
z
a+ez

)

.

Here Sα
s (α = x, y, z) are quantum mechanical spin-S operators at each site s. Using the

operator inequality AB ≥ −(A2 + B2)/2, where A and B are any commuting Hermitian

operators, it is easily seen that H satisfies the lower bound

EG ≥ −JN, (2.37)

where EG denotes the ground state energy of the Hamiltonian. This is essentially the

classical ground state energy. A better bound may be proved by using a technique similar

to the one used in Section 2.3 which involves the minimisation of the Hamiltonian at every

B-site. We write the Hamiltonian H as a sum of individual Hamiltonians at every B-site
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H =
1

S(S + 1)

∑

(l,m)

Hb(l,m), (2.38)

where Hb(l,m) is a 4-site spin Hamiltonian containing only the couplings of the site b(l,m)

on the B-sublattice and its neighbours

Hb(l,m) =− J
(

Sx
a(l,m+1)S

x
b(l,m) + S

y
a(l−1,m+1)S

y
b(l,m) + Sz

a(l,m)S
z
b(l,m)

)

.

The operators Hb(l,m) can be diagonalised in a Hilbert space of 4-spins, i.e. a (2S + 1)4

dimensional Hilbert space. We note that Sx
a(l,m+1),S

y
a(l−1,m+1) and Sz

a(l,m) are operators

that belong to different sites, therefore they commute amongst each other and with Hb(l,m).

Hence we can move to a basis in which these are diagonal. We now work in the subspace in

which the basis vectors are eigenvectors of Sx
a(l,m+1),S

y
a(l−1,m+1) and Sz

a(l,m) with eigenval-

ues sxa(l,m+1), s
y
a(l−1,m+1), s

z
a(l,m) respectively. Thus the eigenvalues λ of Hb(l,m) satisfy the

relation

λ2 ≤ (JS)2
(

sxa(l,m+1)
2 + sya(l−1,m+1)

2
+ sza(l,m)

2
)

. (2.39)

This is true for all eigenvalues sxa(l,m+1), s
y
a(l−1,m+1), s

z
a(l,m) and hence is valid as an operator

inequality

H2
b(l,m) ≤ (JS)2

(

Sx
a(l,m+1)

2 + S
y
a(l−1,m+1)

2
+ Sz

a(l,m)
2
)

. (2.40)

Therefore, for any wave function |ψ〉 of all the 2N spins on the lattice we have

〈ψ|H2
b(l,m)|ψ〉 ≤ (JS)2

(

〈Sx
a(l,m+1)

2〉+ 〈Sy
a(l−1,m+1)

2〉+ 〈Sz
a(l,m)

2〉
)

, (2.41)

where 〈Sx
a(l,m+1)

2〉 = 〈ψ|Sx
a(l,m+1)

2|ψ〉 and so on. Using the fact that 〈ψ|Hb(l,m)|ψ〉2 ≤
〈ψ|H2

b(l,m)|ψ〉 and taking the square root we get

〈ψ|Hb(l,m)|ψ〉 ≥ −JS
√

〈Sx
a(l,m+1)

2〉+ 〈Sy
a(l−1,m+1)

2〉+ 〈Sz
a(l,m)

2〉.

This immediately gives

〈ψ|H|ψ〉 ≥
∑

(l,m)

−JS
√

〈Sx
a(l,m+1)

2〉+ 〈Sy
a(l−1,m+1)

2〉+ 〈Sz
a(l,m)

2〉, (2.42)

where the sum is over all the sites of the B-sublattice. Note that the terms in each of the

square roots are all real numbers. Using Eq. (2.3) in Eq. (2.42) and observing that for any

site on the A-sublattice Sx
a(l,m)

2 + S
y
a(l,m)

2
+ Sz

a(l,m)
2 = S(S + 1) we arrive at

〈ψ|H|ψ〉 ≥ −JN
√

S

S + 1
. (2.43)
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For large S,

EG

JN
≥ −1 +

1

2S
+O

(

1

S2

)

(2.44)

is a lower bound, which shows an increase in the ground state energy due to quantum

fluctuations. We note that the bound (2.43) is valid for all spins S and not just for large S.

2.13 Summary and Discussion

We have shown that the Kitaev model with classical spins shows no order-by-disorder, while

there are plausible arguments that the quantum model does. We have mapped the finite and

zero temperature problem of classical spins onto a height-model interacting via an effective

Hamiltonian HSOS. This effective Hamiltonian depends on the temperature of the spin

model. We have shown that the correlations of the height variables vary as log(r), where r

is the distance between the sites, for all temperatures of the spin model. The discrete height

model with a pinning potential in two dimensions undergoes a roughening transition from a

phase in which it is ordered to one with logarithmic correlations between the height variables

[5]. In the rough phase (T > TR) of the height model, the coefficient of log(r) gives us a

measure of the temperature [6],[7]. So we see that the range of temperature [0,∞] of the spin

model maps onto a range of temperature of the height model which is in the rough phase.

Note that as the temperature of the Kitaev Hamiltonian is decreased, 〈(f(0)−f(r))2〉 in the

SOS model increases. The increased fluctuations in {f} are accompanied by a decrease in

fluctuations of the φ-field, and the fluctuations of the spins {~S} decrease with temperature,

as expected.

The difference in the nature of the low temperature ordering in the classical and quan-

tum case is because the mechanism of order-by-disorder in classical and quantum models is

somewhat different. Consider a classical model, whose ground states form an M-dimensional

manifold. Let G be one of the ground states. We expand the energy in the coordinates or-

thogonal to the manifold, and look for small perturbations about the ground state. Keeping

terms in the deviations from the ground state to quadratic order, and going into the normal

mode coordinates, we get a quadratic approximation to the Hamiltonian in the transverse

coordinates as

δH =
∑

j

[

1

2mj(G)
p2j +mj(G)ωj(G)

2q2j

]

, (2.45)

where the sum over j extends over the n transverse degrees of freedom. Then, the corre-

sponding quantum mechanical partition function in the quadratic approximation is

Zquad ≈
∏

j

e−β~ωj/2

1− e−β~ωj
. (2.46)

For low temperatures, the G having the minimum value of the effective quantum me-
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chanical free energy is obtained by minimising the “zero-point energy” fq(G) =
∑

j
1
2~ωj.

However, the classical partition function corresponds to the case βωj ≪ 1, and at low tem-

perature T is easily seen to be proportional to T n/
∏

ωj(G). Thus the relative weights of

different points G on the manifold are determined by an effective free energy fcl(G) pro-

portional to
∑

j log ωj. Clearly fq and fcl are quite different, and states which are favoured

by one need not be favoured by the second. In particular, fcl depends more sensitively on

the low frequency modes.

If some of the ωj’s are zero, in this approximation, the classical partition function

diverges, but the quantum weight has no singularity. This problem of zero modes also

occurs in the calculation of [1]. In fact the zero frequency eigenvalue has a large degeneracy.

More generally, finite ~ corrections in a quantum mechanical system correspond to a

finite temperature classical model but in one higher dimension, and can be qualitatively

different. A simple example of this is a system of masses coupled by nearest neighbour

springs in one dimension. In the classical case, the variance of displacements of masses at

distance R varies as TR for large R, and small T , but this quantity grows only as logR,

both in the quantum case at zero temperature, and the classical case in two dimensions.

In the path-integral formulation, the large-S quantum Kitaev model becomes a set of

classical spins on a 2+1 dimensional lattice, with Kitaev couplings in two spatial directions,

and ferromagnetic couplings in the time/inverse-temperature direction. It is quite plausible

that in this 3-dimensional model, there is long-range order for low “effective temperature”,

but in the 2-dimensional classical Kitaev model, the destabilising effect of fluctuations is

too strong.

There are several interesting classical two dimensional systems, where thermal order-

by-disorder is expected. The best studied example for a continuous spin model in two

dimensions is the system of Heisenberg spins on a kagome lattice, with nearest neighbour

antiferromagnetic couplings. The expectation of order-by-disorder in this classical system

comes from theoretical and Monte Carlo studies, that suggest that at low temperatures, the

spins lie on a single plane as T → 0 [8],[9]. This model can also be related to the height

model at its critical point, within the quadratic approximation, suggesting that a single

long-range ordered state (the
√
3 ×

√
3 state) is selected over the coplanar ones [10],[11].

It would be interesting to identify the main reason for the difference in the behaviours in

these models and the case studied here.
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[5] J. V. José, L. P. Kadanoff, S. K. Kirkpatrick, and D. R. Nelson, Phys. Rev. B 16, 1217

(1977).

[6] S. T. Chui, J. D. Weeks, Phys. Rev. B 14, 4978 (1976).

[7] T. Ohta and K. Kawasaki, Prog. Theor. Phys. Vol. 60 No. 2 pp. 365-378 (1978).

[8] J. T. Chalker, P. C. W. Holdsworth, and E. F. Shender, Phys. Rev. Lett. 68, 855 (1992).

[9] M. E. Zhitomirsky, Phys. Rev. B 78, 094423 (2008).

[10] D. A. Huse and A. D. Rutenberg, Phys. Rev. B 45, 7536 (1992).

[11] C. L. Henley, Phys. Rev. B 80, 180401 (2009).

34



Chapter 3

Spin-1 Kitaev Chain

3.1 Introduction

The integrable nature of the spin-1/2 Kitaev model makes it a very useful testing ground

for analysing properties of one and two dimensional quantum spin systems. Variants of the

model have been the subject of a large amount of research in recent years. Several related

models have been studied in two dimensions [1, 2, 3, 4, 5, 6, 7, 8, 9], three dimensions

[10, 11] and also on quasi-one-dimensional lattices [12, 13, 14].

In this chapter, we study the Kitaev model with spin-S at every site. The two-

dimensional model appears difficult to analyse, but even the one-dimensional version of

it has a lot of interesting structure. For the Kitaev model with spin S > 1/2, there is

a Z2 invariant associated with each plaquette for arbitrary spin-S, which reduces to the

conserved Z2 gauge flux for the spin-1/2 case [15]. However, the model does not seem to

be fully integrable. The spin-S Kitaev model has been studied in the large S limit using

spin wave theory [15], and the classical version of the Kitaev model has been studied at

finite temperatures using analytical and Monte Carlo techniques [16]. We have seen in the

previous chapter that while the phenomenon of order-by-disorder [17, 18, 19, 20] may occur

in the quantum mechanical Kitaev model, it does not in the corresponding classical model

[16].

We begin by considering the spin-S Kitaev chain, obtained by setting the coupling along

one of the directions in the two dimensional model to zero. We show that this model has

local, mutually commuting conserved quantities Wn, for integer S. The eigenvalues of Wn

are ±1. For open boundary conditions, there are some additional conserved quantities at

the ends of the system. The existence of these conserved quantities implies that the Hilbert

space of a N -site system can be decomposed into a sum of 2N disjoint subspaces. The

dimensions of these subspaces are not equal. We describe a procedure to compute the

dimension of these sectors. For large N , the dimension varies as dN in most sectors, with

the constant d depending on the sector. The sectors show complicated spatial structures,

arising from the spatial structure of {Wn}.

35
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We then consider the spin-1 chain. The ground state lies in the sector in whichWn = +1

for all n, as verified by numerical studies [21]. In this sector, there is a gap between the

ground state and the first excited state. The lowest excited state of the system is the ground

state of a different sector; and the energy-gap seems to approach a non-zero value in the

limit of the system size going to infinity. We consider the sector containing the ground

state, and show that the Hamiltonian is equivalent to the Hamiltonian of a deposition-

evaporation process of a nearest-neighbour-exclusion lattice gas model, which can be written

as a spin-1/2 system with local interactions with a range extending to at most next-nearest

neighbours. The Hamiltonian seems to be difficult to diagonalize exactly, we present a

variational study of the ground state. The variational estimate of the ground state energy is

found to agree well with the results obtained numerically for small systems. We also analyse

the first excited state of the Hamiltonian. We then consider a more general Hamiltonian,

obtained by adding a term λ
∑

nWn, and discuss its ground states as a function of λ. We

show that the ground state of this new Hamiltonian is gapless for a range of couplings

λc1 ≤ λ ≤ λc2, and gapped otherwise. We argue that for λ just above λc1, in the sector

containing the ground state, the density of negative W ’s is of order | 1
log(λ−λc

1
) |. For λ just

below λc2, the density of positive W ’s goes to zero as (λc2 − λ)1/2.

3.2 One-dimensional Kitaev Model

In this section, we discuss a one-dimensional spin-S model which is obtained by considering

a single row of the Kitaev model in two dimensions. The Kitaev model on the honeycomb

lattice is governed by the Hamiltonian

H = Jx
∑

〈ij〉x
Sx
i S

x
j + Jy

∑

〈ij〉y
Sy
i S

y
j + Jz

∑

〈ij〉z
Sz
i S

z
j , (3.1)

where 〈ij〉α denote the nearest-neighbour bonds in the αth direction (α ≡ x, y, z). If we

set Jz = 0, we get a set of decoupled chains, which we refer to as Kitaev chains. The

Hamiltonian is given by

H =
∑

n

(

J2n−1S
x
2n−1S

x
2n + J2nS

y
2nS

y
2n+1

)

. (3.2)

In general, the couplings Jm could be all different from each other. If some of the

couplings are negative, we can change the signs of those couplings by performing the unitary

transformation

Sx
m → −Sx

m, Sy
m → −Sy

m, and Sz
m → Sz

m (3.3)

on appropriate sites. We consider only the simple case, where all couplings have the same

value, Jm = J . Without any loss of generality, we set J = 1. Finally, the Hamiltonian can

be unitarily transformed to a more convenient form by the following transformation on the
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n n + 1 n + 2

Wn

Figure 3.1: Picture of the Kitaev chain showing one of the conserved quantities Wn.

even sites,

Sx
2n → Sy

2n, Sy
2n → Sx

2n, and Sz
2n → −Sz

2n. (3.4)

The Hamiltonian in Eq. (3.2) then takes the translationally invariant form

HK =
∑

n

Sx
nS

y
n+1. (3.5)

3.3 The Invariants

The Hamiltonian in Eq. (3.5) has the following local symmetries for all S. We introduce

the operators on sites

Σα
n = eiπS

α
n , (3.6)

and operators on bonds

Wn = Σy
nΣ

x
n+1. (3.7)

We then find that

[Wn,H] = 0. (3.8)

The eigenvalues of Σα
n are ±1 for integer S and ±i for half-odd-integer S. Thus for any

value of the spin S, the eigenvalues of Wn are ±1.

However, there is a qualitative difference between integer and half-odd-integer values of

S. For integer values of S, all the matrices Σα
n matrices commute with each other, whereas

for half-odd-integer values,Σα
n commutes with Σβ

m for n 6= m but anticommutes with Σβ
n for

α 6= β. Consequently, for integer S, all the invariants Wn commute, but for half-odd-integer

S, Wn anti-commutes with its neighbouring invariants, Wn±1, and commutes with Wm,

m 6= n, n± 1. We will now show that this implies that all the eigenstates of the chain with

half-odd-integer S are 2N/2 fold degenerate.

The invariants for half-odd-integer S can be combined in the following way to form a

set of mutually commuting angular momentum operators, one per every two bonds,

µzn =W2n, µxn =W2n−1

∏

m<n

W2m−1, µyn = iµxnµ
z
n. (3.9)
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It can be verified that

[

µαn, µ
β
m

]

= 2iδnmǫ
αβγµγ , (3.10)

{

µαn, µ
β
n

}

= 2δαβ . (3.11)

The µαn commute with the Hamiltonian as they are made by multiplying conserved

operators. Hence Eq. (3.10) shows that the Hamiltonian has a (SU(2))N/2 symmetry,

where N is the number of sites. Thus each eigenstate is 2N/2-fold degenerate. There is no

reason for such a degeneracy for integer S and the ground state for S = 1 is non-degenerate.

We note that the spin-S Kitaev model in two dimensions also has a Z2 valued invariant

associated with every hexagon of the honeycomb lattice [15]. When they are restricted to

a single chain, the invariants take the form

Vn = Σy
nΣ

z
n+1Σ

x
n+2, (3.12)

which involves three neighbouring sites. The invariants given in Eq. (3.7) are simpler

because they only involve two sites. For any spin S, we find that Σx
nΣ

y
nΣz

n = I and (Σα
n)

2 =

(−1)2S ;hence the invariants in Eqs. (3.7) and (3.12) are related to each other as

Vn = (−1)2S WnWn+1. (3.13)

Open chains have extra symmetries at the edges. If the site labels of the open chain

are 1, · · · , N , then Sx
1 and Sy

N also commute with the Hamiltonian. Thus at the first and

last sites, we have a U(1) symmetry group generated by these operators. Note that a Z2

subgroup of this group, consisting of the operators Σx
1 and Σy

N , also commutes with all the

invariants. If we combine the operators Sx
1 and Sy

N with the Wn invariants on the first and

last bonds, we have a larger symmetry group made of W1, S
x
1 and their products at the

first bond, and the group made of WN , S
y
N at the last bond. As we will show in section

3.6, for the S = 1 case the group formed is SU(2) × U(1) at each end.

3.4 Dimension of the Subspaces

In this section we develop a procedure to count the number of states in a given sector for

integer S. First, we look at the dimension of sectors with {W} configurations given by

W ≡ {WN , ...W2,W1} for a closed chain of N sites and W ≡ {WN−1, ...W2,W1} for an

open chain. The states of a chain can be classified by the eigenvalues of Σx
i and Σy

i as

(yNxN ) · · · (y2x2)(y1x1), (3.14)

where xi, yi = ±1 are the eigenvalues of Σx
i and Σy

i respectively. The invariants are then

Wi = xi+1yi.
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We now calculate the number of states in a given sector W using a standard transfer

matrix technique. Consider the allowed states of r sites, when the values of (r−1) constants

Wj , with j = 1 to (r − 1) have been specified. We denote this set of values by W. Let

Zr(y|W) denote the number of allowed states of this set of sites with Σy
r = y where y takes

values ±1. We now add a site (r+1) to the chain, and also specify Wr. Let the new set of

{W} be denoted by W ′.

Consider first the case Wr = +1. Clearly, we can have two possibilities: Σx
r+1 = Σy

r =

+1, or Σx
r+1 = Σy

r = −1. Let ν(p, p′) denote the number of states of a single site with

Σy = p, and Σx = p′. Then, we clearly have the recursion equation

Zr+1(y|W ′) = ν(y,+1)Zr(+1,W) + ν(y,−1)Zr(−1,W). (3.15)

This equation can be written as a matrix equation

[

Zn+1(+1|W ′)

Zn+1(−1|W ′)

]

= T+

[

Zn(+1|W)

Zn(−1|W)

]

, (3.16)

where T+ is a 2× 2 matrix given by

T+ =

[

ν(+1,+1) ν(+1,−1)

ν(−1,+1) ν(−1,−1)

]

, (3.17)

thus

T+ =
1

2

[

S − 1 S + 1

S + 1 S + 1

]

for S odd, (3.18)

=
1

2

[

S + 2 S

S S

]

for S even. (3.19)

Similarly, when Wn = −1, the corresponding recursion equation is

[

Zr+1(+1|W ′)

Zr+1(−1|W ′)

]

= T−

[

Zr(+1|W)

Zr(−1|W)

]

, (3.20)

where the matrix T− is given by

T− =

[

ν(+1,−1) ν(+1,+1)

ν(−1,−1) ν(−1,+1)

]

. (3.21)
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Thus

T− = T+τ
x

where τx =

(

0 1

1 0

)

. (3.22)

It is then clear that for a given set of invariants W, the number of states can be written in

terms of a product of the matrices T+ and T−. For example, for an open chain of N sites,

and W = {WN−1, ...W3,W2,W1} = {+1, ... + 1,−1,−1}, we have

[

ZN (+1|+−−)

ZN (−1|+−−)

]

= T+...T+T−T−

[

Z1(+1|φ)
Z1(−1|φ)

]

, (3.23)

where φ denotes the null string, and Z1(y|φ) denotes the number of states of the spin at

site 1 with Σy
1 = y. Thus Z1(+1|φ) = S + 1, Z1(−1|φ) = S, when S is an even integer, and

Z1(+1|φ) = S, Z1(−1|φ) = S + 1 when S is an odd integer. The total number of states in

this sector is then given by

Γ(W) = ZN (+1|W) + ZN (−1|W). (3.24)

For a closed chain, there is an additional invariantWN = yNx1 and the number of states

in the sector becomes

Γ(W) = Tr

(

N
∏

n=1

TWn

)

, (3.25)

where TWn ≡ T± for Wn = ±1 and
∏N

n=1 is an ordered product of T± matrices, from site

1 to N . We now calculate the dimensions of some sectors for a closed chain of length N .

It is easy to get an explicit answer for the two extreme limits when Wn = ±1 for all n. In

these cases, the number of states, Γ±, is

Γ± =
(

d±1
)N

+
(

d±2
)N

, (3.26)

where d±1 (S) and d±2 (S) are the larger and smaller eigenvalues of T± respectively. The

eigenvalues can be computed to give
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d+1(2) =
1

2

(

S ±
√

S2 + 2S + 2
)

for S odd, (3.27)

=
1

2

(

S + 1±
√

S2 + 1
)

for S even, (3.28)

d−1(2) =
1

2

(

S + 1±
√

S2 − 1
)

for S odd, (3.29)

=
1

2

(

S ±
√

S2 + 2S
)

for S even. (3.30)

For S = 1, d+1 is equal to the golden ratio, γ = (1+
√
5)/2, and d+2 = −1/γ. As N → ∞,

the dimension of the Hilbert space in the sector with all Wn = 1 grows as γN . On the other

hand, d−1 = d−2 = 1. The dimension of the sector with all Wn = −1 is therefore equal to 2.

With the exception of S = 1, the larger of the two eigenvalues d±1 is always greater than 1,

and in the N → ∞ limit, we have

Γ±(S) =
(

d±1 (S)
)N

. (3.31)

d±1 (S) is sometimes referred to as the quantum dimension of the sector. As can be seen it

is, in general, fractional for any S. In the limit S → ∞,the quantum dimension tends to

S + 1/2 for both the sectors. It is interesting to note that it is a half-odd-integer in this

limit.

3.5 Expectation Values of Operators

In this section we derive expressions for the expectation values of the Σα
n operators (α ≡

x, y, z) in various sectors. We will assume periodic boundary conditions. Our calculation

will average over all the states of a given sector considered with equal weight; this can

be considered as a calculation in the limit that the temperature T → ∞, so that it does

not depend on the Hamiltonian. We evaluate the expectation values of Σα
r by inserting

projection operators at site r in the product of transfer matrices in Eq.(3.25).

The expectation value of a Σα
r operator (at infinite temperature) located at a position r

in an arbitrary sector with W -configuration W can be calculated by summing all the states

with Σα
r = +1 with a coefficient +1 and all the states with Σα

r = −1 with a coefficient

−1. The elements of the transfer matrices T± from site r − 1 to r are given by the values

of ν(yr, xr). In the calculation of the expectation value of Σx
r placed at site r, we define a

modified transfer matrix T
x
+ at site r that sums over the states at r, with the appropriate

sign of the state xr. The rest of the transfer matrices remain the same and contribute to

the sum over all possible states. We have
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T
x
+ =

[

ν(+1,+1) −ν(+1,−1)

ν(−1,+1) −ν(−1,−1)

]

,

= T+τ
z

where τ z =

(

1 0

0 − 1

)

, (3.32)

and

T
x
− =

[

−ν(+1,−1) ν(+1,+1)

−ν(−1,−1) ν(−1,+1)

]

,

= −T−τ
z. (3.33)

Similarly for Σy
r

T
y
+ =

[

ν(+1,+1) ν(+1,−1)

−ν(−1,+1) −ν(−1,−1)

]

,

= τ zT+, (3.34)

and

T
y
− =

[

ν(+1,−1) ν(+1,+1)

−ν(−1,−1) −ν(−1,+1)

]

,

= τ zT−. (3.35)

Using the fact that the action of Σz
r on the states is Σx

rΣ
y
r we can write the modified

transfer matrix for Σz
r

T
z
+ =

[

ν(+1,+1) −ν(+1,−1)

−ν(−1,+1) ν(−1,−1)

]

,

= τ zT+τ
z, (3.36)

and

T
z
− =

[

−ν(+1,−1) ν(+1,+1)

ν(−1,−1) −ν(−1,+1)

]

,

= −τ zT−τ
z. (3.37)
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Thus we can write the following formula for the expectation value of the Σα
r operator

in a general sector with a W -configuration W

〈Σα
r+1〉W = Tr









N
∏

j=r+1

TWj



T
α
Wr

(

r−1
∏

i=1

TWi

)



 /Γ({W}),

where

T
x
Wr

=WrTWrτ
z,

T
y
Wr

= τ zTWr ,

T
z
Wr

=Wrτ
z
TWrτ

z. (3.38)

We now compute the expectation values of Σα
r in two sectors: the sector W0 with all

Wn = +1, and the sector W1 in which one of the Wn = −1 and all the other Wn = +1

(without loss of generality we pick WN = −1). The expressions for 〈Σα
r 〉W0,1 ≡ 〈Σα

r 〉0,1 can

be evaluated to be

〈Σx
r 〉0 = 〈Σy

r〉0 = Tr
[

τ zT+
N
]

/Γ({W0}),
〈Σz

r〉0 = Tr
[

τ zT+τ
z
T+

N−1
]

/Γ({W0}), (3.39)

and

〈Σx
r 〉1 = Tr

[

T+
N−r+1τ zT+

r−1τx
]

/Γ({W1}),
〈Σy

r〉1 = Tr
[

T+
N−rτ zT+

rτx
]

/Γ({W1}),
〈Σz

r〉1 = Tr
[

T+
N−rτ zT+τ

z
T+

r−1τx
]

/Γ({W1}). (3.40)

A similar procedure can be used to evaluate the spin-textures of various operators in

the different {W} sectors of this model.

3.6 The S = 1 Model

We now focus on the Kitaev chain with spin-1’s at each site. We work with the natural

spin-1 representation in which

(Sα)βγ = iǫαβγ . (3.41)

In this representation, the matrices Σα are diagonal and are given by
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Σx =







1 0 0

0 −1 0

0 0 −1






,

Σy =







−1 0 0

0 1 0

0 0 −1






,

Σz =







−1 0 0

0 −1 0

0 0 1






. (3.42)

We note that these matrices satisfy ΣxΣyΣz = I. We denote the basis vectors by |x〉, |y〉
and |z〉 defined as

|x〉 =







1

0

0






, |y〉 =







0

1

0






, |z〉 =







0

0

1






. (3.43)

We then see that the 9 possible states at sites (n, n+ 1) are given by

|xy〉, |xz〉, |yx〉, |zy〉 and |zz〉 with Wn = 1, (3.44)

and

|xx〉, |yy〉, |yz〉 and |zx〉 with Wn = −1. (3.45)

From Eq. (3.41) we have,

Sx|x〉 = 0, Sy|x〉 = i|z〉, Sz|x〉 = −i|y〉,
Sx|y〉 = −i|z〉, Sy|y〉 = 0, Sz|y〉 = i|x〉,
Sx|z〉 = i|y〉, Sy|z〉 = −i|x〉, Sz|z〉 = 0. (3.46)

Eqs. (3.42) and (3.46) imply that (Sα)2 = (1 − Σα)/2. For the 5 states in Eq. (3.44)

satisfying Wn = 1, we have the following actions of the relevant term in the Hamiltonian,

Sx
1S

y
2 |xy〉 = 0,

Sx
1S

y
2 |xz〉 = 0,

Sx
1S

y
2 |zy〉 = 0,

Sx
1S

y
2 |zz〉 = |yx〉,

Sx
1S

y
2 |yx〉 = |zz〉. (3.47)
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For the 4 states in Eq. (3.45) satisfying Wn = −1, the actions of the relevant term in

the Hamiltonian are given by

Sx
1S

y
2 |xx〉 = 0,

Sx
1S

y
2 |yy〉 = 0,

Sx
1S

y
2 |yz〉 = −|zx〉,

Sx
1S

y
2 |zx〉 = −|yz〉. (3.48)

As mentioned earlier, for an open chain with sites numbered from 1 to N , we find that

Sx
1 and Sy

N commute with H. We define the operators,

τ1 ≡ iW1S
x
1 , τ2 ≡ Sx

1 , (3.49)

τ3 ≡ −Sx
1W1S

x
1 , τ0 ≡ 1

2

(

1− (Sx
1 )

2
)

. (3.50)

It can be verified that these operators obey a SU(2) × U(1) algebra. Exactly the same

construction on the last bond, with Sx
1 → Sy

N and W1 → WN , yields the same algebra on

that bond.

3.7 Mapping to a Spin-1/2 Chain

For a given value of the state of the spin at site n, and a given value ofWn, there are at most

two choices for the spin state at site n+1. Hence it is clear that the Hilbert space of a given

sector can be mapped into the Hilbert space of a spin-1/2 chain, with some states excluded

which correspond to infinite energy. However, in general, the corresponding Hamiltonian

would have a rather complicated form, with long-ranged interactions. The mapping is easy

to construct explicitly in the sector with all Wn = +1, and the corresponding Hamiltonian

has only local interactions. This is what we now proceed to show.

Consider the state zzzz · · · that belongs to the sector with all Wn = +1. The only

allowed process in this sector is zz ⇋ yx [Eqs. (3.47)]. We may think of this process as

a quantum dimer deposition-evaporation model. The z-spins are treated as empty sites;

two empty sites can be changed to being occupied by a dimer yx by a ‘deposition’ process,

and conversely, yx can ‘evaporate’ and become zz again. The dimers have a hard-core

constraint, and a site cannot be shared by two dimers. The dimers are oriented: the ‘head’

x being to the right of the ‘tail’ y.

This dimer deposition-evaporation model can also be described as a deposition-evaporation

of a nearest-neighbour exclusion lattice gas. We just think of the heads as particles, and

do not distinguish between the tails and empty sites, except for ensuring that we deposit a

particle at a site only if it is empty and both its nearest neighbours are also empty. Then
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this model is described by the Hamiltonian

Hd = − 1

4

∑

n

(1− σzn−1) σ
x
n(1− σzn+1). (3.51)

We note that this model is different from the dimer deposition-evaporation models stud-

ied earlier [22], in that the two ends of the dimer are distinct, and there is no reconstitution.

Also, this Hamiltonian does not have an interpretation as the evolution operator of a classical

Markov process, as there are no diagonal terms corresponding to probability conservation.

We have introduced a minus sign in the Hamiltonian for later convenience. This does not

change the eigenvalue spectrum as the eigenvalues of Hd occur in pairs ±ei.

3.8 Variational Study of the Ground State

We will now use a variational approach to study the ground state of the Hamiltonian Hd

with periodic boundary conditions. We use the z-basis, and denote the ↑ state at the site i

by an occupied site (ni = 1), and the ↓ state by an empty state (ni = 0). Since two adjacent

sites cannot be simultaneously occupied, the state space is that of hard-core particles with

nearest-neighbour exclusion on a line. A configuration C is specified by an N -bit binary

string 0010010101 · · · , which gives the values of all the N occupation numbers ni. We note

that in the basis where all the ni are diagonal, the Hamiltonian Hd has all matrix elements

non-positive. This implies that the (real) eigenvector corresponding to the lowest energy

will have all components of the same sign in this basis.

For the ground state of Hd, we consider a variational wave function of the form

|ψ〉 =
∑

C

√

Prob(C) |C〉, (3.52)

where Prob(C) is chosen as the probability of the lattice gas configuration C in some

classical equilibrium ensemble corresponding to a suitably chosen lattice gas Hamiltonian.

Clearly, this trial vector is normalized, with

〈ψ|ψ〉 = 1. (3.53)

With this choice, Prob(C) is also the probability of the configuration C in the quantum

mechanical variational state |ψ〉.
The simplest choice of the lattice-gas Hamiltonian is that of a classical lattice gas with

nearest-neighbour exclusion, and a chemical potential µ, with a Hamiltonian given by

Hcl = +∞
∑

i

nini+1 − µ
∑

i

ni, (3.54)

where we use the convention that 0 · ∞ = 0; hence the first term in (3.54) allows states

with nini+1 = 0 but disallows states with nini+1 = 1. Let us denote z = exp(βµ). It is
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straightforward to determine various correlation functions in the thermal equilibrium state

corresponding to Hcl. The probability of a configuration C is given by

Prob(C) = exp[−βHcl(C)]/ΩN (z), (3.55)

where ΩN (z) is the grand partition function for a ring of N sites. The grand partition

function ΩN (z) can be determined using the standard transfer matrix technique. For the

nearest neighbour exclusion gas we use the basis states given by the occupation numbers

at each site {(0), (1)}. We thus have the 2× 2 matrix T2 given by

T2 =

[

1 1

z 0

]

, (3.56)

with eigenvalues

λ± = (1±
√
1 + 4z)/2, (3.57)

We now calculate the expectation value of the Hamiltonian 〈Ψ|Hd|Ψ〉. The matrix

element of the i-th term is clearly zero, unless ni−1 = ni+1 = 0. Now, in the calculation of

the expectation value of 〈Ψ|Hd|Ψ〉 the only configurations that have a nonzero contribution

are the those with the configuration ni−1nini+1 = 010 in |Ψ〉 along with ni−1nini+1 = 000

in 〈Ψ| and vice versa, since the action of the Hamiltonian deposits or evaporates particles

at a given position. The corresponding coefficients of the terms in the wave function are
√

zProb(000) and
√

Prob(000) respectively. Thus we have

〈Hd〉/N = −2
√
z Prob(000) =

−2√
z
Prob(010). (3.58)

Here Prob(000) denotes the probability that three randomly selected consecutive sites

in the ring will be empty in the classical ensemble, and a similar definition for Prob(010).

This is easily calculated for the Hamiltonian Hcl in the limit of large N . We have

Prob(010) = Prob(1) = ρ, (3.59)

where ρ is the density per site given by

ρ = z
d

dz
log(λ+) =

1

2
− 1

2
√
1 + 4z

. (3.60)

This yields the following expression for the expectation value of the Hamiltonian

〈Hd〉 = − 2√
z

(

1

2
− 1

2
√
1 + 4z

)

. (3.61)

Extremizing 〈Hd〉 with respect to z, we find that the minimizing value occurs for z =

0.405, yielding 〈Hd〉 = −0.60057. This gives us the variational bound on the ground state

energy per site E0
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E0 ≤ −0.60057. (3.62)

This energy is somewhat higher than the energy obtained by exact diagonalisation [21]

indicating that the correlations in the classical Hamiltonian Hcl do not exactly reproduce

the correlations in the quantum ground state of Hd.

We can attempt a better variational calculation by considering a classical lattice gas

with an additional next-nearest-neighbour interaction. The Hamiltonian of this lattice gas

is

H ′
cl = +∞

∑

i

nini+1 −K
∑

i

nini+2 − µ
∑

i

ni. (3.63)

Let us denote z = exp(βµ), and u = exp(βK). In this case, since the interactions extend

to the next-nearest-neighbour, the basis states need to contain the occupation numbers of

two consecutive sites. We thus have a 3 × 3 transfer matrix in the two-site occupation

number basis {(00), (10), (01)} given by

T3 =







1 0 1

z 0 zu

0 1 0






. (3.64)

The probability of the configuration C in the equilibrium ensemble is given by

Prob(C) = exp[−βH ′
cl(C)]/ΩN (z, u), (3.65)

where ΩN (z, u) is the grand partition function for a ring of N sites. We then get

− 〈Hd〉/N = 2Prob(00000)
√
z + 4Prob(10000)

√
zu

+2Prob(10001)
√
zu2, (3.66)

Here Prob(00000) is the probability of finding a randomly selected set of five consecutive

sites all unoccupied in the equilibrium ensemble corresponding to the Hamiltonian H ′
cl.

These probabilities are also easily calculated. Treating z and u as variational parameters,

we find that 〈Hd〉 is minimized for z = 0.35198 and u = 1.3752. For these values one

finds that the density is ρ = 0.1952, Prob(00000) = 0.28066, Prob(10000) = 0.082804, and

Prob(10001) = 0.02443.

These give

E0 ≤ −0.60333, (3.67)

which is an improvement over Eq. (3.62), and quite close to the extrapolated value of

−0.60356 obtained from exact diagonalisation. This estimate may be further improved by

taking third-neighbour interactions in the classical Hamiltonian.
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3.9 Estimating the Energy Gap

Exact diagonalisation studies suggest that the first excited state of the 1-dimensional spin-1

Kitaev model lies in the sector with one Wn = −1 and the rest +1 [21]. We thus study

this sector using the variational techniques of Section 3.8 and try to estimate the gap of the

first excited state (the lowest energy state in this sector) from the ground state energy of

the system. We set WN = −1 and the rest of the Wn’s equal to +1. Two states with this

configuration of Wn’s are |xzz...zzz〉, where the state at site 1 is |x〉 and the rest of the sites

are |z〉, and |zzz...zzy〉, where the state at site N is |y〉 and the rest of the sites are |z〉.
Other states with the same {Wn} can be constructed from these two states by the action

of the Hamiltonian Hd as defined in Eq. (3.51). For convenience we redefine this in terms

of the original spin variables below

Hd =
N
∑

i=1

Hi where Hi = Sx
i S

y
i+1. (3.68)

Hi changes |zizi+1〉 ⇌ |yixi+1〉. This process can be thought of as a hard-core particle

deposition-evaporation process, as in the previous section. The state |zz〉 represents no

particles on either site and |yx〉 represents a particle at y and none at x. For the |xzz...zzz〉
state, Hi deposits or removes particles on sites from i = 2 to N − 1. H1 annihilates the

state. Similarly for the |zzz...zzy〉 state, the particles can be added and removed on sites

from i = 1 to N − 2, with HN−1 annihilating the state.

Thus, the states in this sector fall into two categories, |xzz...zzz〉 along with states built

from placing particles on it, and |zzz...zzy〉 along with the corresponding states formed by

adding particles. We represent the first type of state |xS〉 by |XC〉 where S is a string

of x, y, z and C is the corresponding configuration of particles, C ≡ 0n2n3....nN−1, with

ni being the occupation number of the site i (0 or 1). The second category of states is

represented by |Ty〉 ≡ |DY 〉 where T is a string of x, y, z and D represents the configuration

of particles in this state, D ≡ n1n2....nN−20. HN converts the |zx〉 on the N ’th plaquette

to −|yz〉 and vice versa only if the site N − 1 (and 1) is unoccupied, thereby converting

|XC〉 to −|CY 〉.
Now, from the action of the Hamiltonian on the basis states |XC〉 and |DY 〉, it is easy

to see that the ground state wave function is of the form

|ψvar〉 =
1√
2

(

∑

C

√

Prob(XC)|XC〉 −
∑

D

√

Prob(DY)|DY 〉
)

, (3.69)

where Prob(XC) is computed as the probability of the configuration C occurring in the

equilibrium ensemble of a hard core lattice gas on an open chain of length N − 2 with

a suitably chosen classical Hamiltonian, and similarly for Prob(DY ). The negative sign

between the two terms ensures that the sign of the coefficients in the wave function are all
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µ’

µ’

1N−2 2 3

z z z z

z z z z zY

X z
µ

µ µ

µ

XC

DY

N−1 N

Figure 3.2: Figure depicting the two configurations |XC〉 and |DY 〉, in theWN = −1 sector.
Dimers can be added at the sites 2 to N − 1 in the configuration |XC〉 and correspondingly
at N−2 to 1 in the configuration |DY 〉. Addition of particles at the end of the chain carries
a different weight µ′ from the rest.

positive. It is easy to see that

〈ψvar|ψvar〉 = 1. (3.70)

The Hamiltonian is invariant under the following transformation |XC〉 → |CTY 〉, where
CT is the configuration C with the order of particles reversed (ni → nN−i). Hence the

ground state wave function must also be invariant under this symmetry transformation.

We incorporate this symmetry explicitly in the wave function |ψvar〉 by the condition

Prob(XC) = Prob(CTY ). (3.71)

We choose the classical lattice gas Hamiltonian to be that of a nearest neighbour exclu-

sion gas with equal fugacities for deposition or evaporation of particles at all sites except

at the end of the chain. As placing a particle on the site adjacent to the N ’th site is less

favourable than the others, we set the activity of this site as different from the rest. We

have

HC
cl = +∞

N−2
∑

i=2

nini+1 −
N−2
∑

i=2

µni − µ′nN−1. (3.72)

The probability of each configuration is then given by

Prob(C) = exp[−βHC
cl (C)]/ΩN−2(z, z

′), (3.73)

where z = exp(βµ) and z′ = exp(βµ′) and ΩN−2(z, z
′) is the grand partition function of an

open chain with the above classical Hamiltonian. We now calculate the expectation value

of the energy of the Hamiltonian for this wave function. In the calculation below we find

the largest eigenvalue of the system, since the eigenvalues come in pairs. We have
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N−1
∑

i=1

〈ψvar|Hi|ψvar〉 =
2√
z′
Prob(1CN−1) +

N−2
∑

i=2

2√
z
Prob(1Ci ), (3.74)

where Prob(1Ci ) is the probability of the occurrence of a dimer at site i in the configuration

|XC〉 and similarly for D. We use the fact that Prob(1Di ) = Prob(1CN−i) in the above

calculation.

The term HN connects the states |XC〉 and |DY 〉. Using (3.71) we get

〈ψvar|HN |ψvar〉 = 1− Prob(1CN−1). (3.75)

These probabilities can be computed from the grand partition function as

N−2
∑

i=2

Prob(1Ci ) = z
d

dz
log(ΩN−2(z, z

′)),

Prob(1CN−1) = z′
d

dz′
log(ΩN−2(z, z

′)). (3.76)

Thus we have

〈ψvar|Hd|ψvar〉 = 1 + (2
√
z′ − z′)

d

dz′
log(ΩN−2(z, z

′)]

+2
√
z
d

dz
log[ΩN−2(z, z

′)). (3.77)

We can calculate the partition function using a transfer matrix technique. ΩN−2(z, z
′),

the partition function of a chain of length N − 2, where the last site has a fugacity z′, is

given by

ΩN−2(z, z
′) = ΩN−3(z) + z′ΩN−4(z), (3.78)

where ΩN−3(z) and ΩN−3(z) are partition functions of an open chain (with all fugacities

equal to z) of length N − 3 and N − 4 respectively. In the limit of large N this reduces to

ΩN−2(z, z
′) = (λ+ + z′)ΩN−4(z) = λ+

NΩ′, (3.79)

where Ω′ is defined as

Ω′ = (z′ + λ+)
(1 − ρ)

λ+
3 . (3.80)

Now we have
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〈ψvar|Hd|ψvar〉 = 1 + (2
√
z′ − z′)

d

dz′
log(Ω′) + 2

√
z
d

dz
log(Ω′)

+2
√
z
d

dz
log(λ+

N ). (3.81)

The term 2
√
z d
dz log(λ+

N ) is exactly the value of 〈Hd〉 in the sector with all Wn = +1

which is the ground state sector (Eq. 3.61). This term is proportional to N and dominates

over the other terms in the limit of large N . Hence the extremization of 〈H〉 yields the

value NE0 and z = zg where E0 is the ground state energy per site of the Hamiltonian (in

the sector with all Wn = +1 sector, E0 = −0.6005) and zg is the minimizing value of z in

that sector (zg = 0.4045). Substituting this value of z back in (3.81) and extremizing over

z′ we obtain z′ = 0.2537 yielding

〈ψvar|Hd|ψvar〉 = −N(0.6005) + 0.1875. (3.82)

This implies the following bound on the lowest eigenvalue in this sector

E′
0 ≤ NE0 + 0.1875. (3.83)

Thus we arrive at an estimate of the energy gap ∆ = 0.1875 for this system. This

estimate can be improved by adding more parameters in the wave function, or equivalently

in the classical lattice gas Hamiltonian. In an open chain, the occupation numbers at

the ends of the chain are different from the ones in the bulk. We incorporate this fact

by successively changing the fugacities at the ends of the chain. A two parameter wave

function would have z′ and z′′ at the two opposite ends. Extremizing with respect to these

parameters we find the energy gap to be 0.1642 with z′ = 0.2537 and z′′ = 0.6670. A four

parameter wave function would have fugacities z′z′′′ at one end and z′′′′z′′ at the other,

and similarly for higher parameter wave functions. Table 3.9 shows the improvement in the

value of the energy gap with the number of parameters used.

We thus obtain a variational estimate of the gap of the first excited state from the

ground state energy. This matches quite well with the numerical estimates of the energy

gap [21].

3.10 Study of Ground States in Other Sectors

We now define a related, more general Hamiltonian for the system that explicitly contains

a defect energy term

H(λ) = HK + λ
∑

n

Wn. (3.84)

Since the Wn’s commute with HK , all the eigenvectors of HK can be chosen to be
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No. of ∆
Parameters

1 0.18751

2 0.16419

4 0.15845

6 0.15642

8 0.15578

10 0.15556

Table 3.1: Table showing the estimates of the energy gap with varying number of parameters
in the trial wave function.

simultaneous eigenvectors of H(λ), for all λ. However, if we vary λ, we can get different

eigenvectors to have the lowest energy. Clearly, if λ is large and positive, the ground state

will lie in the sector with all Wn = −1. Conversely, if λ is large and negative, the ground

state is the lowest energy eigenvector in the sector with all Wn = +1. In both these regions,

the gap in the excitation spectrum is of order |λ|. As we vary λ from −∞ to +∞, initially

the gap decreases and becomes zero at some value λc1. We then expect a gap to open up

again when λ is greater than a second critical point λc2 > λc1.

We can extend the treatment of the previous section to sectors with two or more Wn’s

negative. There is an energy ∆ required to create a single negative Wn. Thus λ
c
1 = ∆/2. If

two defects are spaced far apart, the energy required to create two defects will be nearly 2∆,

with the correction term decreasing exponentially with the distance between the defects.

For n defects, the energy would be minimized if the defects are equally spaced. Thus the

distance between the defects is N/n, and the energy cost of creating n defects ∆E(n) in

H(λ), for small n, is well approximated by

∆E(n) ≈ − 2nλ+ n∆+ nA exp(−BN/n), (3.85)

where A and B are some constants. This then implies that for λ = λc1 + ǫ, the density of

defects in the true ground state of H(λ) will vary as 1/| log ǫ|.

We consider a sector with exactly two of the Wn’s equal to +1, and the rest negative.

Let us start with the state |zxxx · · · zxxx · · · 〉, where the spins at two sites i = 1 and

i = m+1 ≤ N are in the state z (these states will be referred to as z-spins in the following

discussion). This corresponds to WN = Wm = +1. Then, under the action of H(λ), this

state mixes with other states where the positions of the z-spins can change; the general state

in this sector may be labelled by the positions of the z-spins, r1 and r2. We denote the

vector as |r1, r2〉, where 1 ≤ r1 ≤ m < r2 ≤ N . Then, for 1 < r1 < m and m+ 1 < r2 < N ,

we get

HK |r1, r2〉 = −|r1, r2 + 1〉 − |r1 + 1, r2〉 − |r1, r2 − 1〉 − |r1 − 1, r2〉. (3.86)
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If the first z-spin is at m and the second is not at m+ 1, the first spin cannot move to

m+ 1, as that site would be in spin state y, and the state zy cannot change [Eqs. (3.47)].

Similarly, if r2 = N , and r1 6= 1, then the second spin cannot move to the right. However,

if the two z-spins are adjacent, then they can change to a state zz ⇋ yx [Eqs. (3.47)]. But

from the state yx the state can only return to zz.

If we disallow the transitions to state yx, the z-spins act as independent particles moving

in two disjoint regions of space, 1 ≤ r1 ≤ m and m+1 ≤ r2 ≤ N . In this case, the minimum

energy of this system is just the sum of the energies of two particles. This energy is an

upper bound on the true ground state energy of this system. Thus, we find that the ground

state energy in this sector, Eg
2−sector, has the upper bound

Eg
2−sector ≤ −2J cos

(

π

m+ 1

)

− 2J cos

(

π

N −m+ 1

)

− λ(N − 4). (3.87)

Next, suppose that the state with the m-th site in the y-state and the (m+1)-th in the

x-state is called the state r1 = m + 1, r2 = 1, and a similar definition for the other end.

Then the range of r1 is at most m+1, and the range of r2 is at most l−m+1. By excluding

some states (here r1 = m+ 1, r2 6= r1), the kinetic energy can only increase, and hence we

have

Eg
2−sector ≥ −2J cos

(

π

m+ 2

)

− 2J cos

(

π

N −m+ 2

)

− λ(N − 4). (3.88)

For N,m ≫ 1, these bounds can be expanded in powers of 1/m, and have the same

leading order correction. Also, the minimum energy corresponds to equally spaced defects,

with m = N/2.

We can easily extend the discussion to sectors with three, four or more Wn’s equal to

+1. In case the lengths of the intervals between the positive Wn’s are m1,m2,m3, · · · ,mr,

the bounds on the lowest energy in this sector Eg
r−sector become

−2J

r
∑

i=1

cos

(

π

mi + 2

)

− λ(N − 2r) ≤Eg
r−sector ≤ −2J

r
∑

i=1

cos

(

π

mi + 1

)

− λ(N − 2r). (3.89)

Thus, we see that for λ > J , the ground state belongs to the sector with all Wn’s equal

to −1. If λ = J(1 − ǫ), the ground state will be in the sector with n equispaced bonds

with Wn = +1, where the spacing ℓ between them ≈ N/n is given by ǫ−1/2. The minimum

energy per site of H(λ) for λ = J(1−ǫ) varies as ǫ3/2 for small ǫ. Equivalently, if we restrict

ourselves to sectors with only a fraction ǫ ofWn’s having the value +1, the minimum energy

per site varies as −ǫ3/2. This is equivalent to the statement that for HK corresponding to
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λ = 0, in the sector with the fractional number of positive Wn’s being equal to ∆, the

minimum energy per site varies as ∆3/2.

3.11 Summary

In this chapter, we first analysed the symmetries of a spin-S Kitaev chain. We found a Z2

invariant, Wn, associated with every link (n, n + 1), namely, N invariants for the model

defined on a ring with N sites. For integer S, these invariants commute with each other

and the Hamiltonian. The Hilbert space can therefore be split into 2N sectors, where

the Hamiltonian is block diagonal. For half-odd integer S, Wn anti-commutes with Wn±1

and commutes with the rest. We showed that this implies that all the eigenstates of the

half-odd-integer spin models are 2N/2-fold degenerate, thus showing a qualitative difference

between the integer and half-odd-integer models. We outlined a procedure to compute the

dimensions of the invariant sectors. We showed that the dimension of most of the sectors

can be calculated in terms of products of 2× 2 matrices T+ and T−. For S = 1 the number

of states in the sector with all Wn = 1 grows as γN , where γ is the golden ratio, (1+
√
5)/2.

We then studied the spin-1 case in detail. We found that the ground state lies in a sector

which can be mapped to a quantum lattice gas model with nearest-neighbour exclusion.

We developed a variational wave function that relates the quantum mechanical averages

to the correlation functions of a classical lattice gas with nearest-neighbour exclusion. We

considered a more general Hamiltonian with a term proportional to the sum of the conserved

quantities, and showed that as a function of the coupling constant λ, this would show gapless

excitations in the range λc1 ≤ λ ≤ λc2. We extended our variational calculation to study

how the ground state energy and the defect density would vary near the two critical points

λc1 and λc2. At λ = λc1, Eq. (3.85) implies that the energy of the lowest excited state in a

system of length L goes as E ∼ exp(−BL), corresponding to a state in which one Wn = −1

while all the other Wn = 1. By the usual scaling arguments, the gap to the first excited

state goes as 1/Lz , where z is the dynamical critical exponent. We therefore conclude that

z = ∞. At λ = λc2, the low-energy excitations form a low-density gas of hard-core particles.

In one dimension, this can be mapped to a system of non-interacting spinless fermions with

a non-relativistic spectrum E ∼ k2. Hence in a system of size L, the gap to the lowest

energy states goes as 1/L2 corresponding to k ∼ 1/L; thus z = 2. The determination of the

value of z in the critical region λc1 < λ < λc2 remains an open problem.
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Chapter 4

The Hard Square Lattice Gas

4.1 Introduction

In this chapter we study the lattice gas model of particles on a square lattice with nearest

and next-nearest-neighbour exclusion (hard squares). This model undergoes a transition

from a fluid phase at low density to a columnar ordered phase at high density. In order

to understand the nature of the columnar ordered phase, we develop a high activity per-

turbation expansion for the free energy per site about a state with perfect columnar order.

This is a singular perturbation series in powers of 1/
√
z, where z is the fugacity associated

with each particle. We show that the different terms of the series can be regrouped to get

a Mayer-like series for a polydisperse system of interacting vertical rods in which the n-th

term is of order z−(n+1)/2. We sum this series to get the exact expansion to order 1/z3/2. We

then analyse the nature of the transition from the columnar ordered phase at high density

to the fluid phase at low density. We note that the ordered states are related to each other

by Z4 symmetry transformation. Using a simple coarse grained picture, we argue that the

critical properties of the model are that of a more general Ashkin-Teller model. We use

symmetry arguments to map the local densities in the model to the Ising energy desities in

the corresponding Ashkin-Teller model. We then use Monte Carlo simulations to test our

predictions. We locate the critical point of the system as zc = 97.5 ± 0.5. We also study

the correlations between various quantities in the system in order to get a fairly precise

estimate of the position of the transition on the Ashkin-Teller critical line.

4.2 The Model

We consider a system of particles with nearest and next-nearest-neighbour exclusion on the

square lattice (Fig. 4.1). The Hamiltonian is either 0 for an allowed configuration and ∞
for a disallowed configuration (if particles are closer than or at the next-nearest-neighbour).

Thus we see that the temperature of the system plays no role and the nature of the phases

are governed purely by the entropy of the particles. Associated with every particle, we

have a fugacity z = exp(−µ), where µ is the chemical potential of the system. The grand

59
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Figure 4.1: A typical configuration of hard squares on the lattice at (Left) low fugacity and
(Right) high fugacity. The light green squares correspond to particles on row A, whereas
the dark green squares correspond to particles on row B. At high densities, the system is in
a columnar ordered phase. The figure depicts a section of a larger system.

canonical partition function of the hard square lattice gas model can be expressed as

Ω(z) =
∑

C

zn(C), (4.1)

where z is the fugacity of the particles, n(C) is the number of particles in the configuration

C and the sum is over all allowed configurations of hard squares on the lattice.

The Landau free energy per site is defined as

f(z) = lim
N→∞

− 1

N
log Ω(z), (4.2)

where N is the total number of sites in the lattice. From this we can calculate other

thermodynamic quantities. The density of particles at a particular fugacity is given by

ρ(z) = −z d

dz
f(z). (4.3)

The low density Virial series of this model can be computed using standard techniques

[1]. We have [2]

− f(z) = z − 9

2!
z2 +

194

3!
z3 − 6798

4!
z4 + . . . (4.4)

This expansion has a finite radius of convergence determined by the singularity closest to

the origin at z0 ≈ −0.1. The low-density fluid phase has short-ranged correlations between

particles, but the high-density columnar-ordered phase has long-range order.

4.3 Expansion about the Crystalline Ordered State

We consider the square lattice to be made up of four sublattices labelled 1 to 4 (Fig. 4.2).

Rows containing the sites of sublattice 1 and 2 are called A-rows, and those containing
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A

B

B

A

C D C D

2

34

1

1 1

4

3

2

3

22

4 4 3

1

Figure 4.2: We define four sublattices 1 through 4 on the square lattice. Rows containing
the sites of sublattice 1 and 2 (3 and 4) will be called A (B) rows. Similarly, columns with
sublattice sites 1 and 4 (2 and 3) will be called C (D) columns.

sites of sublattice 3 and 4 are B-rows. Similarly, columns with sublattice sites 1 and 4 are

called C-columns and those with sublattice sites 2 and 3 are D-columns. We will specify

the position of the square by the position of the top left corner of the square.

At the point z = ∞ the problem of computing the partition function reduces to one of

calculating the number of perfect tilings of the lattice by hard squares. On a lattice of size

L X L (where L is assumed even), with open boundary conditions, clearly

Ωopen(z → ∞) = zL
2/4. (4.5)

For a lattice with periodic boundary conditions in both x− and y− directions, it is easy

to see that we have Ωperiodic = 4(2L/2 − 1)zL
2/4.

As we decrease z from ∞ there is a finite density of plaquettes not covered by squares

in the system. Suppose we start with a fully packed configuration of squares, with all sites

on sublattice 1 and introduce a single vacancy. By sliding squares in the corresponding

row, we can break the vacancy into two half-vacancies with in-between squares on the 2-

sublattice. These two vacancies can be moved arbitrarily far apart. Thus there are O(L2)

configurations of half-vacancies on each row, and there are L/2 possible rows. There is an

equal number of configurations with half-vacancies along columns. This leads to

ΩOpen(z) = zL
2/4

(

1 +
1

z
O
(

L3
)

+ ...

)

. (4.6)

This phenomena, which may be called deconfinement of half-vacancies, is the reason

behind the failure of the standard Mayer expansion technique, in which the order 1/z term

has a coefficient of the order of the volume of the system. Because the standard cumulant

expansion fails, this series must be treated using different techniques.

We describe a simple qualitative picture of the system with a small density of defects

introduced on the background with perfect crystalline order. The pairs of half-vacancies

may be pictured as joined by straight rods, which may be horizontal or vertical. As the

number of vacancies is increased, the system can be thought of as composed of horizontal
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and vertical rods of arbitrary length which do not overlap, with half-vacancies at either end

(Fig. 4.3). This gas of rods of width 2 has the same fugacity associated with rods of all

lengths. Now, it is expected that the entropy of these rods is maximized when all of them

are aligned, since the presence of a horizontal rod limits the number of allowed vertical rods

more than it does a horizontal one. This leads to a nematic ordering of these objects in one

particular direction. So as z → ∞ the system orders into a columnar ordered phase instead

of a sublattice ordered one. This picture is valid only at low density of vacancies. We note

that within this picture of defect rods on a starting state with all particles on sublattice-

1, there are no occupied sites on sublattice-4. Clearly, this picture is not quantitatively

accurate, however at high densities it is a good description of the system. The sublattice-4

particles represent a relevant perturbation at lower fugacities. We also note that not all

allowed configurations of hard squares on the lattice are obtainable by such a sliding from

the sublattice ordered state. There is a finite density of “fully jammed” states in the system,

which are ignored in this simple rods picture.

The state with orientational (i.e. nematic) ordering of these rods corresponds to a state

of the hard squares with columnar order. In fact, there is an exactly solved model of hard

rods of variable length due to Ioffe et al. [3], in which the activity of a rod is independent of

its length, which shows a phase transition at a finite value of the activity of the rods. This

phase transition is in the Ising universality class. We note that in the above model, there is

a weight for empty sites, which when translated to occupied sites gives a length dependent

weight to the rods. The phase transition in Ioffe et al.’s model is therefore different from

the hard squares case.

4.4 Expansion about the Columnar Ordered State

In the columnar ordered state the system preferentially occupies one of the rows (A or B) or

columns (C or D). In the A-ordered phase we have (ρ1 = ρ2) > (ρ3 = ρ4), where ρi denotes

the density of particles corresponding to the ith sublattice. The B, C, and D phases are

defined similarly.

To quantify the nature of ordering in this system we define the following order parame-

ters. The row order parameter of the system is defined to be

Or = 4[(ρ1 + ρ2)− (ρ3 + ρ4)], (4.7)

and the column order parameter is

Oc = 4[(ρ1 + ρ4)− (ρ2 + ρ3)]. (4.8)

Equivalently, we can also define a single Z4 complex order parameter

OZ4 = 4
√
2[(ρ1 − ρ3) + i(ρ2 − ρ4)]. (4.9)
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Figure 4.3: A configuration near full packing consisting only of horizontal and vertical
rod defects. The single square vacancies can break up into half-vacancies and be moved
arbitrarily far apart in the horizontal or vertical direction. The light blue squares represent
particles on sublattice 1, the horizontal rods are made of squares on sublattice 2 and the
vertical rods are composed of squares on sublattice 3.

The factor 4
√
2 has been introduced to make the maximum value of the order param-

eter |Oz4| equal to 1. The phase of the complex order parameter OZ4 takes the values

π/4,−3π/4,−π/4 and 3π/4 in the A, B, C, and D phases respectively.

We now develop a high-activity perturbation series about the row-ordered state. As we

will show, in this series, we effectively integrate out the horizontal rods, and this generates

a longer-ranged effective interaction between the vertical rods, in addition to the excluded

volume interactions.

We begin by associating different fugacities to the particles on the A and B rows. The

fugacities of the particles on row A is zA and on row B is zB . Ω(zA, zB) is the partition

function of the system with this explicit symmetry breaking between the odd and even rows.

Ω(zA, 0) corresponds to the fully columnar ordered state. We expand the partition function

of the system about a state with perfect columnar order in the A phase. This approach is

similar to methods developed in earlier studies [4].

We write the partition function of the system as a formal expansion in terms of the

fugacities of the particles on the B rows (defects) and the corresponding partition functions

of the A rows. The partition function expansion about the columnar ordered state is

Ω(zA, zB)

Ω(zA, 0)
= 1 + zBW1(zA) +

zB
2

2!
W2(zA) + . . . . (4.10)

The calculation of Wn(zA) involves fixing a configuration Bn of n particles on the B-

sites. The weight of this configuration is defined to be znBProb(Bn), where Prob(Bn) is the
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probability that in the reference system with only A-particles, no site excluded by these

B-particles will be occupied. We then sum these weights over all configurations Bn. The

negative of the logarithm of Prob(Bn) is defined to be the effective interaction between the

B particles when the A particles are integrated out.

Now, taking the logarithm of Eq. (4.10), we arrive at the cumulant expansion

1

N
log Ω(zA, zB) = κ0(zA) + zBκ1(zA) +

zB
2

2!
κ2(zA) + . . . , (4.11)

where N is the total number of sites in the system and κn denotes the connected part of

the n’th term in the expansion. κ0 denotes the contribution to the free energy expansion

from the perfectly columnar ordered state. The terms in the series can be evaluated from

the standard cumulant expansion as

κ1(zA) =
1

N
W1(zA),

κ2(zA) =
1

N

[

W2(zA)−W1(zA)
2
]

,

... (4.12)

It is straightforward to evaluate the first few terms in this expansion. When there are no

B-particles in the lattice, the partition function of the system breaks up into a product of 1-d

partition functions of particles on the A-rows (particles on different A-rows do not interact).

These A-particles thus behave as a 1-d lattice gas with nearest neighbour exclusion. Thus

we have

Ω(zA, 0) = [Ω1d,L(zA)]
L/2 , (4.13)

where Ω1d,L(zA) is the 1-d partition function of particles with nearest neighbour exclusion

on a periodic ring of length L. This is easily seen to be

Ω1d,L(zA) = λ+
L + λ−

L, (4.14)

where λ± are the eigenvalues of the 2 X 2 transfer matrix

T =

[

1 1

zA 0

]

,

with

λ± =
1±√

1 + 4zA
2

. (4.15)

Eq. (4.14) is valid for all L > 1. In the limit of large L, this gives us
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κ0(zA) =
1

2
log λ+. (4.16)

We now evaluate the first few terms in the cumulant expansion.

4.4.1 Single Defect

We begin by deriving the expression for κ1(zA), which involves a single B-defect on the

lattice. W1(zA) involves fixing the position of a single particle on a B-site, say at (x, y). Then

the sum over A-particle configurations is restricted to those in which the sites (x± 1, y± 1)

and (x, y ± 1) are not occupied. The partition function of a single row with this constraint

is the partition functions of a system of particles on an open chain of length L− 3, and is

easily calculated. Let f000 be the probability that the sites in a randomly picked interval of

length three on an A-row are all empty, in a 1-dimensional lattice gas with nearest neighbour

exclusion at activity zA. Then,

W1(zA) =
N

2
(f000)

2 . (4.17)

The expression for f000 is easy to derive using the properties of the 1-d nearest-neighbour

exclusion lattice gas. We have f000 =
1
zA
f010, where f010 is the probability that a randomly

picked site in the gas will have the occupation numbers 010 at the three consecutive sites.

Clearly, f010 = ρ1d(zA), the density of the gas. Using Eq. (4.15), we get

ρ1d(zA) =
1

2
− 1

2
√
1 + 4zA

. (4.18)

Therefore we obtain

κ1(zA) =
1

2
(f000)

2 =
1

2

(

ρ1d(zA)

zA

)2

. (4.19)

Thus κ1(zA) has the following expansion in inverse powers of zA

κ1(zA) =
1

8

(

1

zA2

)

− 1

8

(

1

zA5/2

)

+O
(

1

zA3

)

. (4.20)

Therefore the leading contribution to the cumulant expansion from the single particle

term is of order O
(

zB
zA2

)

.

In general, any term involving an arbitrary number of B-particles can be decomposed

into a product over partition functions of open chains and hence can be evaluated using a

product over two-particle correlators. The terms in the series can be easily expressed in

terms of the correlation function of occupied sites in the reference system. Let the pair

correlation function at a separation ∆ between the centres of two unoccupied 000 triplets

in the 1-d nearest neighbour exclusion gas be G(∆). This involves the computation of

partition functions of particles on open chains. The partition function for an open chain of

length r is given by
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Γ1D,r(zA) = f000λ+
r+3

[

1−
(

λ−
λ+

)r+2
]

. (4.21)

Then it is easily seen that

G (∆) = (f000) for ∆ = 0,

= (f000)
1

λ+
for |∆| = 1,

= (f000)
2
(

1− α|∆|−1
)

for |∆| ≥ 2,

(4.22)

where

α =
λ−
λ+

= −1 +
1

zA1/2
− 1

2

(

1

zA

)

+O
(

1

zA3/2

)

. (4.23)

4.4.2 Two Defects

Next, we consider the case where there are two B-particles on the lattice. The first particle

can be placed on any of the NB B-sites. The second particle can then be placed in the

following distinct ways, 1) on the same row, 2) on an adjacent row (above or below) and 3) on

any of the other rows. The contribution from these terms are κ2,same-row(zA), κ2,adjacent(zA)

and κ2,rest(zA) respectively. It is easy to see that the term κ2,rest(zA) contains terms that

can be factored into a product of two independent B-defects and thus is exactly cancelled

in the corresponding cumulant expansion. We thus have

κ2(zA) = κ2,same-row(zA) + κ2,adjacent(zA). (4.24)

We calculate the contributions from these two terms below.

Same row

The second particle can be placed at a distance ∆ from the first on the same row. The

weight w[∆] of each configuration in the partition function expansion (Eq. 4.22) is given by

w[∆] = 0 for |∆| ≤ 1,

= (f000)
4
(

1− α|∆|−1
)2

for |∆| ≥ 2. (4.25)

Summing over all ∆, and subtracting the disconnected term we arrive at
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κ2,same-row(zA) =
(f000)

4

2

(

−4α+ 2

1− α2
− 1

)

. (4.26)

The contribution from the sum over all ∆ yields a factor of the type 1
1−α2 , which tends

to
√
zA at large zA. Therefore the leading order contribution from the κ2,same-row term is of

order 1
zA7/2 .

Adjacent Rows

In the calculation of the term κ2,adjacent(zA) we consider two defects on adjacent B-rows

(∆Y = 1), separated by a distance ∆ in the X direction. The weight of each configuration

in the expansion is

w[∆] = (f000)
3 for ∆ = 0,

= (f000)
3 1

λ+
for |∆| = 1,

= (f000)
4
(

1− α|∆|−1
)

for |∆| ≥ 2. (4.27)

Summing over all ∆, and subtracting the disconnected term we arrive at

κ2,adjacent(zA) =
(f000)

3

2

(

1 +
2

λ+

)

+ (f000)
4

(

− 2α

1− α
− 1

)

. (4.28)

The first term represents the contact term obtained from the region |∆| ≤ 1. This

has contributions from ∆ = 0 and 1 which have leading contributions of order 1/zA
3 and

1/zA
7/2 respectively. The second term represents the contribution from the sum over all

∆ > 2 which is of order 1/zA
4. Thus the leading contribution from κ2,adjacent(zA) is of order

1
zA3 .

Hence the two particle term in the cumulant expansion has the following expansion in

inverse powers of zA

κ2(zA)

2!
=

1

16

(

1

zA3

)

+
3

64

(

1

zA7/2

)

− 21

64

(

1

zA4

)

+O
(

1

zA9/2

)

. (4.29)

4.4.3 Higher Orders

The calculation of higher order terms Wn(zA) for n > 2 is similar. We can compute

the terms in the cumulant expansion in defect fugacities to arbitrarily high orders. It is

possible to write down closed-form expressions for each term in the cumulant expansion in

defect fugacities, as the series arising from the sum over all configurations of n particles is
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algebraically summable. As an illustrative example, we quote the result for the third term

in the cumulant expansion, κ3(zA) in Appendix B.

However, working order by order in n is not very effective. In the series given in Eq.

(4.11), the series in powers of zB , with coefficients that are functions of zA. Eventually, We

would like to put zA = zB = z, and expand the series in inverse powers of 1/z. Unfortu-

nately, the leading behaviour of Wn(zA) for large zA is only z−n−1
A . Then, arbitrarily large

orders in n are required even to get the correct result to order 1/z.

This may be seen as follows: Consider the configuration of n B-particles vertically above

each other. It is easy to see that the probability that such a configuration would be allowed

in the unperturbed ensemble is [f000]
n+1, and hence is O(z

−(n+1)
A ). Hence the contribution

of this term to the perturbation expansion is of order znBz
−(n+1)
A . For zB = zA = z this is

O(1/z) for all n.

It is easy to check that only these vertical rod-like configurations of B-particles con-

tribute to order 1/z. Hence, if we want to sum over all terms to order 1/z, we group these

configurations together, and identify them as a single vertical rod. A general configuration

of B-particles would then be a group of non-overlapping vertical rods.

4.5 High-Activity Expansion in terms of Rods

We now develop an expansion in terms of the number of rod defects. In any configuration

of B-particles, we define a rod containing a given occupied B-site ~r to be the set of all the

consecutively occupied B-sites in the same column reachable from ~r using vertical steps of

length 2. Clearly, any configuration of B-sites has a unique description as a set of non-

overlapping vertical rods. To avoid over counting, two rods cannot sit directly on top of

each other.

We attach an additional activity factor ǫ to each rod, and now rewrite the summation

in Eq.(4.10) as a sum over configurations involving different numbers of rods

Ω(zA, zB)

Ω(zA, 0)
= 1 + ǫR1(zA, zB) + ǫ2R2(zA, zB) + . . . , (4.30)

where Rn(zA, zB) denotes the contribution of the configurations with exactly n rods to

the partition function expansion. Now taking the logarithm, we arrive at the free energy

expansion

F(zA, zB) = − 1

N
log (Ω(zA, zB))

= F0(zA, 0) + ǫF1(zA, zB) + ǫ2F2(zA, zB) + . . . , (4.31)

where F(zA, zB) denotes the free energy per site of the hard square lattice gas and
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F1(zA, zB) = − 1

N
R1(zA, zB),

F2(zA, zB) = − 1

N

(

R2(zA, zB)−
R1(zA, zB)

2

2

)

.

... (4.32)

We evaluate the free energy expansion formally in powers of ǫ. At the end of the

calculation, we set ǫ = 1. F0 denotes the contribution from the term when there are no

B-particles in the system. From Eq. 4.31 we have

F0 = −κ0(zA). (4.33)
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Figure 4.4: The configurations contributing to a single rod term

Now consider configurations with exactly one rod. The weight of a rod with exactly n

B-sites exactly above each other is easily seen to be fn+1
000 w

n
B. There are NB = N/2 possible

positions for each size n of the rod. Summing over all possible values of n, we get

F1 = −NB

N

∞
∑

n=1

(f000)
n+1zB

n. (4.34)

Which yields

F1 = −1

2

(

zBf000
2

1− zBf000

)

. (4.35)

It is convenient to define a parameter γ = zBf000. Then we have

F1 = − γf000
2(1− γ)

. (4.36)

We next evaluate the two rod term

F2 = −
∑

~r1,l1

∑

~r2,l2

[

w(~r1, l1; ~r2, l2)−
w(~r1, l1)w(~r2, l2)

2

]

. (4.37)

where w(~r1, l1; ~r2, l2) denotes the weight of the two-rod configuration, with a rod at posi-

tion r1 and length l1 and another at position r2 with length l2, in the partition function

expansion. w(~r1, l1) denotes the weight of a single rod configuration.

It is easy to see that rods that do not have a finite interaction are exactly cancelled
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in the corresponding cumulant expansion. We thus deal with only the following two rod

terms:

1) Adjacent rods (two rods whose ends lie on the same row) (Fig. 4.5)

2) Two rods with a finite Y-overlap (Fig. 4.6)

3) Intersecting rods (The weight of the configuration w(r1, r2) is zero, but w(r1)w(r2) is

finite)(Fig. 4.7)

We deal with these three terms separately. We have

F2 = t1 + t2 + t3. (4.38)

Adjacent rods
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Figure 4.5: The configurations contributing to the adjacent rods term

In the calculation of the term t1, we deal with all configurations in which two rods

touch an A-row from different sides. Then for this row, we need to calculate the correlation

function in the reference problem that two triplets of three consecutive sites at a given

distance are both empty. One of the rods extends upwards with length na and the other

rod extends downwards with a length nb (Fig. 4.5), the factor of 2 accounts for the symmetry

related diagrams. Summing over all configurations and subtracting the disconnected part,

we have

t1 = −
∞
∑

na=1

∞
∑

nb=1

γna+nb





(

f000
λ+

− f000
2

)

+

∞
∑

∆≥2

f000
2
[(

1− α|∆|−1
)

− 1
]



 .

This series can be easily summed. We have

t1 = − γ2f000
(1− γ)2

(

1

λ+
− f000

1− α

)

. (4.39)

Rods with a finite Y-overlap

In the evaluation of the term t2, we have two rods, with no B-particles overlapping in the

Y-direction. Now, one of the rods can have a part extending above these fully overlapping
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Figure 4.6: The configurations contributing to the rods with a finite Y-overlap term. The
factors multiplying the diagrams account for the other symmetry related configurations of
overlapping rods.

rods (Fig. 4.6), this can happen in 4 ways. The two rods can both have a finite extension

above the overlapping section, this can occur in two distinct ways, one of the rods extends

both above and below the other, or one rod extends above and the other below. Both these

cases yield the same weights. The extending sections above and below the overlap are of

lengths na and nb. We have

t2 = −1

2



1 + 4

∞
∑

na=1

γna + 4

∞
∑

na=1

∞
∑

nb=1

γna+nb









∞
∑

no=1

∞
∑

∆≥2

γ2no(f000)
2

[

(

1− α|∆|−1
)no+1

− 1

]



 .

(4.40)

The sum within the first brackets can be performed trivially. We have

t2 = −1

2

(

1 + γ

1− γ

)2

(f000)
2





∞
∑

no=1

∞
∑

∆≥2

γ2no

[

(

1− α|∆|−1
)no+1

− 1

]



 . (4.41)

The sum over no is straightforward, we have

t2 = −1

2

(

1 + γ

1− γ

)2

γ2(f000)
2





∞
∑

∆≥2

(

1− α|∆|−1
)2

1− γ2
(

1− α|∆|−1
) − (f000)

2 γ2

1− γ2



 .

We can rewrite this in a better form as

t2 = −1

2

(

1 + γ

1− γ

)2

(f000)
2

(

∞
∑

r=1

(1− αr)
2

γ−2 − (1− αr)
− 1

γ−2 − 1

)

. (4.42)

Now, since α is negative, the terms in the summand series are oscillatory. We thus split

the terms into even and odd powers of α. We have
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S =

( ∞
∑

r=1

(1− αr)2

γ−2 − (1− αr)
− 1

γ−2 − 1

)

. (4.43)

We write

S = Sodd + Seven, (4.44)

with

Seven =

( ∞
∑

n=1

(

1− α2n
)2

γ−2 − (1− α2n)
− 1

γ−2 − 1

)

, (4.45)

and

Sodd =

( ∞
∑

n=0

(

1 + |α|2n+1
)2

γ−2 − (1 + |α|2n+1)
− 1

γ−2 − 1

)

. (4.46)

For large z, α ≈ −1 + z−1/2, and the summand in Sodd and Seven is a slowly varying

function of n. To evaluate these expressions we can approximate the sum over the discrete

values by an integral over the appropriate range of n. The error is only of order 1/z. We

get

Seven =

∫ ∞

n= 1

2

dn

(

(

1− α2n
)2

γ−2 − (1− α2n)
− 1

γ−2 − 1

)

,

=
1

−2 log(−α)

(

−α− γ−4

γ−2 − 1
log

(

γ−2 − 1 + α

γ−2 − 1

))

, (4.47)

and

Sodd =

∫ ∞

n=− 1

2

dn

(

(

1 + |α|2n+1
)2

γ−2 − (1 + |α|2n+1)
− 1

γ−2 − 1

)

,

=
1

2 log(−α)

(

1 +
γ−4

γ−2 − 1
log

(

γ−2 − 2

γ−2 − 1

))

. (4.48)

We thus have

t2 = −1

2

(

1 + γ

1− γ

)2

(f000)
2 (Sodd + Seven) . (4.49)
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Figure 4.7: The configurations contributing to the overlapping rods term

Overlapping Rods

In the calculation of the overlapping rods term, we deal with all possible configurations

in which two rods which partially or fully overlap. In this case the two rods can be at a

distance ∆ = 0 or ∆ = ±1 away from each other. The length of the overlap is no and

the parts extending above and below are of lengths na and nb respectively. There is also a

contribution from the term in which two rods sit directly on top of each other, since this

configuration is not counted as a two rod term, but has a weight in the disconnected part.

We have

t3 =
3

4



1 + 4
∞
∑

na=1

γna + 4
∞
∑

na=1

∞
∑

nb=1

γna+nb





( ∞
∑

no=1

(f000)
2γ2no

)

+
1

2

∞
∑

na=1

∞
∑

nb=1

(f000)
2 (γ)na+nb . (4.50)

Hence

t3 =
3

4

(

1 + γ

1− γ

)2(f000
2γ2

1− γ2

)

+
1

2

(

f000γ

1− γ

)2

. (4.51)

4.5.1 High-Activity Expansion for the Free Energy

Setting ǫ = 1 in Eq. (4.31) we obtain a high-activity expansion for the free energy of the

system. The term F1, corresponding to single rods, has a leading contribution of order 1/z.

The term F2, corresponding to two-rod configurations has a leading contribution of order

1/z3/2. The order 1/z3/2 contribution to the two-rod term comes from two sources, a) when

two adjacent rods separated by a distance 1 touch the same row from opposite sides and

b) a summation over the distance between two rods which share a finite interval in the

Y-direction. The sum over the distance in this case yields a factor of order
√
z because

the correlation length between the rods is ξ = log α ∼ √
z. The term of order 1/z2 gets

contributions from configurations involving three rods, in addition to the above single rod

and two rod terms. For n rods, the summation over the distance between rods yields a
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leading order contribution of at most z
n−1

2 . Hence in the evaluation of the term of order

z
n+1

2 , only terms involving n rods need to be considered.

Using our expressions for F0, F1 and F2, we can generate the exact series expansion for

the free energy and the density of the hard square lattice gas up to order 1/z3/2. We have

− f(z) =
1

4
log z +

1

4z1/2
+

1

4z
+

(

3 log
(

9
8

)

+ 11
96

)

z3/2
+O

(

1

z2

)

, (4.52)

and

ρ(z) =
1

4
− 1

8z1/2
− 1

4z
−
(

9
2 log

(

9
8

)

+ 11
64

)

z3/2
+O

(

1

z2

)

. (4.53)

Higher order terms can in principle be evaluated in a similar manner. The term of order

1/z2 gets contributions from terms involving three rods, in addition to the above single

rod and two rod terms. This is much more involved, and will not be attempted here. In

Appendix B we show how the above series can also be arrived at in an alternate way, by

first summing over terms contributing at each order in z, and then over all sizes of the rods.

4.5.2 Order Parameter Expansion

In this section we compute the high-activity expansion for the row order parameter which

is defined in Eq. (B.25). We have

Or(zA, zB) = 4

[

zA
∂

∂zA
− zB

∂

∂zB

]

(−F(zA, zB)) . (4.54)

Using the terms in the free energy expansion above we can generate the exact order

parameter expansion to order 1/z3/2. We have

Or(z, z) = 1− 1

2z1/2
− 5

z
−
(

395

16
+ 50 log

(

9

8

))

1

z3/2
+O

(

1

z2

)

. (4.55)

Using the terms up to order 1/z3/2 in the order parameter expansion, we estimate the

critical point of the system by solving for the point Or = 0. We obtain an estimate of the

critical point zc = 14.86, which is significantly better than the estimate zc = 6.25 obtained

by using just the first three terms of the series.

4.6 Variational Study of the Free Energy

In this section we use the 1D nature of the perfectly ordered state to estimate the free

energy (and rigorous upper bounds) of the system with periodic boundary conditions. We

can generate each configuration of the hard square lattice gas by first filling up the A rows

with particles (independently, as there is no interaction between particles on the different
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A rows) and then placing B particles in the sites not disallowed by the occupied A-sites.

The partition function of the system can therefore be expressed as

Ω(zA, zB) =
∑

A-configurations

zA
nAΩB/{A}(zB), (4.56)

where ΩB/{A}(zB) is the partition function of the B-sites given a configuration {A} of A-

sites, and nA denotes the number of A-particles in the configuration. The sum is over all

possible allowed configurations of A-particles. Now, we can represent the partition function

ΩB/{A}(zB) as follows

ΩB/{A}(zB) =
∏

all sites x

∏

l

Ω1D,l(zB)
η(x,l), (4.57)

where Ω1D,l(zB) is the partition function of the system of particles on a 1D line of length l

with nearest neighbour exclusion and fugacity zB , this expression is provided in Eq. 4.21.

The product is over the volume of the system and η(x, l) is an indicator function with

value 1 if the site x is the leftmost site of l consecutively occupiable B-sites (i.e.- sites not

forbidden for occupation by the configuration {A}), and l ranges from 1 to L, the linear

size of the system.

The total partition function thus becomes

Ω(zA, zB) =
∑

A configs

zA
nA

∏

all sites x

∏

l

Ω1D,l(zB)
η(x,l). (4.58)

We write the partition function as

Ω(zA, zB) =
∑

A configs

zA
nA exp

(

∑

all sites x

∑

l

η(x, l) log(Ω1D,l(zB))

)

. (4.59)

We define θ(l, A) as the total number of sequences of length l of consecutively occupiable

B-sites in a given configuration {A}. Thus θ(l, A) =∑all sites x η(x, l). We have

Ω(zA, zB)

Ω(zA, 0)
=
∑ zA

nA

Ω(zA, 0)
exp

(

∑

l

θ(l, {A}) log(Ω1D,l(zB))

)

. (4.60)

We use the convexity inequality

exp(〈V 〉) ≤ 〈exp(V )〉, (4.61)

where the angular brackets denote the expectation value in a given ensemble. Using the

above inequality and taking logarithms on both sides, we arrive at
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log Ω(zA, zB) ≥ log Ω(zA, 0) +
∑

A configs

zA
nA

Ω(zA, 0)

∑

l

θ(l, {A}) log(Ω1D,l(zB)). (4.62)

We define

Prob(l, zA) =
1

NB

∑

A configs

zA
nA

Ω(zA, 0)
θ(l, {A}), (4.63)

where Prob(l, zA) is the expectation value of the number of sequences of length l in the

A-ensemble. Therefore, we arrive at the following bound for the free energy of the system

F(zA, zB) ≤ F0(zA, 0) −
1

2

∑

l

Prob(l, zA) log(Ω1D,l(zB)). (4.64)

We can derive an expression for the probability Prob(l, zA) as follows. We have

Prob(l, zA) =
1

NB

∑

A configs

zA
nA

Ω(zA, 0)

∑

x

η(x, l). (4.65)

We now interchange the summation over the configurations and the positions so that

Prob(l, zA) =
1

NB

∑

x





∑

A configs

zA
nA

Ω(zA, 0)
η(x, l)



 . (4.66)

Due to the periodicity of the lattice, the quantity within the brackets is translationally

invariant, therefore we have

Prob(l, zA) =
∑

A configs

zA
nA

Ω(zA, 0)
η(0, l). (4.67)

We can compute Prob(l, zA) in the following manner. We need to sum over configura-

tions which have a sequence of l non-forbidden sites with the leftmost being at 0. For the

site −1 to be forbidden, one or both of the A-sites (directly above or below the B-row) at

the X position −2 must be occupied. A similar condition holds for the A-sites at the X

position l + 2. This probability can be calculated to be

Prob(l, zA) = (f000)
2 1

λ+
2l

(

4z2

λ+
2 +

4z3

λ+
4 +

z4

λ+
6

)

. (4.68)

Using the above expression in Eq. 4.64 we obtain a rigorous upper bound on the free

energy of the system and therefore bounds on the individual terms in the series expansions.

We note that this free energy expression ignores the correlations along the axis perpendicular

to the ordering direction.

We can use this estimate of the free energy to estimate the critical point of this system.



4.7. FLUID TO COLUMNAR ORDER TRANSITION 77

We start by estimating the density of particles on the B-rows ρB , given the density of

particles on the A-rows ρA (calculated from zA). Using this value of ρB, we then calculate

ρA.

We thus have the following set of coupled equations

ρB(zB , zA(ρA)) =

∞
∑

l=1

Prob(l, zA(ρA))ρopen(zB), (4.69)

ρA(zA, zB(ρB)) =

∞
∑

l=1

Prob(l, zB(ρB))ρopen(zA). (4.70)

Where zi(ρi) is determined by the equation

ρi = ρ1d(zi) i ≡ A,B. (4.71)

We solve these equations self consistently to establish the point where this system of

equations becomes unstable. Using this technique, we estimate the critical point of this

system to be zc = 2.993. We note that even this somewhat elaborate variational technique

fails to capture the correlations that lead to a high value of the critical point in this system.

4.7 Fluid to Columnar Order Transition

We have seen above that the high density state of the hard square lattice gas exhibits

columnar order. Proving the finiteness of the radius of convergence of the expansions

developed above would amount to a rigorous proof of the existence of this phase (we have

not succeeded in doing this here). While at high densities the system is in a long range

ordered state, the low density state is disordered with short ranged correlations between

particles, as can be seen by the finite radius of convergence of the low activity series (Eq.

(4.4)). Therefore there is a phase transition from fluid to columnar order behaviour as a

function of density (or activity) in this system. This transition has been the subject of

several studies in the past, but there is as yet no consensus on the exact nature of the

transition.

We now focus our attention on this transition. As described in Section 4.4, the system

can order into any of four columnar ordered states. The transition from disorder to columnar

order thus represents a Z4 symmetry breaking. There are several well studied models

that exhibit a transition that break a Z4 symmetry in two dimensions such as the Eight-

Vertex model [5] and the Ashkin-Teller-Potts model [6]. As discussed in Chapter 1, a likely

paradigm for the critical behaviour of the hard square lattice gas is Ashkin-Teller criticality.

We describe a coarse grained mapping of the hard square lattice gas to the Ashkin-Teller

model in the next section.
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4.8 Mapping to the Ashkin-Teller Model

The boundaries between the different phases in the hard square lattice gas are hard to

define in a microscopic sense. Although, at large length scales it is possible to describe the

phase corresponding to the state of the system, at the lattice scale there is a degeneracy

in the definition of the phases. For example, a cluster of particles on the 1-sublattice can

be in either of the phases A or C. Thus, to find a good description of the system in

terms of a local order parameter, we need to look at the system at a scale that allows an

unambiguous definition of the phase. A coarse grained description is therefore a natural

way to understand the nature of this system.

Near the critical point, the correlation length of the system diverges. The behaviour of

the system at large length scales can be understood by dividing the system into patches of

larger sizes as we approach the critical point. This is in essence a real space renormalization

procedure. Each patch has a linear size l with 1 ≪ l ≪ ξ, where ξ is the correlation length

of the system. Then, every block has very good order within it. As we coarse grain the

system, we expect the energy (in the case of the hard square lattice gas, the configurational

entropy) between the different phases to be linearly proportional to the perimeter of the

interface between two phases. This “surface tension” is expected to flow to a fixed point

value under repeated actions of this renormalization group.

If we coarse grain the system using square blocks parallel to the lattice axes, we see

that the surface tensions between phases are not symmetric. For example, the interface

between the C-phase and the D-phase separated by a vertical boundary, favours a C-phase

on the left more than on the right, as this impedes less particles on the other side of the

boundary. It therefore becomes necessary to find a different blocking algorithm in order

to coarse grain the system. A natural choice is a grid at an angle π
4 with respect to the

lattice axes. We assign a single phase label to each resulting diamond corresponding to

the majority rule (Fig. 4.8). In this coarse grained model, the phases have a finite surface

tension with respect to each other. From symmetry, it is easy to see that there are two

types of surface tensions in this high density phase. These two surface tensions are

σAB = σCD,

and

σAC = σCB = σBD = σDA. (4.72)

where σAB denotes the surface tension between the A-phase and the B-phase. We can

relate this 4-state model to the well known Ashkin-Teller model with a Hamiltonian that

possesses a Z4 symmetry and and has two values of surface tension energies.

As described in Chapter 1, the Ashkin-Teller model is best described as a model of two

coupled Ising models with a four spin coupling that has a varying strength of interaction.
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The Hamiltonian is given by

H = −





∑

〈i,j〉
J2σiσj + J2τiτj + J4σiσjτiτj



 . (4.73)

This model has a line of critical points with continuously variable critical exponents,

depending on the strength of the interactions J/K, where J = βJ2 and K = βJ4. The

surface tensions between the phases in the hard square lattice gas correspond to the surface

energies K and 2J −K of the above Ashkin-Teller model. Thus it seems plausible that the

critical behaviour of this model is in the Ashkin-Teller-Potts universality class.

B

CD

A

A

D

AB

A

B

A

A

Figure 4.8: We coarse grain the system using a grid at an angle π
4 with respect to the lattice.

This ensures that the surface tensions between any two phases is symmetric. We assign a
single phase label to each resulting diamond.

4.8.1 Ising Energy Densities

In this section we map the local degrees of freedom of the hard square lattice gas to the

Ising degrees of freedom in the corresponding Ashkin-Teller model.

We begin by ascribing Ising labels to the phases in the hard square lattice gas. The four

phases in the Ashkin-Teller model can be described by the values of the two Ising variables

(which have different values ±1, in each of the phases). This can be described well in terms

of a single complex valued “clock” variable Θ with the following definition

ΘAT = exp

(

iπ

4

)

(σ + iτ)√
2

. (4.74)

This variable takes values exp(iπ/2), 1, exp(−iπ/2) and −1 in the phases corresponding

to (σ, τ) = (+,+), (+,−), (−,−) and (−,+) respectively.
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Figure 4.9: The four phases in the Ashkin-Teller model have a natural description in terms
of a complex “clock” variable. The arrows represent the value of the clock variable in each
phase. The identification to the four phases of the hard square lattice gas model is shown.

To mimic the action of this clock variable, we construct a similar variable for the hard

square lattice gas which takes the same values in the four ordered states A, D, B and C.

From Figure 4.9 we can see that

ΘHS = exp

(

iπ

2

)

4(ρA + iρC − ρB − iρD), (4.75)

is one such variable. This is related to the order parameter OZ4 as

ΘHS = exp

(

− iπ
4

)

O∗
Z4, (4.76)

where ∗ denotes complex conjugation.

Phase σ τ ρ1 ρ2 ρ3 ρ4 ΘAT ≡ ΘHS

A + + 1 1 0 0 i

D + − 0 1 1 0 1

B − − 0 0 1 1 −i
C − + 1 0 0 1 −1

Table 4.1: The identification of the four phases in the Ashkin-Teller model and the hard
square lattice gas

Now relating the two variables ΘAT ≡ ΘHS , we have the following natural mapping to

the Ashkin-Teller Ising variables in terms of the local densities of the hard square lattice

gas
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σ(x) ≡ (ρ1(x)− ρ3(x)),

τ(x) ≡ (ρ4(x)− ρ2(x)). (4.77)

We note that this identification is true only at the coarse grained level. We can now use

these variables to determine the value and sign of the coupling between the two Ising models

in the Ashkin-Teller description. We see that the energy densities for the two Ising degrees

of freedom, at coarse grained level, are Eσ(x) ∝ σ(x)2 and Eτ (x) ∝ τ(x)2. Therefore we

can map the Ising energy densities to the hard square lattice gas densities as

E(σ) ∼= (ρ1 + ρ3),

E(τ) ∼= (ρ2 + ρ4). (4.78)

Here E(σ) and E(τ) represent the Ising energies in the entire system.

4.9 Monte Carlo Simulations

In this section we discuss Monte Carlo simulations we performed in order to test our predic-

tions. In the simulations of high density states of exclusion gases, one often encounters the

problem of “jamming”, where the number of available local moves for a system become very

small. Since the transition to the columnar ordered phase in this system occurs at densities

very close to full packing, it becomes necessary to use efficient non-jamming algorithms.

We devised the following novel Monte-Carlo algorithm to simulate the hard square lattice

gas.

The Update Algorithm

1)We evaporate all particles that lie on an arbitrarily chosen 1D line (horizontal or

vertical) of the system.

2) The resulting empty line of particles breaks up into regions that are occupiable by

particles and regions forbidden for occupation, depending on the configuration of particles

on the two adjacent lines of the lattice.

3) We then refill these smaller occupiable line segments using a configuration selected

from the configuration space of a system of particles with nearest neighbour exclusion on a

1D chain of the corresponding length.

A lattice gas configuration for a chain of length r can be generated using the follow-

ing simple algorithm. The probability of occupation of the edge of the chain is given by

Prob(...1) = zΩopen(r − 2)/Ωopen(r). Starting with the edge of the chain, we successively

occupy or leave empty each site at the edge with the above probability, until the entire
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chain is filled. If a particle is deposited the length of the new chain decreases by 2, and

if it is left empty, decreases by 1. If the configuration to be generated is that of a closed

chain, the first site is occupied with the probability zΩopen(r − 3)/Ωclosed(r). To speed up

the simulations, the values of the various partition functions are stored in the program at

the start.

Clearly, this update scheme obeys detailed balance. Since this algorithm updates an

entire row or column at once, it is able to efficiently sample the phase space even at very high

densities. Using this algorithm, we are able to obtain reliable estimates of thermodynamic

quantities from lattices upto size 1600 × 1600 (only for z close to zc).

Results

Using finite size scaling we obtain an estimate of the critical point as zc = 97.5 ± 0.5. We

find the corresponding critical density to be ρc = 0.23264(1). The fluid to columnar order

transition takes place very close to the full-packing point (ρ = 0.25) In Fig. 4.11 we plot

the second moment of the order parameter scaled by L−7/4, showing a crossing at the value

zc = 97.5 for different system sizes. The symmetry of the ordered states in this model

suggests observables that are linear combinations of the sublattice densities ρi that have

simple transformations under rotations by π
2 as relevant quantities. These are

Vi = ρ1 + ωiρ2 + ωi
2ρ3 + ωi

3ρ4, (4.79)

where ωi with i = 1 to 4 are the fourth roots of unity given by 1, i,−1 and −i respectively.
We see that V2 = V ∗

4 is equivalent to the complex order parameter OZ4 = 4
√
2V2.

We define the variance of the observables in the system as

Var [Vi] =
1

L2

(

〈Vi2〉 − 〈Vi〉2
)

, (4.80)

where L is the linear size of the system. At the critical point the variance of Vi scales as

Lai with a1 ≃ 0.16, a2 = a4 =
7
4 and a3 = 0. We find that the variance of the observable V1

grows as a power law at large distances (Fig. 4.13). The variance of V3 saturates to a finite

value (Fig. 4.16). We are able to verify that the scaling exponent γ/ν is equal to 7/4 to

very high accuracy, consistent with the critical behaviour of the Ashkin-Teller model (Fig.

4.14).

Due to the large correlation lengths in the columnar ordered phase, the determination

of the exponent ν is slightly harder. In Fig. 4.12 we present the finite size scaling collapse

for the variance of the order parameter V2. However, extracting a correlation length from

these fits is a bit hard as a range of values for ν yield a similar fit. At present out best

estimates are ν = 0.92± 0.05.

We now use the mapping of particle densities in the hard square lattice gas to the coarse

grained Ising energy densities illustrated in Section 4.8.1 to better understand the nature

of the coupling between the Ising degrees of freedom in this system. From Eq. (4.78), we
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have

E(σ) + E(τ) = V1,

E(σ) − E(τ) = V3.

The variance of the quantities V1 and V3 are therefore a measure of the correlation

between the two Ising degrees of freedom. Using the fact that the variance of V1 grows with

a detectable power and that of V3 saturates, we see that the two Ising degrees of freedom

in this model are ferromagnetically coupled (i.e. K > 0). This is consistent with the fact

that the floating exponent ν falls between the value 2/3 and 1, the Potts and Ising model

values respectively. Therefore we are able to place the critical point of this model slightly

to the ferromagnetic side of the Ising point on the critical line of the Ashkin-Teller model

(Fig. 4.17).
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Figure 4.10: A histogram of the complex order parameter Or + iOc at z = 50 (Left) and z
= 100 (Right). This illustrates the symmetry relation between the four columnar ordered
states. The data above is for a lattice of size L = 120. Our algorithm samples over
all possible ordered states, however, as the size of the system increases this symmetry is
broken and the system remains in only one of the ordered states.

Finally it is worthwhile to compare our estimates of the critical exponents of this model

with two recent studies [8] and [9]. To do this we use the hyperscaling law dν = 2 − α =

2β+γ. Fernandes et. al. performed Monte Carlo studies on lattices of upto size L = 360 and

found ν = 1.0±0.1, with α/ν = 0, β/ν = 0.125±0.05 and γ/ν = 1.75±0.05. This led them

to conclude that the exponents are those of the Ising model, i.e. ν = 1, α/ν = 0, β/ν = 1/8

and γ/ν = 7/4. Feng et. al. performed Monte Carlo simulations on sizes upto L = 512

and determined the scaling exponent yt = 1.06(3), which leads to ν = 0.94 ± 0.01, α/ν =

0.12 ± 0.01, β/ν = 0.125 ± 0.01 and γ/ν = 1.75 ± 0.002. Our present estimates using the

exponent α/ν = 0.158(2) yield ν = 0.92± 0.01, β/ν = 0.125± 0.01 and γ/ν = 1.75± 0.002.

We can compare these with the critical exponents of the four state Potts model which are
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Figure 4.11: Plot of L−7/4〈|OZ4|2〉 with respect to z, showing a critical crossing at the value
zc = 97.5.
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Figure 4.12: Finite size scaling collapse for the variance of |V2|, with values zc = 97.5,
γ/ν = 7/4 and ν = 0.90. Var[|V2|] is the susceptibility of the order parameter.
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Figure 4.13: Plot of the variance of the vector V1 for various values of the system size at
z = 96.5, 97.5 and 98.5. We find that the variance of V1 grows with a detectable power
≈ 0.158 ± 0.02 with increasing system size at the critical point zc = 97.5. The line has a
slope of 0.158 (both axes are in log scale).
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Figure 4.14: Plot of the variance of the vector |V2| for various values of the system size at
z = 96.5, 97.5 and 98.5. We find that this grows with a power 1.75 ± 0.002 at the critical
point zc = 97.5 . The line has a slope of 1.75.
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Figure 4.15: Plot of the variance of the vector V3 with respect to z, for various values of
the system size.
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Figure 4.16: Plot of the variance of the vector V3 for various values of the system size at
z = 96.5, 97.5 and 98.5. We find that this quantity saturates to a finite value at the critical
point as the size of the system is increased.
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Figure 4.17: (Right) The phase diagram of the Ashkin-Teller model depicting the critical
lines and the position of the phase transition of the hard square lattice gas.

ν = 2/3, α/ν = 1, β/ν = 1/8 and γ/ν = 7/4.

Slidability

As we have seen in Section 4.3, the columnar ordered phases in the hard square lattice

gas are characterised by the deconfinement of half vacancies along stacks of particles that

can be slid to the left or right (and up or down) depending on the state of the system. In

order to better understand the role of these long strings of defects, we define the following

non-local variables, which we call the slidability variables.

We define a horizontal stack of particles as a (maximal) set of touching squares in the

same row. A vertical stack is a set of touching squares in one column. A square can be a

part of at most one horizontal and at most one vertical stack at the same time. A stack

is slidable, if and only if it can moved at least one space along the direction of the stack

(i.e.- horizontally for a horizontal stack and vertically for a vertical stack). We assign a

horizontal slidability index Sh(i) = +1 at every lattice site i if it is occupied by a square

that is part of a horizontally slidable stack, and 0 otherwise. A similar definition holds for

the vertical slidability index Sv.

We then define the following variables that are a measure of the degree of sliding order

in the system
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Figure 4.18: Plot of the second moment of the slidability variables 〈S+2〉 and 〈S−2〉 at
z = zc (normalized by 1

L2 ). 〈S+2〉 grows with a power 2± 0.01 with increasing system size,
whereas 〈S−2〉 displays a non-trivial power law behaviour with exponent 1.54 ± 0.05. The
lines have a slope of 2 and 1.54 respectively.

S+ =
L2

∑

i=1

[Sh(i) + Sv(i)] ,

and

S− =

L2

∑

i=1

[Sh(i) − Sv(i)] . (4.81)

The A and B phases have a large density of horizontally slidable rows of particles, and

the C and D phases have a large density of vertically slidable columns. We measure the

second moment of these slidability parameters S+ and S−, for various system sizes at the

critical point. This data is plotted in Fig. 4.18. These show a power law dependence on

the size of the system, with the powers 2± 0.01 and 1.54 ± 0.05 respectively.

4.10 Hard-Cubes on the Cubic lattice

The series expansion developed in this chapter can be extended to three dimensional systems

that exhibit columnar order. Consider a system of 2×2×2 hard cubes on the cubic lattice.

In this case there are twelve distinct columnar ordered states available to the system. We

label these states A,B, ... to L (Fig. 4.19 a). In any of the given ordered states, there can

be three distinct types of defect particles depending on the which of the rows the particles
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occupy in relation to the ordered row.
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Figure 4.19: a) We define eight sublattices (1 to 8) on the cubic lattice. There are twelve
columnar ordered states available to the system (labelled A,B, ... to L). b) A cross sectional
segment of the cubic lattice depicting the positions of the defect rows (B, C and D) with
respect to the A-rows.

Consider a state with perfect columnar order, with columns along the z-direction. Now

ascribing different fugacities to the rows A, B, C and D, we note that at the point where

zA = zB → ∞ and zC = zD = 0, there is a large degeneracy of columnar ordered states

available to the system, as particles on different planes can choose to align along independent

columns (A or B). The cross-section in the xy-plane would be a fully packed configuration

of 2 × 2 hard squares. Then, as discussed above, there are approximately 2L/2 different

fully-packed hard squares configurations.

The first correction term due to the C and D defects lying in between two planes is

(f000)
4 + (f000)

2, when the two adjacent planes are both A-ordered or B-ordered, whereas

the corresponding term when the two planes are in different ordered states is 2 (f000)
3. It

is then easily seen that the contribution is largest when all the columns are arranged in a

periodic superlattice with square symmetry (all A, or all B). These states then outweigh all

other states, for non-zero 1/z, in the thermodynamic limit. This is an example of “order-

by-disorder” [7] in this system. The extended objects that contribute to order 1/z in the

zA = zB = z series in this case turn out to be rigid rods along the x- or y- directions. The

interactions between the rods are similar to the two dimensional case, but the summations

are harder to do in closed form. This seems to be an interesting direction for future studies.

4.11 Summary and Discussion

In this chapter we have studied the high density columnar ordered phase and the transition

from columnar order to a disordered phase in the hard square lattice gas. We developed a

perturbation expansion about the columnar ordered state for the hard square lattice gas.

We identified the basic objects of excitations about the ordered state, namely vertical rods.

We showed that only configurations with at most n rods contribute up to O(z−(n+1)/2)
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in the expansion in inverse powers of z−1/2, and we explicitly summed the contribution

from the terms containing two rods that provides exact results up to order 1/z3/2. We

then analysed the nature of the transition from the columnar ordered phase at high density

to the fluid phase at low density. We argued using a simple coarse grained picture, that

the critical properties of the model can be mapped onto the critical line of a more general

Ashkin-Teller model. We used symmetry arguments to map the local densities in the model

to the Ising energy densities in the corresponding Ashkin-Teller model. We then studied the

phase transition as a function of activity using Monte Carlo simulations to test our predic-

tions. We located the critical point of the system and computed the correlations between

various quantities in order to precisely locate the position of the transition on the Ashkin-

Teller critical line. We established that the phase transition in the model corresponds to a

ferromagnetically coupled point on the Ashkin-Teller phase diagram, between the 2D Ising

model and the 4-state Potts model.

It is possible to extend the series expansion developed in this chapter to other systems

that display columnar ordered behaviour at high densities. In particular for the k× k hard

square lattice gas a similar procedure can be used to generate the high-activity expansion

with terms of powers of z−1/k appearing. Other systems displaying columnar ordering at

high densities such as hard rectangles on the square lattice are also amenable to treatments

of this type. Another problem of interest is to establish lower bounds on the radius of

convergence of these expansions. The columnar ordered phase studied in this chapter is

characterised by very large correlation lengths as can be seen from the fact that the quan-

tities of interest, for example the variance of the Z4 eigenvectors reach their asymptotic

values only at very large system sizes. It would be interesting to identify the reason for

strong finite size corrections in such a columnar ordered phase.



References

[1] B. McCoy, Advanced Statistical Mechanics (International Series of Monographs on

Physics) (Oxford University Press) (2010)

[2] W. G. Hoover, B. J. Alder and F. H. Ree, J. Chem. Phys. 41, 3528 (1964).

[3] D. Ioffe, Y. Velenik and M. Zahradnik, J. Stat. Phys. 122, 761 (2006).

[4] A. Bellemans and R. Nigam, J. Chem. Phys. 46, 2922 (1967).

[5] R. J. Baxter, Phys. Rev. Lett. 26, 832 (1971).

[6] J. Ashkin and E. Teller, Phys. Rev. 64, 178 (1943).

[7] J. Villain, R. Bidaux, J. P. Carton, and R. J. Conte, J. Phys. (Paris) 41, 1263 (1980).

[8] H. C. M. Fernandes, J. J. Arenzon and Y. Levin, J. Chem. Phys. 126, 114508 (2007).

[9] X. Feng, H. W. J. Blote and B. Nienhuis, Phys. Rev. E. 83, 061153 (2011).

91



92 REFERENCES



Chapter 5

Conclusions

In this thesis, we have studied the spin-S Kitaev model, and the hard square lattice gas

model.

We analysed the spin-S Kitaev model in the limit of large S where the spins are classical

3-vector (Heisenberg) spins. We derived the ground states of this model and were able to

parametrise the full set of states using height variables living on the plaquettes of the lattice.

We showed that for a system with 2N sites, the ground states form an N + 1 dimensional

manifold. We then used an analogy to a two dimensional electrostatics problem. We

parametrised the non-ground state configurations of this system using additional real valued

charge variables at each site. Using this characterisation of the entire set of states, we were

able to take the limit of temperature T → 0 without resorting to any approximation. We

showed that in this limit, all the states in the ground state manifold have an equal weight

and thus this model does not display thermal order-by-disorder. We then mapped the

zero temperature system of Heisenberg spins interacting via Kitaev couplings onto that of a

solid-on-solid model with nearest neighbour interaction. We found that at zero temperature,

this model is still in its rough phase. This implies a power law decay of the spin-squared

correlations. We also mapped the model of interacting spins at a finite temperature onto

that of a solid-on-solid model, but with non-local coupling. We were able to show that for

the entire range of temperatures [0,∞] of the spin model, the corresponding solid-on-solid

model remains in its rough phase. We then performed Monte-Carlo simulations on this

model and verified out predictions.

We next investigated the quantum spin-S Kitaev model. We derived an exact lower

bound for the ground state energy of this model. We then analysed the case in which the

coupling between the spins in one direction are set to zero, reducing the problem to a one

dimensional spin chain. For this one dimensional case, we found constants of motion at

each bond that commute with the Hamiltonian, and each other. We were able to classify

the states of this model according to the eigenvalues of these invariants. We developed a

way to count the number of states in each of these sectors using a simple transfer matrix

technique. We then investigated the ground state energy of this spin chain for the case
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S = 1. We mapped the Hamiltonian of the S = 1 model onto that of an S = 1/2 model.

We then used trial wave functions whose coefficients were chosen from a one dimensional

lattice gas ensemble to find the ground state of this system. We also estimated the energy

gap to the first excited state using this technique. We also investigated a related model with

an extra parameter added, and found that this model exhibits a quantum phase transition

from a phase that has a finite energy gap to a gapless phase.

In Chapter 4 we studied the lattice gas model of 2×2 hard squares on the square lattice.

This model does not order into a crystalline ordered state at high densities because there

is a vacancy-induced sliding instability that makes this type of order unstable. However, a

partial order survives in the form of columnar order, where only two of the four possible

ordered states mix with each other. To better understand the nature of the columnar

ordered phase, we developed exact series expansions in this phase. We found that this

series is a singular series in the activity of particles, z, with half integer powers appearing.

This is due to the deconfinement of half-vacancies in the high density phase. We showed

that the series can be grouped in terms of arbitrarily long vertical columns of defects that

are the natural excitations in the high density phase. We derived a series for the free energy

and order parameter of this system in inverse powers of z, that is exact to order 1/z3/2.

We then analysed the nature of the transition from fluid to columnar order as a function

of density in this system. Using a simple symmetry argument we showed that this model

can be mapped onto the more general Ashkin-Teller-Potts model at its critical point. We

used this mapping to identify the individual Ising components of the Ashkin-Teller model

in terms of the local densities of the hard square lattice gas model. We then used Monte

Carlo simulations to test our predictions. In order to efficiently sample the configuration

space, we used a non-local algorithm that updates an entire line of sites at once. Using this

technique we were able to estimate thermodynamic quantities from lattices of sizes upto

1600 × 1600. From our simulations we find that the two Ising degrees of freedom in the

corresponding Ashkin-Teller description are ferromagnetically coupled. Thus we were able

to place the transition of the hard square lattice gas model in the Ashkin-Teller universality

class with critical exponents between the values of the two dimensional Ising model and the

four state Potts model.



Appendix A

Height Correlations at Infinite

Temperature

In this Appendix we calculate the asymptotic behaviour of the height correlation functions

at infinite temperature in the Kitaev model with classical Heisenberg spins.

At infinite temperature, the spins at different sites are completely uncorrelated. This

simplifies the calculation of the 〈(fR−f0)2)〉 correlation function. There are two independent

degrees of freedom at each A-site. We can choose these to be ǫ(l,m; z) and ǫ(l,m; y).

ǫ(l,m;x) is trivially −ǫ(l,m; z)− ǫ(l,m; y). At infinite temperature

〈ǫ(l,m; z)ǫ(l′,m′; z)〉 = 4

45
δl,l′δm,m′ ,

〈ǫ(l,m; y)ǫ(l′,m′; z)〉 = − 2

45
δl,l′δm,m′ . (A.1)

For a field φ(l,m) on the lattice, we define the Fourier and inverse Fourier transforms

as follows

φ(~k) =
1√
LM

∑

~r

exp[i~k.~r]φ(~r),

φ(~r) =
1√
LM

∑

~k

exp[−i~k.~r]φ(~k). (A.2)

The vector ~r denotes the point (l,m) in real space and ~k ≡ (k1, k2) denotes the point

( u
2πL ,

v
2πM ) in Fourier space, with ~k.~r = ul

2πL + vm
2πM . The charge Qb(l,m) at each B-sublattice

site is given by

Qb(l,m) = ǫ(l,m; z) + ǫ(l − 1,m+ 1; y),

−ǫ(l,m+ 1; z) − ǫ(l,m+ 1; y). (A.3)
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The discrete Poisson equation that determines the potential fields φ is

φa(l,m) + φa(l − 1,m+ 1) + φa(l,m+ 1)− 3φb(l,m) = −Qb(l,m),

φb(l,m) + φa(l + 1,m− 1) + φa(l,m− 1)− 3φa(l,m) = 0,

(A.4)

where φa(l,m) ≡ φ(a(l,m)) and φb(l,m) ≡ φ(a(l,m) + ez). Eq. (A.4) can be inverted

in Fourier space as

[

φa(~k)

φb(~k)

]

=
1

g(~k)g(~k)
∗ − 9

[

3 g(~k)

g(~k)
∗

3

][

0

−Qb(~k)

]

, (A.5)

where g(~k) = 1+ exp[i(k2 − k1)] + exp[ik2]. Now, the difference in the f variables along

the z- axis is given by

f(l +R,m+ 1)− f(l,m+ 1) ≡ fR − f0 =

R
∑

r=1

ǫ(l + r,m; z) +

R
∑

r=1

[φa(l + r,m) − φb(l + r,m)]. (A.6)

We can write this in terms of the Fourier components as follows (taking (l,m) = (0, 0)):

[fR − f0] =

R
∑

r=1

∑

~k

[α~kǫ(
~k; z) + β~kǫ(

~k; y)] exp[−ik1r],

where α~k = 1 +
3− g(~k)

g(~k)g(~k)
∗ − 9

(1− exp[−ik2]),

and β~k =
3− g(~k)

g(~k)g(~k)
∗ − 9

(exp[ik1]− 1)(exp[−ik2]). (A.7)

The summation over the r variable is straightforward. The variance of the difference in

the height variables at infinite temperature is thus given by

〈(fR − f0)
2〉β=0 =

∑

~k

∣

∣

∣

∣

1− exp[−ik1(R+ 1)]

1− exp[−ik1]

∣

∣

∣

∣

2
[

〈(α~kǫ(~k; z) + β~kǫ(
~k; y))

2〉
]

.

The term within the square brackets can be shown to be equal to

6

45

(

1− cos[k1]

3− cos[k1]− cos[k2]− cos[k1 − k2]

)

.

Thus the correlation function simplifies to



97

〈(fR − f0)
2〉β=0 =

6

45

∑

~k

1− cos[k1(R + 1)]

3− cos[k1]− cos[k2]− cos[k1 − k2]
. (A.8)

For large lattice sizes, this summation can be approximated by an integral, using
∑

~k
→

∫ π
−π

∫ π
−π(

dkx
2π )(

dky
2π ). After a change of basis ~kx =

~k1+~k2√
2
, ~ky =

~k1−~k2√
2

the correlation function

can be expressed as

〈(fR − f0)
2〉β=0 =

12

45

∫ π

−π

∫ π

−π

(

dkx
2π

)(

dky
2π

)

1− cos[~k. ~R]

k2x + 3k2y
, (A.9)

where ~k. ~R = (kx+ky)
R√
2
. This is precisely the lattice Green’s function on the triangular

lattice. For large ~R, only the ~k near zero are important. This integral can be shown to

behave as 1
2π

√
3
log(R) at large R [1]. Thus we have

〈(fR − f0)
2〉β=0 =

2
√
3

45π
log(R) + const. for large R. (A.10)

The coefficient of log(R) gives us the effective temperature of the SOS model, thus for

T = ∞ in the spin model we have βSOS = 2
√
3

45π .
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Appendix B

Additional Details for the

High-Activity Expansion

B.1 Three B-defects on the lattice: Exact Expression

In this section we quote the exact expression for the three-defect term, κ3(zA) in the cumu-

lant expansion.

Consider n B-defects on the lattice. If any of the defects are separated from the rest of

the cluster by a distance ∆Y > 1 then the terms can be factored into a product of weights

of lower order clusters and thus do not contribute in the cumulant expansion. We therefore

consider diagrams with all the defects satisfying the criterion ∆Y ≤ 1 with respect to their

nearest neighbours.

It is possible to write closed form expressions for κn(zA). As an illustrative example we

quote the result for the three-defect term κ3(zA). We have

κ3(zA) = κ[3](zA) + κ[21](zA) + κ[111](zA). (B.1)

The term within the square brackets in the subscript denotes the position of the particles

in the Y direction. κ[3] corresponds to the term with three particles placed on the same

row, κ[21] denotes the term corresponding to the first two particles on the same row and

the third adjacent to them and κ[111] denotes the term arising from all three particles on

adjacent rows. We have

κ[3](zA) =
2(10 + α(20 + (−7 + α)α))

(−1 + α)(−1 + α2)
f000

6,
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κ[12](zA)

3
=

(

2− 2α

λ2+

)

f000
4 +



−6 +
α
(

−8− 12
λ+

)

1− α2
+
α2
(

−4− 12
λ+

)

1− α2
− 16

λ+



 f000
5

+
2(10 + α(10 + (−6 + α)α))

(−1 + α)(−1 + α2)
f000

6, (B.2)

κ[12](zA)

3
=

(

1 +
4

λ2+
+

4

λ+

)

f000
4 +



−6 +
α
(

−4− 8
λ+

)

1− α
− 12

λ+



 f000
5

+
(−3 + α)2

(−1 + α)2
f000

6, (B.3)

where f000 =
(

ρ1d
zA

)

. Expanding the above three-defect term in inverse powers of zA, we

have

κ3(zA)

3!
=

1

32

(

1

zA4

)

+
3

32

(

1

zA9/2

)

− 7

32

(

1

zA5

)

+O
(

1

zA11/2

)

. (B.4)

B.2 Regrouping the Terms

In Chapter 4, we have developed a series expansion in terms of the number of rod defects.

In this section we describe an alternate procedure to regroup the terms of the series at the

point zA = zB = z in powers of z. Working order by order we identify the various diagrams

that contribute to the expansion and evaluate the contribution from each term.

B.2.1 Expansion for the Free Energy

The contribution from a single B defect in the expansion is given by the first term of the

cumulant expansion κ1(zA)zB . When we set zA = zB = z, we obtain an expansion in

powers of z which contains fractional powers with the first term being of order 1/z and

the next being 1/z3/2. Similarly the two particle term also yields an expansion in terms

of 1/
√
z with the first correction of order 1/z and so on. In general, terms at each order

in inverse powers of z get contributions from an arbitrarily large number of defects. We

regroup the n-particle terms in the cumulant expansion such that at the point zA = zB = z

the terms are ordered in decreasing powers of 1/z. We have the following expansion for the

free energy of the system about the columnar ordered state

−F(zA, zB) = −F(zA, 0) + f1(zA, zB) + f 3

2

(zA, zB) + ..., (B.5)

where the term fm(zA, zB) denotes the term obtained from the sum over all configura-

tions that contribute to the free energy expansion at order m at the point zA = zB = z.
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We have

fm(zA, zB)|zA=zB=z =
gm
zm

, (B.6)

where gm is the coefficient of the order 1/zm term in the free energy expansion. f(zA, 0) =

−1
2 log λ+(zA) is the contribution to the free energy from the perfectly columnar ordered

state. At the point zA = zB = z we represent this term as f1D(z). We thus have the

following expression for the free energy expansion about the columnar ordered state

− f(z) = −f1D(z) +
g1
z

+
g 3

2

z3/2
+O

(

1

z2

)

. (B.7)

The order 1/z term gets contributions only from defects aligned along the vertical di-

rection (this excludes the least volume of A-particles). This is in effect the same object as

a pair of half-vacancies separated by a vertical “rod” of B-sublattice particles. The free en-

ergy series at the point zA = zB = z can be written as a Mayer-like expansion of these rods.

Each term in the expansion has a contribution from these columns of defects of arbitrary

length. The term of order 1/z
n+1

2 involves at most n such rods, but one has to sum over all

possible sizes of these objects.

Order 1/z

We now consider the terms that contribute to the cumulant expansion at order 1/z. These

are configurations where an arbitrary number of defects on adjacent rows are aligned so

that ∆ = 0 for each neighbour (single rods of arbitrary length. The weight of single rods

in the partition function expansion is given by

w




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���
���
���
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���
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���
���
���
���


 =
∞
∑

n=1

(f000)
n+1 =

∞
∑

n=1

[

1

2n+1

(

1

zAn+1

)

− n+ 1

2n+2

(

1

zAn+3/2

)

+O
(

1

zAn+2

)]

, (B.8)

where the diagram within the brackets denotes the class of rod configurations with an

arbitrary number of aligned defects. The summation above is over all rods of length n = 1

to ∞. Each weight is multiplied by the factor zB
n due to the fugacity of the n B-defects

(which yields the leading order contribution from each individual rod as order 1/z). Now

for any other diagram, with ∆ > 0, the leading order term contributes to terms of order

1/z3/2 or higher. Hence, to leading order in 1/z we have

f1(zA, zB) = ���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

1 =
1

2

∞
∑

n=1

1

2n+1

(

znB
zAn+1

)

, (B.9)

where the subscript 1 on the diagram above represents the order 1/z contribution to the

free energy from the class of rods of arbitrary size. The disconnected terms arising from

lower order cumulants are of order 1/z2 or higher, and hence do not contribute in the above
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expression. We thus have

g1 =
1

4
. (B.10)

Order 1/z3/2

At the next order in inverse powers of z we have contributions from terms involving two

rods, in addition to the single rod terms. As illustrated in the cumulant expansion for

two B-defects, the order 1/z3/2 term gets a contribution from defects placed adjacent to

each other separated by a single lattice spacing, and also from the sum over individual

terms when the defects are placed on the same B-row. When we regroup the terms of the

cumulant expansion, the terms arising from rods of all lengths behave in a similar manner.

The configurations that contribute to the expansion at order 1/z3/2 are as follows

1) The 1/z3/2 contribution from individual rods,

2) Two adjacent rods separated by a single lattice spacing, and

3) Two rods that have a finite overlap along the Y direction with an X separation

∆ ≥ 2. A sum over ∆ in this case yields a leading contribution of order
√
z, that gives

such a term a leading contribution of order 1/z3/2. This can be understood as follows, the

finite overlap term has a contribution [G(∆)]n, where G(∆) is the correlation function for

two particles separated by a distance ∆ for the 1D lattice gas. G(∆) decays exponentially

with a correlation length ξ = log α ∼ √
z to leading order in z. Thus, a sum over ∆ yields

a contribution of order
√
z.

We deal with each individual term separately. We have

f 3

2

(zA, zB) = ����
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. (B.11)

The subscript 3
2 on the diagrams above represents the order 1/z3/2 contribution to the

free energy from each class of diagrams. The corresponding coefficients for the diagrams

above are T1, T2 and T3 respectively. We have

g 3

2

= T1 + T2 + T3. (B.12)

We compute the contribution from each of these terms to the free energy expansion

below.

The order 1/z3/2 contribution from single rods is given by Eq. B.8. We have
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)(
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n

zAn+3/2

)

, (B.13)

which leads to
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T1 = −3

8
. (B.14)

The term T2 (the contribution from adjacent rods) involves configurations of two adja-

cent rods separated by an X distance ∆ = 1. The adjacency site is at a fixed position (on

any of the NB B-sites), and the two rods are composed of na and nb (for the rod above and

below) B-particles respectively. We also account for the fact that the second rod can be on

either side of the first one. We have
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1

2na+nb+1
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)

, (B.15)

which leads to

T2 =
1

2
. (B.16)

The computation of the term T3 involves two vertical rods with a finite Y -overlap. The

size of the overlap is represented as no, the number of overlapping B-particles, where no

varies from 1 to ∞. In addition, there can be sections of each rod that extend above and

below the overlapping parts. The non-overlapping sections are parts of the rods extending

above and below with na and nb defects respectively, where na and nb can vary from 0 to

∞. Once again the first rod can be on either side of the second one. The weight of this

term in the partition function expansion is given by
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(f000zB)
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∑
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ρ∞zB
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(f000)
2no+2zB
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(

1− α|∆|−1
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

 . (B.17)

The summation within the first bracket can be performed trivially and yields a factor
9
2 . To evaluate the term within the second bracket we use the binomial identity to expand

the α-term

(

1− α|∆|−1
)no+1

=

no+1
∑

i=0

(

no+1

i

)

(

−α|∆|−1
)i
. (B.18)

The i = 0 term corresponds to two disconnected rods on the lattice and hence is exactly

cancelled in the corresponding cumulant expansion. Now, summing over ∆ yields
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∞
∑

∆≥2

(

1− α|∆|−1
)no+1

=

no+1
∑

i=1

(no+1

i

)

(−1)i
(

αi

1− αi

)

. (B.19)

The α-term in the above expression has the following expansion to leading order in z

1

1− αi
=

1

2
+
i

4

1√
z
+ ... for odd i,

=

√
z

i
+

1

2
+ ... for even i. (B.20)

Hence, to leading order in 1/z3/2 only the even i terms contribute. The free energy

contribution of the overlapping rods term at order 1/z3/2 is thus
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. (B.21)

This series can be summed exactly as shown in Section B.2.3. We thus have the coeffi-

cient corresponding to the overlapping rods term

T3 = 3 log

(

9

8

)

. (B.22)

Thus we arrive at

g 3

2

= 3 log

(

9

8

)

+
1

8
. (B.23)

Using these values of the cumulant coefficients we can generate the exact series expansion

for the free energy and the density of the hard square lattice gas up to order 1/z3/2. We

have

− f(z) =
1

4
log z +

1

4z1/2
+

1

4z
+

(

3 log
(

9
8

)

+ 11
96

)

z3/2
+O

(

1

z2

)

,

and

ρ(z) =
1

4
− 1

8z1/2
− 1

4z
−
(

9
2 log

(

9
8

)

+ 11
64

)

z3/2
+O

(

1

z2

)

. (B.24)

Higher order terms can be evaluated in a similar manner. The term of order 1/z2 gets

contributions from terms involving three rods, in addition to the above single rod and two

rod terms. For n rods, the summation over the distance between overlapping rods yields a

leading order contribution of at most z
n−1

2 . Hence in the evaluation of the term of order
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z
n+1

2 , only terms involving n rods need to be considered.

B.2.2 Expansion for the Order Parameter

In this section we compute the high-activity expansion for the row order parameter which

is defined in the text as

Or = 4[(ρ1 + ρ2)− (ρ3 + ρ4)]. (B.25)

We thus have

Or(zA, zB) = 4

[

zA
∂

∂zA
− zB

∂

∂zB

]

(−f(zA, zB)) . (B.26)

At the point zA = zB = z the expansion for the order parameter is

Or = 4

(

O1D(z) +
O1

z
+
O 3

2

z3/2
+ . . .

)

, (B.27)

where O1D(z) is the contribution to the order parameter expansion from the perfectly

columnar ordered state. We have

O1D(z) = z
∂

∂z
(−f1D(z)) =

1

4
− 1

4
√
1 + 4z

. (B.28)

We now evaluate the order parameter expansion upto order 1/z3/2.

Order 1/z

The contributions to the order 1/z term come from single rod configurations of arbitrary

length. We have
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(

znB
zAn+1

)

. (B.29)

Differentiating the expression with respect to zA and zB (Eq. B.26), we have the coef-

ficient of the 1/z term of the order parameter.

O1 = −1

2

∞
∑

n=1

(2n + 1)

2n+1
= −5

4
. (B.30)

Order 1/z3/2

As discussed in Section B.2, at order 1/z3/2 we have the following configurations contributing

to the free energy and hence the order parameter expansion 1) single rods 2) two adjacent

rods separated by a single lattice spacing and 3) two rods with a finite Y -overlap (summed

over all X-separations ∆). We deal with each term separately. We have
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O 3

2

= R1 +R2 +R3 (B.31)

The contribution to the order parameter expansion from the single rods at order 1/z3/2

is given by
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Differentiating the above equation with respect to zA and zB (Eq. B.26) we arrive at

R1 =
1

2

∞
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n=1

(n + 1)(2n + 3/2)
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41

16
. (B.33)

The contribution to the order parameter expansion from the adjacent rods term at order

1/z3/2 is

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

���
���
���
���

���
���
���
���

3

2

=

∞
∑

na=1

∞
∑

nb=1

1

2na+nb+1

(

zB
na+nb

zAna+nb+3/2

)

. (B.34)

Differentiating the above equation with respect to zA and zB (Eq. B.26) we arrive at

R2 =
∞
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∞
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nb=1

−2na + 2nb + 3/2

2na+nb+1
= −19

4
. (B.35)

The contribution to the order parameter expansion from the overlapping rods term at

order 1/z3/2 is
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× ζ,

where
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i=2,even

1

i

(
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)

. (B.36)

Differentiating the above equation with respect to zA and zB (Eq. B.26), we have
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R3 = 4
∞
∑
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Now summing over na and nb we have

R3 = −51
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. (B.38)

This series can be summed, as shown in Section B.2.3. We have

R3 =

(
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4
log
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.

We therefore arrive at
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. (B.39)

We thus obtain the high-activity expansion for the order parameter upto order 1/z3/2

Or = 1− 1

2z1/2
− 5

z
−
(
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16
+ 50 log

(

9

8
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1

z3/2
+O

(

1
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)

. (B.40)

B.2.3 Summing the Binomial Series

In this section we describe a procedure to sum the binomial series arising at order 1/z3/2

in the expansions developed above. We define the generating function

Σ(Y,X) =
∞
∑

N=2

(Y )N
N
∑

i=2,even

1

i

(

N

i

)

Xi. (B.41)

We evaluate Σ(Y,X) as follows. Let

S± =

∞
∑

N=2

(Y )N
N
∑

i=1

(±1)i

i

(

N

i

)

Xi. (B.42)
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Therefore

Σ(Y,X) =
S + S′

2
. (B.43)

Differentiating with respect to X, we obtain

X
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=
1

1− (1±X)Y
− 1

1− Y
∓XY. (B.45)

Therefore
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− 2
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)

. (B.46)

Integrating with respect to X and setting X = 1, we arrive at

Σ(Y, 1) =
1

2(1− Y )
log

(

(1− Y )2

1− 2Y

)

. (B.47)

Now, from Eq. B.21, the coefficient of the 1/z3/2 contribution from the overlapping rods

term in the free energy expansion can be expressed as

T3 = 4 Σ

(

1

4
, 1

)

. (B.48)

Using the expression in Eq. B.47 with Y = 1
4 , we arrive at

T3 =
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2
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= 3 log
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)

. (B.49)

In the calculation of the order parameter expansion we deal with the series
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We have
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. (B.50)

From Eq. B.38, the coefficient of the 1/z3/2 contribution from the overlapping rods term

in the order parameter expansion can be expressed in terms of the functions Σ and χ as

follows

R3 = −51

4
Σ

(

1

4
, 1

)

− 18 χ

(

1

4
, 1

)

. (B.51)
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Finally, using the expression in Eq. B.50, we arrive at

R3 =

(

−4 +
50

4
log

(

9

8

))

. (B.52)
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