
This journal is © The Royal Society of Chemistry 2022 Soft Matter

Cite this: DOI: 10.1039/d2sm00218c

Universal non-Debye low-frequency vibrations in
sheared amorphous solids†

Vishnu V. Krishnan, * Kabir Ramola * and Smarajit Karmakar *

We study energy minimised configurations of amorphous solids with a simple shear degree of freedom.

We show that the low-frequency regime of the vibrational density of states of structural glass formers is

crucially sensitive to the macroscopic stress of the sampled configurations. In both two and three

dimensions, shear-stabilised configurations display a D(omin) B o5
min regime, as opposed to the o4

min

regime observed under unstrained conditions. In order to isolate the source of these deviations from

crystalline behaviour, we also study configurations of two dimensional, strained amorphous solids close

to a plastic event. We show that the minimum eigenvalue distribution at a strain ‘g’ near the plastic event

occurring at ‘gP’ assumes a universal form that displays a collapse when scaled by
ffiffiffiffiffiffiffiffiffiffiffiffiffi
gP � g
p

, and with the

number of particles as N�0.22. Notably, at low frequencies, this scaled distribution displays a robust

D(omin) B o6
min power-law regime, which survives in the large N limit. Finally, we probe the properties of

these configurations through a characterisation of the second and third eigenvalues of the Hessian

matrix near a plastic event.

1 Introduction

Amorphous solids are well known to display an anomalous
temperature dependence in their heat capacity.1,2 This has
been suggested to originate due to an excess of modes in their
vibrational density of states (VDoS), over and above the Debye
modes of crystalline systems, and is known as the Boson peak.3

This behaviour is remarkably robust to the details of the models
under consideration, as well as the dimension of the system, and
has emerged as a hallmark of amorphous solids. Various theo-
retical models have been proposed in order to reproduce and
characterise this behaviour.4–11 Since a primary quantity of
interest in the thermodynamic limit is the mechanical properties
of solid glasses, the relevant scales to probe are their properties
at low temperatures, corresponding to low frequencies in the
VDoS. Recently, a new vibrational characteristic of glass formers
has been identified: a regime displaying a D (o) B o4 scaling in
the density of states.12–22 Many theoretical models built around
two-level systems, replica symmetry breaking, stress correlations,
random matrices and other hypotheses have been proposed as
the origin of this behaviour;1,23–33 however, the nature of the
modes contributing to the o4 behaviour is still a subject of active
research. In this context, it is important to characterise new,

deviant universal features and their connection to microscopic
details.

One of the outstanding problems in the field of glass physics is
the development of a statistical, microscopic theory explaining their
anomalous thermodynamics. Despite considerable theoretical
explorations, the best understanding of the glassy regime of
matter emerges from simulations. Preparing an athermal, energy
minimised ensemble of structural glass-formers allows us to study
the statistical properties of rigid configurations that are amorphous
in nature. Although assumed to be mechanically stable, such
configurations have been shown to contain an additional, strain
degree of freedom.34–37 An otherwise constrained configuration
allows for unbalanced shear stresses that may be specific to the
simulation parameters.38 The choice of appropriate states of
macroscopic stresses is then an important consideration in the
study of amorphous solids.39,40 While the effect of modulating
internal stresses has been studied,41–43 it is pertinent to re-examine
the apparent universality13,17–19 under physically relevant, macro-
scopic shear stresses.

In this paper, we study realistic configurations of amor-
phous solids generated through volume-preserving, simple
shear, most notably used in cyclic shearing experiments.44,45

We use a natural control parameter, namely the simple-shear
strain, in order to test the sensitivity of the minimum eigenvalue
distributions to specific modifications to the configurations of
particles. We show that changes in the macroscopic shear-stress
(sxy) results in a modification of the amorphous VDoS from D(o)
B o4, in spite of the internal stress distributions remaining
largely invariant. In Section 2, we describe the details of the
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amorphous system we study, and detail the numerical procedures
we employ in our explorations. In Section 3 we further examine
the measures used to probe vibrational properties. In Section 4 we
consider shear-stabilised configurations (U = Umin(g)) and show
that the low-frequency behaviour of the VDoS shifts to a novel
power-law close to D(omin) B o5

min. Such a constraint is relevant
to the study of stable solids which, by definition, resist deforma-
tions, as examined in Section 5. Additionally, these results point
to a link between the o4 regime in the VDoS and the stress
fluctuations sustained by the system. In Section 6 we also uncover
a new universal distribution of the minimum eigenvalue using
configurations at fixed strain-distances to a plastic event. Notably,
the distribution collapses under a suitable scaling of the strain as
well as the system size. This distribution additionally displays a
low-frequency behaviour of D(omin) B o6

min.

2 Methods and simulation details
2.1 Simulation potentials

We simulate a 50 : 50 mixture of two particle types A and B. The
interaction potentials are cut-off at a distance

rc = 1.385418025s, (1)

with the three interaction diameters given by

sAA ¼ 1:0;

sBB ¼ 1:4;

sAB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sAAsBB
p

:

(2)

The only difference between the parameters in two and three
dimensions of this model are the reduced number densities
given by

r2D ¼ 0:85;

r3D ¼ 0:81:
(3)

In our simulations we focus on the purely repulsive pairwise
potential, given by a tenth order polynomial, termed ‘R10’. The
potential smooth to n derivatives at cut-off is given by

c ¼ s
r

� �10
þ
Xn
m¼0

c2m
r

s

� �2m
(4)

where the constants are calculated appropriately. We use only
even-powered polynomials in order to avoid the potential
curving downwards at the cut-off, to any precision, thus
eliminating any attraction at the cut-off.

2.2 Sample sizes

Tables 1 and 2.

2.3 Software

Simulations of glasses along with the energy minimizations
were performed using LAMMPS.61,62 The stopping criterion for

the minimization was the force 2-norm:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1
jFij2

s
. Eigenvalue

calculations were performed using the LAPACK63 routine dsyevr
for small systems, and the Intel MKL64 sparse solver routine
mkl_sparse_d_ev for large-sized matrices. Analyses were per-
formed using NumPy65–67 and SciPy68,69 libraries. Plotting was
performed using Matplotlib.70,71

2.4 Athermal configurations

2.4.1 Unstrained. In our simulations, we use two-
dimensional glass formers with varying particle numbers N A
{256, 1024, 4096} and a three-dimensional system of size N =
512, equilibrated at a parent temperature Tp = 0.58, and then
cool to near-zero temperature at a slow rate of

:
T E 10�2. We

then employ the conjugate gradient algorithm to achieve an
energy minimised state up to a force tolerance of 1.0 � 10�10.
These comprise the Unstrained configurations. We also use
these to generate the shear-stabilised configurations.

2.4.2 Zero-shear-stress. We begin with an Unstrained
configuration and calculate the total shear stress (sxy). We then
strain the configuration in the direction of the stress. For
example, if the shear stress is negative, then the system is
strained towards the left. This choice of the straining direction
is determined by the direction of the initial stress in each
configuration. This causes the stress to decrease in magnitude,
and we proceed until the stress reverses direction. We perform
the same operation two more times, each time with decreasing
strain increments. The three strain steps we use are: Dg A {5 �
10�5, 10�8, 10�11}. The eigenvalues typically were not seen to
vary much beyond the first strain step, but we proceed to
ensure that we are not separated from the shear-stabilised state
by a plastic event. When performing athermal quasi-static
shearing (AQS), we use Lees–Edwards boundary conditions
and strain at an engineering strain rate of 5.0 � 10�5. At every
step, the structure is relaxed to its minimum energy, to a force
tolerance of 1.0 � 10�10.

2.4.3 Shear-strain-energy-minimised. The configurations
were generated using the LAMMPS procedure box/relax. The
primary utility of this algorithm is that it allows one to perform

Table 1 Number of minimum eigenvalue samples collected toward
binning the P(lmin) histograms plotted in Fig. 3 and Fig. S4 in the ESI, with
the suffix ‘k’ indicating a thousand

Dimension 2 3

System size (N) 256 1024 4096 512
Samples 256k 256k 150k 256k

Table 2 Number of minimum eigenvalue samples collected toward
binning the plastic-event approach P(lmin,2,3) histograms plotted in Fig. 5
and 6 in the main text and in Fig. S5 in the ESI, with the suffix ‘k’ indicating a
thousand

Dimension 2

System size (N) 256 1024 4096
Samples 256k 50k 50k
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energy minimisations allowing the shape of the simulation box to
change, while also maintaining periodic boundaries. We make
use of the procedure with only the shear-strain included as a
degree of freedom aside from the particle positions. As high-
lighted in the documentation,62 this method encounters issues
due to the algorithm utilising the initial, unstrained box dimen-
sions as a reference for the stress computation. The effect of this
is that configurations that are at a large strain away from a stable
state and those configurations that suffer plastic events before
attaining shear-stability both fail to achieve minimisation to the
desired force tolerance. This is remedied, as suggested in the
documentation, in two ways: first by utilising the nreset option to
recalculate the reference box dimensions and second by restarting
the minimiser upon failure, typically across plastic events.

2.4.4 Plastic-event-approach. Plastic events are said to have
occurred when there are non-affine displacements with a loca-
lised spatial extent and a small fraction of participating particles.
These displacements differ from the typical elastic, affine
response of the particles to the applied strain, most significantly
in that the total magnitude of the displacement is much larger.
An important feature of these events is the quadrupolar nature
of the displacement field, centred at the point of localisation,
signalling a T1-like event. In order to ‘detect’ a plastic event, we
utilise a convenience of the AQS protocol, being that every step of
straining involves two stages: (a) application of an affine strain
and (b) an energy minimisation. Plastic events present large
displacements in stage (b) of the protocol. Therefore, we keep
track of the displacement of the maximally displaced particle at
every step of energy minimisation and register a plastic event
when that value crosses a threshold. For our model, we use a
value of E15 � dg, whereas under elastic conditions the max-
imum displacements during minimisation are Bdg. The value of
the displacement cut-off is chosen so as to obtain localised,
quadrupolar events and avoid other non-affine relaxations.
Additionally, in order to avoid some corner-case scenarios, we
also utilise a minimum energy threshold of 10�9 energy units for
a step to register as a plastic event at a particular strain (gP).

Given such a mechanism to detect plastic events, we now define
an ensemble of configurations that all need the same ‘strain’ to
incur a plastic event (Dg = gP � g). The procedure we follow is that,
for each configuration ‘i’, we find its plastic strain gi

P, and then we
strain each configuration to a corresponding strain ‘gi’ such that all
the configurations are at the same distance-in-strain away from
their respective plastic events, gi

P � gi = Dg. Note that Dg 4 0. In
order to sample small enough values of Dg, we first measure the
plastic-strain, gP, to an accuracy of 10�8 by ‘back-tracking’ to a
previous state upon encountering a plastic-event, and subsequently
straining the system at the requisite precision. Thus, we are able to
sample configurations of the system at various values of the strain-
to-plastic-event: Dg A {10�3, 10�4, 10�5, 10�6, 10�7}.

3 Minimum eigenvalue spectrum

The vibrational properties of a solid may be discerned from the
Hessian of the total potential energy U frijg½ � ¼

P
ij

cij , where cij

is the interaction potential between particles i and j which we
assume to be central. This is conveniently represented by the
Hessian matrix

Hij
abðr

ijÞ ¼ @
2U frig½ �
@ria@r

j
b

; (5)

the indexes of which run over dimensions a, b A {x, y, z} for
every pair of particles i, j A {1,. . .,N}. Above, rij

a is the a-compo-
nent of the distance vector from particle i to j. A primary
quantity of interest in the study of the vibrational properties
of glasses is the distribution of the minimum eigenvalue of the
Hessian matrix, lmin. This typically controls the longest time
scales in the system and provides a useful route to characterise
the stability of amorphous solids.46

The vibrational frequencies are related to the eigenvalue of the

Hessian as o ¼
ffiffiffi
l
p

. This allows us to relate the two distributions

as DðoÞ ¼
ffiffiffi
l
p

PðlÞ. However, since we are interested in the low-
frequency regime of the VDoS, we measure the distribution of the
minimum eigenvalue of the Hessian. Moreover, in the case of
independent and identically distributed random variables, power-
laws at the tails are reproduced by an extreme value sampling, i.e.,
P(x) B xa implies that P(xmin) B xamin. Additionally, by only
calculating the minimum eigenvalue, we are able to achieve the
large numbers of samples necessary to observe localised modes.
Many glass formers display a P(lmin) B l1.5

min � D(omin) B o4
min

behaviour in the tail of the minimum eigenvalue distribution,
indicating weak correlations in the low lying eigenvalues.12 Devia-
tions from this universal behaviour are therefore of interest in
determining different structural properties of glasses. Indeed, we
show in this Letter that the response of short ranged glass formers
to shear is linked to changes in P(lmin), which in turn is crucially
sensitive to the macroscopic stresses of the configurations.

4 Shear-stabilised configurations

We consider configurations that are allowed to undergo volume-
preserving, simple shear, where only the upper-triangular
elements of the strain tensor can be non-zero (gab = eaob

ab ). An
isolated stable solid relaxes along all available degrees of freedom.
In such energy minimised configurations of systems comprising
particles interacting via pairwise, central potentials, the off-
diagonal element of the macroscopic force moment tensor, i.e.,
the shear stress is exactly zero,47 as illustrated in Fig. 1:

@U

@gab
¼
X
hi;ji

f ija r
ij
b ¼

X
hi;ji

sijab � sab � V ; (6)

where f ij
a is the a-component of the force on particle i by particle j,

sij
ab is the bond-stress between particles i and j, sab is the

macroscopic stress tensor and V is the volume of the system. It
is therefore natural to probe the effect of macroscopic shear stress
fluctuations on the stability properties of such systems, which are
enhanced due to relaxation along an additional strain degree of
freedom.

In this context, we analyse the distribution of minimum
eigenvalues of the Hessian matrices of configurations sampled
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from two sets of configurations with (i) finite shear stress fluctua-
tions and (ii) zero shear stress fluctuations (within a tolerance).
Configurations with finite stresses appear naturally when gener-
ating energy minimised configurations from a thermal ensemble,
under periodic boundary conditions, as maybe shown in Fig. 2,
and we refer to these as Unstrained configurations. We create
shear-stabilised configurations using two different procedures. In
the first method, we athermally strain the system in the direction
of the shear stress until the stress changes sign, and this is
repeated two more times, with reduced strain increments. We
term these configurations zero-shear-stress (Section A of the
ESI† 48 shows the strains required). Such a procedure allows us
to attain stress-free states in systems with one shear-stress,
namely, systems in two dimensions. Therefore, we also use a

technique capable of relaxing stresses in three dimensional
systems. In the second method, we perform an energy minimisa-
tion of the position as well as shear strain degrees of freedom
concomitantly, and refer to these configurations as shear-strain-
energy-minimised. Notably, these protocols leave the statistics of
the internal bond-stresses invariant (see Section B of the ESI† 48).

We display numerically sampled minimum eigenvalue dis-
tributions of the Hessian for two (2D) and three dimensional
(3D) systems in Fig. 3. Remarkably, the minimum eigenvalue
distributions corresponding to the two types of configurations
yield markedly different results, especially at the lowest
frequencies which govern large-scale stability properties.
Specifically, we find that the well-known o4

min regime is modified

Fig. 1 (a) Schematic representation of a system undergoing simple shear and the corresponding changes in (b) stress and (c) energy. The (red) solid state
represents an unstrained state that exhibits a finite shear-stress. The (blue) dashed state represents a shear-stabilised state.

Fig. 2 Stress distributions of configurations generated by cooling and
energy-minimising a thermal ensemble under periodic boundaries. The
plot shows the stress fluctuations of system sizes N A {256, 1024, 4096}.
The distributions scale with system size as 1=

ffiffiffiffi
N
p

in two dimensions. The
solid line is a maximum-likelihood-estimate fit of the normal distribution
to the data corresponding to N = 4096, with fit parameters shown in the
legend. These plots quantify the effective residual stresses present in
simulated models of amorphous solids when prepared under unstrained
conditions. A log-linear scale is used, while the inset is plotted in a linear–
linear scale.

Fig. 3 Minimum eigenvalue distributions obtained from energy mini-
mised configurations of a 2D system of 256 particles. The unfilled markers
correspond to a 3D system of 512 particles. The plots compare typical
Unstrained configurations (blue circles) against the shear-stabilised con-
figurations: zero-shear-stress (orange triangles) and shear-strain-energy-
minimised (green crosses). The distributions drawn from these configura-
tions deviate significantly from the o4

min regime. The (red) solid and (violet)
dashed lines correspond to power-laws of o4

min and o5
min, respectively.

(inset) Distribution of the full vibrational density of states for a 2D system
with 256 particles. The low frequency behaviour of the distribution is
modified from D(o) B o4 to D(o) B o5.
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in the shear-stabilised configurations, and instead we find the
best-fit power-law to be closer to o5

min. For data on larger system
sizes, see Section C of the ESI.† 48 Moreover, we find that the two
different procedures of generating a shear-stabilised configu-
ration yield identical distributions, pointing to the fact that these
distributions are sensitive to the stress ensemble and not the
preparation protocol, independent of the dimension.

5 Mechanical properties

Understanding the relationship between microscopic para-
meters and bulk rigidity is important in constructing a first-
principles theory of solids. In order to further probe the
connection between the minimum eigenvalue distributions
and the stability of configurations created in the different states
of stress, we carry out athermal quasistatic shearing (AQS) of
the system,49 using 2D glass structures. AQS allows us to trace
the state of a local minimum as the potential energy surface is
transformed under an effectively infinitesimal strain rate.
Amorphous materials as well as crystals, when subjected to
an incremental strain, produce a corresponding linear stress-
response. However, unlike crystals, amorphous arrangements
of particles incur localised, non-affine, displacements termed
‘plastic events’. These deformations are easily identified in an
athermal straining protocol by the occurrence of abrupt stress-
drops and localised particle displacements. The amorphous
nature of the constituent particles allows the system to release
stresses via such events that comprise displacements of a small
fraction of the particles that occur when energy-minimising the
system after subjecting it to an affine strain.

The distribution of the strain needed to induce the first
plastic event forms an important descriptor of the rigidity of
solids and is an indicator of their stability to shear. It is therefore
important to study the nature of such distributions using con-
figurations that display experimentally relevant stresses. As
discussed in eqn (6), the shear-stabilised configurations with
zero shear stress may provide an accurate characterisation of the
stability of real solids. In Fig. 4 we show that the distribution of
the strain Dg1 needed to achieve the first plastic event is sensitive
to the stress-fluctuations allowed in the configurations sampled.
Most significantly, unstrained configurations are more suscep-
tible to plastic events at lower strain-deformations. Intriguingly,
the estimated exponent (P(Dg1) B Dgy1) in the low Dg1 regime, an
important characterisation of amorphous stability,50,51 seems to
increase from y E 0.4 to y E 0.45 between the unstrained and
shear-stabilised configurations.

6 Configurations approaching a
plastic-event

Since a primary utility of a Hessian analysis is the determination
of the stability of amorphous systems, it is natural to focus on
the nature of configurations of near-failure amorphous solids.
These plastic events correspond to the system crossing saddles
in the energy landscape as it is sheared.52 Traversing across such

energy barriers by straining the system allows us to probe the
energy landscape that determines the stability of such amor-
phous configurations of particles. The model system used allows
us to study its properties close to such a phenomenon. Once the
plastic event is identified, as described in the previous section,
we then proceed to ascertain the strain gP, at which the plastic
event occurs, to a high degree of precision by using very fine
strain-steps. This permits us to sample configurations that are
arbitrarily close to the event. We thus define the collection of
plastic-event-approach configurations that are all at the same
strain to their respective plastic events (Dg = gP � g).

We study the single most important marker of stability,
namely the minimum eigenvalue of the Hessian, as the system
approaches the plastic-strain (gP) at which a saddle in the
energy landscape is reached. The behaviour of the displacement
field has been shown to be proportional to the minimum
eigenmode, when close to such a plastic event:53

u(g) � u(gP) = X(g)cmin, (7)

where u represents the position of the particles as a function of
the strain g and X is the projection of the displacement field
onto the minimum eigenvector cmin. The minimum eigenvalue
is assumed to vary linearly with the projection lmin E aX(g),
which in turn leads to an approach to zero with a square-root
singularity: lmin � a

ffiffiffiffiffiffiffiffiffiffiffiffiffi
gP � g
p

. This singular behaviour occurs
due to the eigenvector corresponding to the minimum eigenvalue
aligning itself with the displacement vector corresponding to the
plastic event. A natural question then is the exact nature of
the proportionality constant a that governs the magnitude of
the change in the minimum eigenvalue of the Hessian with the
strain of the system. The singular square-root approach is quite

Fig. 4 Distributions of the strain Dg1 required to achieve the first plastic
event, beginning with configurations sampled from the Unstrained and
from the two shear-stabilised configurations. These measurements were
performed on 2D systems of size N = 256 in two dimensions. The lines
indicate best-fits for the exponent. The shear-stabilised configurations
have fewer plastic events at smaller strains. (inset) Distribution of the
macroscopic shear stress in energy minimised configurations. The
unstrained configurations display finite shear-stress fluctuations, while
the shear-stabilised configurations possess no macroscopic shear stress.
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general and is expected whenever a system approaches a saddle
corresponding to a plastic event along one of its degrees of
freedom. For example, a crystalline system undergoing a slip will
have its eigenvalue vanish with a single a determined by the
interactions between the particles. On the other hand, amorphous
materials differ in that the constant of proportionality a varies
from sample to sample. The statistics of a is consequently
dependent purely on the microscopic parameters of the system,
and we therefore expect a universal distribution of the form:

PðaÞ � P
lminffiffiffiffiffiffiffiffiffiffiffiffiffi
gP � g
p
� �

: (8)

In Fig. 5, we display these distributions at small distances to the
plastic strain as well as for various system sizes. We scale these
distributions with the strain-distance as

ffiffiffiffiffiffi
Dg
p

and system size as
approximately N�0.22. This universal distribution seems to exhibit
a low-frequency power-law of l2.5

min corresponding to o6
min. The full

approach to the plastic event is illustrated in Section D of the
ESI.† 48 Attempts at fitting one of the three common extreme value
distributions failed to yield a reasonable match, suggesting a non-
trivial limiting form. Using the estimated exponent a E 2.5 in an
extreme value fit of uncorrelated variables predicts a scaling with
N with an exponent 1/(1 + a) E 0.286. The significant difference
from our observed system size scaling exponent of 0.22 also points
to correlations in the underlying eigenvalues, which would be
interesting to characterise further.

6.1 Second and third eigenvalue distributions

The Hessian matrices of amorphous systems have also been
sought to be modelled within random matrix frameworks.26,54–58

In this context, we analyse the behaviour of the second and third
eigenvalues l2 and l3, as the system approaches a plastic event.
Notably, in the limit of a vanishing minimum eigenvalue, the
second eigenvalue is equivalent to the first level-spacing. Such

near-extreme value distributions are natural measures that arise
in random matrix theory,59,60 and could therefore serve as useful
tools to understand the nature of the ensemble that the Hessian
matrices of amorphous solids generate.

As the plastic event is approached, the minimum eigenvalue
departs from the remaining vibrational frequencies. The effect
of such a separation is clearly felt by the remnant of the
spectrum, as can be seen in Fig. 6. Interestingly, as the system
approaches this saddle point, the distribution of the second
eigenvalue converges to a zero-located Weibull distribution.
Such Weibull forms have also been observed in the minimum
eigenvalue distributions in glass formers for small system
sizes.12 Our best fit curve is displayed in Fig. 6, showing a very
good match. Additionally, the fit estimates a low-frequency
power-law of about l2.12

2 . Such a characterisation assumes
relevance when studying solids close to plastic events because
the VDoS may then be well represented by a spectrum with one
less mode than otherwise. Finally we also measure the statistics
of the third eigenvalue as the plastic event is approached. We
plot this distribution in the inset of Fig. 6. Once again, this
distribution attains a limiting form. However, this distribution
does not seem to fit well with the generalised extreme value
distributions.

7 Conclusions

We have presented results highlighting the role played by the
choice of configurations in the low-frequency regime of the
VDoS of structural glass formers. We find that crucially finite
shear stress fluctuations are required to observe the universal
o4

min regime that has emerged as a hallmark of low-temperature
glasses. Determining the appropriate distributions of stresses
in real amorphous solids prepared under different conditions

Fig. 5 Distributions of the minimum eigenvalue of the Hessian matrix,
lmin, drawn from strained configurations grouped by distance Dg from their
respective first plastic events (inset). These distributions collapse when
scaled by the strain gap as

ffiffiffiffiffiffi
Dg
p

and the number of particles as N�0.22.
These scaled distributions show a marked deviation from o4

min behaviour
(solid line). The dash-dotted line corresponds to a power-law of o6

min.

Fig. 6 Distributions of the second eigenvalue of N = 256 systems, as it
approaches the plastic event. Surprisingly, the distribution approaches a
Weibull form as the plastic event is approached. The dashed line is a two-
parameter Weibull fit with m set to 0. (inset) Distribution of the third
eigenvalue in the same system. This distribution does not fit well to a
generalised extreme value form. The best fit is displayed by the dashed line.
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and their effect on structural properties would therefore be of
immediate relevance. We also showed that the minimum
eigenvalue of the Hessian attains a universal distribution when
approaching a plastic event. It would be interesting to probe the
origin of the anomalous scaling of N�0.22 with the number of
particles displayed by this distribution. The robustness of the
o4

min regime in the VDoS of amorphous solids in the context
of our study motivates an analysis of different models of
structural glass formers in stress-controlled ensembles, in two
as well as three dimensions. Similarly, studying the effects of
varying the smoothness in the interaction potentials which
have been shown to have non-trivial effects on the Hessian
matrices72 could help better understand the stability of amor-
phous solids to shear. Finally, it would also be interesting to
study the shear stress fluctuations in ultrastable glasses, which
have been shown to have anomalous rigidity properties.73
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