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In the late 1980s, Sir Sam Edwards proposed a possible statistical-mechanical framework to describe
the properties of disordered granular materials. A key assumption underlying the theory was that all
jammed packings are equally likely. In the intervening years it has never been possible to test this
bold hypothesis directly. Here we present simulations that provide direct evidence that at the unjam-
ming point, all packings of soft repulsive particles are equally likely, even though generically, jammed
packings are not. Typically, jammed granular systems are observed precisely at the unjamming point
since grains are not very compressible. Our results therefore support Edwards’ original conjecture.
We also present evidence that at unjamming the configurational entropy of the system is maximal.

In science, most breakthroughs cannot be derived from known physical laws: they are based on inspired conjec-
tures [1]. Comparison with experiment of the predictions based on such a hypothesis allows us to eliminate conjectures
that are clearly wrong. However, there is a distinction between testing the consequences of a conjecture and test-
ing the conjecture itself. A case in point is Edwards’ theory of granular media. In the late 1980s, Edwards and
Oakeshott [2] proposed that many of the physical properties of granular materials (‘powders’) could be predicted
using a theoretical framework that was based on the assumption that all distinct packings of such a material are
equally likely to be observed. The logarithm of the number of such packings was postulated to play the same role
as entropy does in Gibbs’ statistical-mechanical description of the thermodynamic properties of equilibrium systems.
However, statistical-mechanical entropy and granular entropy are very different objects. Until now, the validity of
Edwards’ hypothesis could not be tested directly – mainly because the number of packings involved is so large that
direct enumeration is utterly infeasible – and, as a consequence, the debate about the Edwards hypothesis has focused
on its consequences, rather than on its assumptions. Here we present results that show that now, at last, it is possible
to test Edwards’ hypothesis directly by numerical simulation. Somewhat to our own surprise, we find that the hy-
pothesis appears to be correct precisely at the point where a powder is just at the (un)jamming threshold. However,
at higher densities, the hypothesis fails. At the unjamming transition, the configurational entropy of jammed states
appears to be at a maximum.

The concept of ‘ensembles’ plays a key role in equilibrium statistical mechanics, as developed by J. Willard Gibbs,
well over a century ago [3]. The crucial assumption that Gibbs made in order to arrive at a tractable theoretical
framework to describe the equilibrium properties of gases, liquid and solids was that, at a fixed total energy, every
state of the system is equally likely to be observed. The distinction between, say, a liquid at thermal equilibrium and
a granular material is that in a liquid, atoms undergo thermal motion whereas in a granular medium (in the absence
of outside perturbations) the system is trapped in one of many (very many) local potential energy minima. Gibbsian
statistical mechanics cannot be used to describe such a system. The great insight of Edwards was to propose that
the collection of all stable packings of a fixed number of particles in a fixed volume might also play the role of an
‘ensemble’ and that a statistical-mechanics like formalism would result if one assumed that all such packings were
equally likely to be observed, once the system had settled into a mechanically stable ‘jammed’ state. The nature of
this ensemble has been the focus of many studies [2, 4–6].

Jamming is ubiquitous and occurs in materials of practical importance, such as foams, colloids and grains when they
solidify in the absence of thermal fluctuations. Decompressing such a solid to the point where it can no longer achieve
mechanical equilibrium leads to unjamming. Studies of the unjamming transition in systems of particles interacting
via soft, repulsive potentials have shown that this transition is characterised by power-law scaling of many physical
properties [7–12]. However, both the exact nature of the ensemble of jammed states and the unjamming transition
remains unclear.

In this letter, we report a direct test of the Edwards conjecture, using a numerical scheme for computing basin
volumes of distinct jammed states (energy minima) of N polydisperse, frictionless disks held at a constant packing
fraction φ. Uniquely, our numerical scheme allows us to compute Ω, the number of distinct jammed states, and the
individual probabilities pi∈{1,...,Ω} of each observed packing to occur. Fig. 1a shows a snapshot of a section of the
system, consisting of particles with a hard core and a soft shell. We obtain jammed packings by equilibrating a hard
disk fluid and inflating the particles instantaneously to obtain the desired soft-disk volume fractions (φ), followed
by energy minimization (see SI). The minimization procedure finds individual stable packings with a probability pi
proportional to the volume vi of their basin of attraction. Averages computed using this procedure, represented by
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FIG. 1: (a) Snapshot of a jammed packing of disks with a hard core (dark shaded regions) plus soft repulsive corona
(light shaded regions). (b)-(c) Illustration of configurational space for jammed packings. The dashed regions are
inaccessible due to hard core overlaps. Single coloured regions with contour lines represent the basins of attraction of
distinct minima. The dark blue region with solid dots indicates the coexisting unjammed fluid region and hypothetical
marginally stable packings, respectively. The volume occupied by the fluid Vunj is significant only for finite size systems
at or near unjamming. When φ� φ∗ (b) the distribution of basin volumes is broad but as φ→ φ∗ (c) the distribution

of basin volumes approaches a delta function satisfying Edwards’ hypothesis.

〈. . . 〉B, would then lead to a bias originating from the different vi’s. Recent advances in numerical methods [13, 15–
17] have now enabled direct computation of vi, and therefore, an unbiased characterization of the phase space. A
summary of the technique is provided in SI.

We report a detailed analysis of the distribution of vi for a fixed number of disks N = 64 (all maximum system
sizes in our study were set by the current limits on computing power). We compute vi using a thermodynamic
integration scheme [13, 15–17], and compute the average basin volume 〈v〉(φ). The number of jammed states is,
explicitly, Ω(φ) = VJ(φ)/〈v〉(φ), where VJ(φ) is the total available phase space volume at a given φ. A convenient
way to check equiprobability is to compare the Boltzmann entropy SB = ln Ω− lnN !, which counts all packings with
the same weight, and the Gibbs entropy SG = −∑Ω

i pi ln pi − lnN ! [18–20]. The Gibbs entropy satisfies SG ≤ SB ,
saturating the bound when all pi are equal: pi∈{1,...,Ω} = 1/Ω. As shown in Fig. 2a, SG approaches SB from below as

φ → φ
∗(S)

N=64 ≈ 0.823. Fig. 1b-c schematically illustrates the evolution of the basin volumes as the packing fraction is
reduced.

To characterize the distribution of basin volumes, we analyse the statistics of vi along with the pressure Pi of
each packing. It is convenient to study Fi ≡ − ln vi as a function of Λi ≡ lnPi. As shown in Fig. 2b, we observe
a strong correlation between Fi and Λi which we quantify by fitting the data to a bivariate Gaussian distribution.
The first principal component of this fit yields a linear relationship (denoted by solid lines in Fig. 2b) such that
〈F 〉B(φ; Λ) ∝ λ(φ)Λ, where 〈F 〉B(φ; Λ) represents the average over all basins at a given Λ. Previous studies at higher
packing fractions [13] indicate that this relationship is preserved in the thermodynamic limit. Defining f = F/N , we
have (see SI for details):

〈f〉B(φ; Λ) =λ(φ)Λ + c(φ)

=λ(φ)∆Λ + 〈f〉B(φ) ,
(1)

where ∆Λ = Λ − 〈Λ〉B(φ). For Edwards’ hypothesis to be valid, we require that in the thermodynamic limit (i) the
distribution of volumes approaches a Dirac delta, which follows immediately from the fact that the variance σ2

f ∼ 1/N
[16] and (ii) Fi needs to be independent of Λi, as well as of all other structural observables, and therefore λ(φ) must
necessarily vanish (see SI for a detailed discussion of these points). As can be seen from Fig. 2c-d, within the range
of volume fractions studied, λ(φ) decreases but saturates to a minimum as φ → φ

∗(λ)

N=64. We argue below that the
saturation is a finite size effect. An extrapolation using the linear regime in Fig. 2c indicates that λ → 0 at packing
fraction φ

∗(λ)

N=64 = 0.824 ± 0.070, remarkably close to where our extrapolation yields SG = SB . The analysis of basin
volumes, therefore, strongly suggests that equiprobability is approached only at a characteristic packing fraction and
that the vanishing of λ(φ) can be used to estimate the point of equiprobability.
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FIG. 2: (a) Gibbs entropy SG and Boltzmann entropy SB as a function of volume fraction. SB is computed both
parametrically by fitting B(f) with a generalised Gaussian function (‘Gauss’) and non-parametrically by computing
a Kernel Density Estimate (‘KDE’) as in Ref. [13]. Dashed curves are a second order polynomial fit. (b) Scatter plot
of the negative log-probability of observing a packing, − ln pi = Fi + lnVJ(φ), where VJ is the accessible fraction of
phase space (see SI) as a function of log-pressure, Λ. Black solid lines are lines of best fit computed by linear minimum
mean square error using a robust covariance estimator and bootstrap (see SI). (c) Slopes λ(φ) and (d) intercepts c(φ)
of linear fits for Eq. 1. Solid lines are lines of best fit and error bars refer to the standard error computed by bootstrap

[14].

We next show that λ(φ) does indeed tend to zero in the thermodynamic limit. We use the fluctuations σ2
f , σ2

Λ,

and the covariance σ2
fΛ, obtained from the elements of the covariance matrix σ̂ = ((σ2

f , σ
2
fΛ), (σ2

fΛ, σ
2
Λ)) of the joint

distribution of f and Λ (see SI for details), to define λ and c as:

λ(φ) ≡
σ2
fΛ(φ)

σ2
Λ(φ)

,

c(φ) ≡〈f〉B(φ)−
σ2
fΛ(φ)

σ2
Λ(φ)

〈Λ〉B(φ).

(2)

From Fig. 2b we observe that the decrease of λ is driven by σ2
Λ increasing to a maximum, while σ2

f and σ2
fΛ decrease

(see Fig. S2). We expect the main features of these distributions to be preserved as the system size N is increased
[13], which suggests that for larger N , where basin volume calculations are still intractable for multiple densities, the
maximum in σ2

Λ can be used to identify φ∗N . We have directly measured χΛ = Nσ2
Λ using our sampling scheme –

that samples packings with probability proportional to the volume of their basin of attraction – for systems of up to
N = 128 disks (see inset of Fig. 3a) and finite size scaling indicates that χΛ diverges as φ → φ

∗(Λ)

N→∞ = 0.841(3) (see
SI). The saturation of λ to a minimum as φ → φ∗N , for small N , is determined by the fact that χΛ only diverges in
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FIG. 3: (a) χP ≡ Nσ2(P/〈P 〉B) and (inset) χΛ ≡ Nσ2
Λ, plotted as a function of volume fraction φ. By finite

size scaling (see SI) we show that the curves diverge in the thermodynamic limit as φ → φJ/∗, implying φ∗N→∞ =
φJN→∞ = 0.841(3), see main text for discussion. For φ� φJN , χP approaches a constant value indicating the absence
of extensive correlations far from the transition. (b) Observed average log-pressure 〈Λ〉B and (inset) probability of
obtaining a jammed packings by our protocol, as a function of volume fraction φ. By finite size scaling (see SI)

we show that 〈Λ〉B → −∞ as φ → φ
J(Λ)

N→∞ = 0.841(3) and pJ collapses for φ → φ
J(pJ )

N→∞ = 0.844(2), thus locating
the unjamming point. Error bars, computed by BCa bootstrap [29], refer to 1σ confidence intervals. Solid lines are
generalised sigmoid fits of the form f(φ) = a − (a − b)/(1 + exp(−w∆φ))1/u. We only show values of φ where the
probability of finding a jammed packing is at least 1%, so that the observables are computed over sufficiently large

samples.

the thermodynamic limit, a detailed discussion is given in SI.

Interestingly, we find evidence that in the thermodynamic limit, the point of equiprobability φ∗N→∞, coincides with
the point at which the system unjams, φJN→∞. We use two characteristics of the unjamming transition to locate
φJN→∞ (i) the average pressure of the packings goes to zero, and therefore 〈Λ〉 → −∞ (see Fig 3b) and (ii) the
probability of finding jammed packings, pJ , goes to zero (see inset of Fig 3b). A scaling analysis indicates that

〈Λ〉 → −∞ as φ
J(Λ)

N→∞ = 0.841(3), and pJ → 0 as φ
J(pJ )

N→∞ = 0.844(2) (see SI). We thus find that φ∗N→∞ = φJN→∞
within numerical error and up to corrections to finite size scaling [21]. Our simulations therefore lead to the surprising
conclusion that the Edwards conjecture appears to hold precisely at the (un)jamming transition. We note that our
earlier simulations at densities above jamming [13, 16] did not support the Edwards hypothesis. However, these
simulations were carried out at densities well above jamming. The earlier simulations therefore do not contradict our
current findings – although, we admit that, based on our earlier work, we did not expect to find equiprobability at
the unjamming point

Why is χΛ related to the unjamming transition? As the particles interact via purely repulsive potentials, the
pressure P is strictly positive, which implies that the fluctuations of P have a floor and go to zero at unjamming.
The relative fluctuations χP ≡ Nσ2 (P/〈P 〉B), can be non-zero, and a diverging χP would then imply a diverging
χΛ. Because of the bounded nature of P [22–24], however, χP can only diverge at the unjamming transition where
〈P 〉B → 0 (see SI). We find that χP does diverge (Fig. 3a) and finite size scaling yields φ

∗(P )

N→∞ = 0.841(3), in
agreement with what has been found for χΛ. Returning to the N = 64 case that we have analysed using the basin
volume statistics, we find that both χP and χΛ saturate to their maximum values over similar ranges of φ and our
estimate φ∗N=64 ≈ 0.824 where SG = SB and λ→ 0, falls in this region. In addition, the average number of contacts

〈z〉B(φ∗N=64) = 4.050± 0.24 is close to the isostatic value z
(iso)
N=64 ≡ 2d− 2/64 ≈ 3.97 [10] (see SI).

Finally, we note that the states in the generalised Edwards ensemble [5, 25–27] characterised by φ and P have basin
volumes that are similar, if not identical, over the full range of φ that we have explored (see scatter plot in Fig. 2b),
indicating that equiprobability in the stress-volume ensemble [5, 25] is a more robust formulation of the Edwards
hypothesis. This observation is consistent with recent experiments [28].

In conclusion, we have reported numerical evidence supporting the existence of a flat measure at unjamming for 2D
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soft repulsive sphere systems. Although, the equiprobability of jammed states at a given packing fraction was posited
by Edwards for jammed packings of hard particles, our analysis shows that for soft particles, the Edwards hypothesis
is valid only for the marginally jammed states at φ∗N→∞ = φJN→∞, where the jamming probability vanishes, the
entropy is maximised, and relative pressure fluctuations diverge. We have shown not only that there exist a practical
‘Edwardsian’ packing generation protocol, capable of sampling jammed states equiprobably, but we have uncovered
an unexpected property of the energy landscape for this class of systems. At this stage, we cannot establish whether
the same considerations are valid in 3D, although the already proven validity of Eq. 1 in 3D would suggest so [13].
The exact value of the entropy at unjamming, whether finite or not, also needs to be elucidated. The implications for
‘soft’ structural glasses is apparent: at φJ the uniform size of the basins implies that the system, when thermalised,
has the same probability of visiting all of its basins of attraction, hence there are no preferred inherent structures.
This could be a signature of the hard-sphere transition occurring at the same point [30]. Our approach can, therefore,
be extended to spin-glasses and related problems, and it would be clearly very exciting to explore the analogies and
differences between ‘jamming’ in various systems for which the configuration space can break up into many distinct
basins.
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