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Abstract
Self-aggregation in proteins has long been studied and modeled due to its ubiquity and importance
in many biological contexts. Several models propose a two step aggregation mechanism, consisting
of linear growth of fibrils and secondary growth involving branch formation. Single molecule
imaging techniques such as total internal reflection fluorescence (TIRF) microscopy can provide
direct evidence of such mechanisms, however, analyzing such large data-sets is challenging. In this
paper, we analyze for the first time, images of growing amyloid fibrils obtained from TIRF
microscopy using the techniques of fractal geometry, which provides a natural framework to
disentangle the two types of growth mechanisms at play. We find that after an initial linear growth
phase, identified by a plateau in the average fractal dimension with time, the occurrence of
branching events leads to a further increase in the fractal dimension, with a final saturation value
≈2. This provides direct evidence of the two-step nature of the aggregation kinetics of amyloid-β
proteins, with an initial linear elongation phase followed by branching at later times.

1. Introduction

Proteins are amongst the most ubiquitous biological
molecules, responsible for controlling and catalyzing
the many chemical processes that make life possible.
An important property of proteins that governs the
high degree of selectivity in their functionality, is their
ability to fold into intricate and unique three dimen-
sional structures. Since the proper folding of pro-
tein molecules is critical to their function, misfolding
typically leads to many detrimental effects on their
related biological processes. Of particular importance
among such effects is the formation of filamentous
aggregates termed amyloids [1–4]. Many proteins
and peptide fragments can form amyloid aggregates
[5, 6] which have been implicated in the pathology
of several diseases with high morbidity and mortality,
such as Alzheimer’s, Parkinson’s, type-II diabetes, etc
[7–10].

In this context, understanding the mecha-
nisms through which amyloid aggregation occurs
is essential to design therapeutic and preventative
strategies against such diseases. Over the past few
decades the process of amyloid aggregation has been

studied widely, with the aim of understanding the
microscopic steps behind it. Ensemble experiments
that study amyloid aggregation through measuring
changes in a macroscopic quantity such as the total
fluorescence intensity, combined with global curve
fitting over a range of initial concentrations have
produced many insights into the mechanisms that
drive amyloid aggregation [11]. Such analyses have
allowed researchers to identify that the mechanism of
amyloid aggregation of the Aβ42 peptide—involved
in the pathology of Alzheimer’s disease—contains
a secondary nucleation step [12]. Further research
suggests that this secondary nucleation step is driven
by the surface of the fibrils providing a nucleation
site for monomers in the solution phase [13].

Owing to the small size of aggregation clus-
ters, ensemble experiments alone are insufficient to
elucidate and confirm the mechanistic details of the
aggregation process of such proteins. It is there-
fore important to develop single molecule meth-
ods which can monitor the aggregation process with
a much higher resolution—at the level of a fib-
ril. Several such methods have been designed and
employed to study aggregation; including techniques
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such as epifluorescence microscopy [14], atomic force
microscopy [15–18], and total internal reflection flu-
orescence microscopy (TIRFM) [19–23]. Superreso-
lution microscopy techniques have also been applied
to the problem of imaging the protein aggrega-
tion process for amyloid-β [24], α-synuclein [25]
and huntingtin [26]. Studies have also focused on
attempting to image protein aggregation inside cells
[27, 28]. Features unavailable from conventional
ensemble experiments—such as measurements of the
shapes and sizes of individual growing fibrils—can be
accessed from these single molecule techniques. How-
ever, since they monitor the aggregation process at
such high resolution, single molecule techniques gen-
erate large amounts of data. Therefore, in order to
truly take advantage of these techniques, methods that
can sort through and analyze large volumes of such
data and extract the relevant microscopic parameters
need to be developed. A technique often utilized in
past works to analyze total internal reflection fluo-
rescence (TIRF) microscopy images is to count the
number of fibrils present inside the field of view
and calculate how the length of the fibrils changes
from frame to frame. In this way, estimates for the
rates of linear elongation of different fibrils can be
obtained. However, it is difficult to obtain an estimate
for the rates of surface-catalyzed secondary nucle-
ation—the process that leads to the formation of new
branches—from this method.

In this paper we develop an analysis method
of experimental images that identifies clusters and
measures their fractal characteristics. This allows us
to distinguish between linear growth and branching
growth. The technique of fractal analysis is widely
used to study irregularities in geometric objects or in
signals obtained from irregular natural phenomena.
Fractal analysis has been used in the past to charac-
terized aggregation in other areas such as nanoparticle
aggregation [29] and the formation of soot aggregates
during combustion of wood [30], as well as to study
diffusion-limited aggregation [31]. Combined with
TIRF microscopy and cluster analysis, which allows
us to identify and analyse protein aggregates in vitro
in an automated way, fractal geometry provides us the
tools to measure and describe the physical properties
of protein aggregates.

2. Materials and methods

Synthetic Aβ42 was purchased from AAPPTec LLC
(Louisville, KY, USA). All other chemicals were pur-
chased from Sigma (USA) unless otherwise men-
tioned. Powder Aβ42 (1 mg) was dissolved in 2
ml of ice-cold 5 mM NaOH and filtered through a
0.22 µM syringe filter before injection to size exclu-
sion chromatography for further purification using
a Superdex peptide column (GE Healthcare, USA)
in 5 mM NaOH containing 1 mM EDTA and 5

mM beta-mercaptoethanol (βME). The aggregation
experiments were performed following dilution of the
freshly purified Aβ42 solution to the desired concen-
tration in the aggregation buffer (20 mM phosphate
buffer, pH 7.4 containing 150 mM NaCl, 1 mM EDTA,
5 mM βME) directly on a clean Petri dish. Lower
concentrations were achieved by serial dilution i.e.
diluting from the adjacent higher concentration. All
samples were supplemented with 4 µM thioflavin T
(ThT) as a fluorescent marker.

A glass bottom Petri dish (4 well, Cellvis, USA)
was cleaned with 10 M NaOH for 15 minutes
followed by a thorough rinsing with MiliQ-water.
The surface was further cleaned with 70% v/v
EtOH/water solution afterwards and finally washed
with MiliQ-water before addition of samples. Aβ42
aggregation was started by dilution of the freshly
purified sample in the aggregation buffer as men-
tioned above in the Petri dish and monitored on a
home-built TIRF setup (see appendix A). The Petri
dish was enclosed inside a customized aluminium
block with proper humidification to prevent the sam-
ple from drying out and to maintain uniform tem-
perature. The progress of aggregation was recorded
by imaging the ThT fluorescence at multiple positions
every 30 minutes with optimal laser exposure (200
msec) and power (∼10 mW). ThT shows very strong
fluorescence in the presence of Aβ42 aggregates and
the resultant images were used for further analysis.
Figure 1 shows example images of the aggregation
process from different stages of aggregation obtained
using TIRF microscopy.

To study the growth mechanisms that govern the
dynamics of the clusters, it is necessary to isolate them
from the image background. We accomplish this by
thresholding followed by clustering using the density-
based clustering algorithm DBSCAN (see supple-
mentary information). Once the clusters have been
isolated and identified, we classify them by their frac-
tal dimension df . We use a box-counting algorithm
detailed below to obtain an estimate of df for each
cluster. Figure 2 shows a schematic diagram outlining
our analysis pipeline.

2.1. Image registration
Image registration is the process of aligning images
taken from different viewpoints, or at different times.
Especially in microscopy experiments that are meant
to acquire long time series data, the field of view under
observation can shift slightly over time. Image regis-
tration, therefore, is a necessary first step that must
be carried out before any other kind of processing or
analysis can be done on the images.

For registering the images of the amyloid fibrils
in our studies, we used the pyStackReg Python
library. This library is a Python port of the ImageJ plu-
gin StackReg, which in turn is based on the image
registration method presented in [32].
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Figure 1. Images from the aggregation process at three different stages. (Left) This image is at 600 minutes, the very end of the
initial lag phase, and the beginning of the explosive growth phase. Some of the larger aggregates visible in the later images have
started forming. (Center) This image is at 690 minutes, in the middle of the exponential growth phase. The larger aggregates seen
in the final image have already taken on the basic structure. (Right) This image is at 2100 minutes, at the very end of the
saturation phase, where all aggregates have fully formed.

Figure 2. Schematic diagram describing the analysis methodology developed in this paper. After obtaining the raw images from
TIRF microscopy (a), we deconvolve the images with the fitted PSF (point spread function) of the TIRF microscope (b). Following
that, we threshold the images in order to separate the clusters from the background (c). Once the thresholded clusters are
obtained, we employ the clustering algorithm DBSCAN to extract the location of the clusters from the image (d). Finally, we
employ the box-counting algorithm in order to calculate the fractal dimension of each localized cluster at every frame (e).

2.2. Deconvolution
The widths of amyloid fibrils are of the order of 5–20
nm [33–35]; far below the diffraction limit of mod-
ern microscopes and imaging systems, which have a
minimum resolvable distance of≈100 nm. As a result,
images of amyloid fibrils are blurred and deformed
according to the point-spread function (PSF) of the
microscope and imaging system.

The PSF describes the response of an imaging sys-
tem to a point source. In a fluorescent microscope,
which is a non-coherent imaging system, the imaging
process is linear, which is to say:

Image(object1) + Image(object2) = Image(object1 + object2).

(1)

The linearity property means that an image from a
fluorescent microscope can be treated as a sum of the
images of multiple point sources, each of which has
undergone blurring in line with the PSF of the micro-
scope. In essence, the obtained image is a convolution
of the ground truth image with the PSF. This suggests
that in principle, it should be possible to de-blur the
image and recover the ground truth image by decon-
volving with the PSF. In practice, however, deconvolv-
ing a sub-resolution image with the PSF to restore
it is a highly challenging and ill-posed problem. Like

other image restoration tasks, infinite solutions to this
problem are possible in the high-dimensional space of
all feasible images.

The Richardson–Lucy algorithm [36, 37] is an
iterative scheme to recover an image that has been
blurred by a known PSF. In the current study, the
PSF of the microscopy system was estimated by fitting
a two-dimensional Gaussian function to the image
of fluorescent beads. The beads were 100 nm in
diameter, their small size enabling them to serve as
sub-resolution point sources. The deconvolution was
carried out frame-by-frame on every frame of an
image stack by using this fitted PSF as the input to the
implementation of the Richardson–Lucy algorithm
available in the scikit-image Python module [38].

2.3. Thresholding
Before cluster analysis can be carried out on aggrega-
tion images, it is necessary to threshold the images in
order to separate the fibrils which make up the fore-
ground of our images from the background. Without
this step, there is no way to signify to the clustering
algorithm which pixels make up the fibrils and should
be considered for clustering. Furthermore, since the
illumination in our images is non-uniform—as the
illumination comes from the fibrils themselves, and
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the intensity of each fibril varies depending upon its
mass—an adaptive thresholding algorithm that can
calculate a separate threshold for each local region of
the image must be used.

For the purpose of our study, we have employed
the adaptive thresholding algorithms available in the
scikit-image module in Python [38]. The scikit-image
algorithm operates by first calculating the threshold
for an individual pixel as the Gaussian weighted mean
of the intensity values in the local neighbourhood of
the pixel, then subtracting a constant, called the off-
set, from that value. The ‘local neighbourhood’ of a
pixel is defined as all the pixels falling inside a square
matrix centered on the pixel of interest. The size of this
square matrix, in terms of numbers of pixels, as well
as the offset are both user-definable parameters in the
algorithm. In our studies, we set the offset and size
parameters manually for stacks of images obtained
from different experiments. We use the same offset
and size parameter values for all image frames within
a single stack. Generally it was found that a neigh-
bourhood of size ≈ 150 × 150 pixels and an offset of
≈120 worked for images obtained from most experi-
mental conditions. The thresholding algorithm out-
puts a binary image with all the pixels classified as
‘true’, or ‘false’. For the purposes of displaying the
image, the ‘true’ pixels are defined to have the max-
imum intensity for the image type (255 for a eight-bit
image, 65 535 for a 16-bit image and so on), while the
‘false’ pixels are defined to have 0 intensity.

2.4. The DBSCAN clustering algorithm
In our study, we employ clustering algorithms for
the purpose of detecting fibrils, which show up as
clusters of ‘true’ pixels against background of ‘false’
pixels after thresholding an image. These cluster can
be of arbitrary shapes and sizes. In addition, the
number of clusters is not fixed, and may change arbi-
trarily from the beginning to the end of an experi-
ment. As one of the aims of this study has been to
automate the method of analysis as far as possible,
density-based clustering methods appear to be the
more logical choice for the clustering task at hand,
under the constraints described. Of the density-based
clustering methods, the DBSCAN algorithm [39], is
the most well-known and most used. We therefore
decided on DBSCAN as the algorithm of choice for
detection of fibrils.

The DBSCAN algorithm requires two parame-
ters—a distance cutoff eps and a minimum number
of points within that cutoff, min_samples—to define a
cluster. These two parameters together define a global
density threshold. The algorithm then checks every
point in the database and labels them whether as part
of a cluster or as a ‘noise’ point. In this study, we
have applied the implementation of DBSCAN avail-
able in the scikit-learn module [40] of the Python
programming language.

2.5. Estimation of fractal dimension
For the empirical estimation of fractal dimen-
sions, especially in computational applications, the
box-counting dimension, also referred to as the
Minkowski–Bouligand dimension, is very widely
used. Mathematically, the box-counting dimension is
defined as follows [41]: let F be a non-empty bounded
subset of the n-dimensional Euclidean space Rn. (For
the specific case of the analysis of images, such as the
ones in the current study, the relevant space is the
two-dimensional Euclidean space, corresponding to
the flat surface of a piece of paper or the computer
monitor. As a corollary, for the case of image analy-
sis, F will be the region of that two-dimensional space
that is occupied by the image, in other words, F is the
image of an entire field-of-view, when talking about
the average fractal dimension. When talking about the
fractal analysis of individual fibrils, F is the portion
of the image where that fibril resides.) Let Nδ(F) be
the smallest number of sets of diameter at most δ that
can cover F. Then, the box-counting dimension of F
is defined as:

dimB F = lim
δ→0

log Nδ(F)
− log δ

. (2)

The above definition, while mathematically exact,
does not lend itself to an easy implementation for
empirical estimation of the dimension. For such cases,
there are other equivalent definitions of the box-
counting dimension that are easy to implement com-
putationally. Let us consider a mesh of n-dimensional
cubes in Rn, such that the side of each cube is of the
length δ. So the cubes will be of the form:

[m1δ, (m1 + 1)δ] × · · · × [mnδ, (mn + 1)δ], (3)

where m1 . . . mn are integers. Again, for the two-
dimensional case, the mesh of n-dimensional
δ—cubes is simply a square grid of grid size δ. Now
if we take N ′

δ(F) as the number of δ-mesh cubes that
intersect F, then at the limit δ → 0, we can replace
Nδ(F) in equation (2) with N ′

δ(F).
This definition for the box-counting dimension is

the one most widely used for empirical estimation of
the ‘fractal’ dimension of a set F. Essentially, it cor-
responds to laying the fractal set F out on an evenly
spaced grid, calculating how many boxes are required
to cover the set, and then plotting how the number of
boxes changes as the grid is made finer and finer. This
definition also suggests a way to connect the value
given by the box-counting dimension to a tangible
feature of the set. One can interpret the number of
the δ-mesh cubes that intersect with the set F as a
mark of how irregular the set is when examined at the
scale δ. So the box-counting dimension of an irregu-
lar set F indicates how rapidly irregularities develop
as δ → 0. The box-counting dimension is most com-
monly estimated by some version of the box-counting
algorithm, originally introduced as the ‘reticular
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cell counting’ method by Gagnepain and Roques-
Carmes [43].

For applying the box-counting method in
practice, one of the first steps is to decide upon
the sizes of the boxes (δ)—in terms of pixels, for
image data—that will be used. The most common
strategy in this regard is to use the geometric-step
(GS) method [44]. In the GS method, box sizes are
chosen as powers of 2—thus, for example, a possible
set of box sizes (in terms of pixels) for an image
that is 1000 × 1000 pixels could be: 2 × 2, 4 ×
4, 8 × 8, 16 × 16, 32 × 32, 64 × 64, 128 × 128, 256 ×
256 and 512 × 512 pixels. However, when this
method is applied to images of an arbitrary size
M × N pixels, where M and N may not necessarily
be powers of 2, there will be an unavoidable loss
of information from the regions of the image that
are close to the edges. This issue assumes particular
importance in our case when one considers that we
are attempting to calculate the fractal dimensions
of individual clusters, whose linear dimensions are
∼0.1× the dimensions of the full image. For such
clusters, which are of much smaller size than the
image, the amount of information available is already
limited, and further loss of information can lead to
greater errors in the estimation.

To mitigate the above issue, for this study we
employ the enhanced box-counting algorithm devel-
oped by So et al [42]. The method outlined by So et al
has two advantages over the standard box-counting
method; firstly, it allows the selection of a greater
number of box sizes than the GS method, which in
turn means a larger number of data points that can
be used for regression, which leads to a more robust
estimate. Secondly, N(δ), the number of boxes at a
particular box size δ, is allowed to take on positive
real values instead of being limited to whole numbers.
This makes use of the pixels that are close to an edge
of the image, which might fall into a fractional box if
the dimensions of the image are not a multiple of the
box size. Figure 3 displays the N(δ) obtained from this
fractional box-counting procedure for four different δ
on an example image.

3. Results

We have performed a fractal characterization of TIRF
images of growing fibrils obtained from experiments
(see supplementary information for details of TIRF
setup). The plots in panel (a) of figure 4 compare the
change in the average fractal dimension over time for
two different concentrations—8 and 1 µM. At the ini-
tial stages, clusters will be small in size and show up as
tiny points of light in the view of the microscope. This
visual observation is borne out by the fractal dimen-
sion analysis. As figure 4 shows, for both concentra-
tions the plot of the average fractal dimension starts
off at a value of 0. For 8 µM, as the clusters grow
in size, the average fractal dimension also rises, until

it finally saturates at a value close to 1.75. At 1 µM
however, the average fractal dimension does not grow
beyond 1, saturating at a final value of around 0.6.
This contrast indicates that there are different con-
centration dependent growth mechanisms at work,
which in turn leads to the difference in outcomes of
the aggregation process. Further, the inset in the same
panel displays the trajectories of individual clusters in
the fractal dimension-time space for 8 µM. The plot
of these individual trajectories indicates the presence
of a region in the fractal dimension-time space where
the rate of growth of the fractal dimension temporar-
ily slows down. This slowdown can also be observed
in the averaged fractal dimension plot (see outset).

The nature of the evolution of the fractal dimen-
sion at 8 µM suggests that initially, aggregation begins
through a mechanism that causes linear growth of the
clusters. After a period of time, a different mecha-
nism—one that causes fibrils to branch out—takes
over, as a result of which the average fractal dimen-
sion starts to take on values larger than 1. Our analysis
indicates that for monomer concentrations !1 µM,
this second mechanism does not seem to dominate
in the same way as it does for higher monomer
concentrations. This conclusion is supported by the
behavior of the average fractal dimension at the
two different concentrations. The conclusions drawn
from this analysis are in line with the two-step
model—primary nucleation followed by secondary
nucleation catalyzed by fibril surface—of aggregation
that has long been proposed in the literature [45–51].

Although the presence of a plateau in the evolu-
tion of the average fractal dimension 〈df (t)〉 around
the value 〈df 〉 ≈ 1 clearly indicates that the clus-
ters grow primarily through linear elongation in this
phase, our localization of single clusters allows us to
characterize the kinetics of this two step aggregation
further. Since clusters can appear at any time in the
system, each of them may acquire branches at differ-
ent times depending on their age, which is directly
related to their length through a linear elongation
rate. These effects naturally contribute to the evo-
lution of 〈df (t)〉, making the average plateau at the
linear elongation dimension less discernible. In this
context it is useful to look at the individual trajecto-
ries of the clusters through fractal dimension space.
We plot these trajectories for the experiments at 8 µM
concentrations in the inset of figure 4(a). These tra-
jectories clearly display a prominent plateau in their
evolution through fractal dimension space. In order
to quantify the time dependence of this evolution
further, we monitor

T (df) =

∫ tmax

0
dt′

∫ df+δ

df

dx n(x, t′), (4)

where n(df , t) represents the un-normalized distri-
bution of the fractal dimensions of the individual
clusters, present at a given time t. Here tmax rep-
resents the maximum or cutoff time which for the
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Figure 3. Calculation of fractal dimension of a single TIRF image of the aggregation process using the enhanced box-counting
method [42]. Grids with δ of 45 pixels, 64 pixels, 90 pixels and 256 pixels respectively from left to right superimposed on a TIRF
image of the aggregation process are shown. The numbers below the images display the N(δ) at each respective grid size.

Figure 4. (a) Comparison of the change in fractal dimension at two different concentrations. This comparison indicates the
existence of a critical concentration >1 µM, where there is a change in the mechanism of aggregation. Below this concentration,
primarily linear growth is observed, while above this concentration, growth occurs both linearly and along the surface. The
errorbars are given as ±3 times the standard deviation. (Inset) The plots in the inset show the trajectories of individual clusters for
the data at 8 µM. These plots of individual cluster trajectories indicate the presence of a region of slowed growth in the 8 µM data.
A similar region can also be observed in the average fractal dimension curve in the outset. To better investigate this slowdown in
the growth, in the next panel a histogram of the data—obtained by binning the individual trajectory data in the fractal dimension
and integrating the individual trajectories over time—is plotted. (b) Plots of T (df) histograms. A comparison has been made
between the histograms for concentrations of 8 µM and 1 µM. At 8 µM, the histogram shows the presence of a clear
pre-saturation maximum at a fractal dimension of ≈1.25. We fit this histogram to Gaussian functions. As the plot shows, the data
at 8 µM is best fitted with a double Gaussian, which confirms the presence of a local maximum in the data. On the other hand, the
data at 1 µM is best fitted with a single Gaussian with no pre-saturation maximum. Further, the saturation maximum for 1 µM
lies at approximately the same value of the fractal dimension as the pre-saturation maximum for 8 µM. This difference between
the Gaussian fits of the T (df) histograms suggests the existence of a critical concentration between 1 and 8 µM. The histogram of
fractal dimension therefore serves as an order parameter for this transition between purely linear growth and linear growth with
branching.

experiments analyzed here was 25 hours. T (df) there-
fore represents the total time spent by all the clusters
between the fractal dimensions df and df + δ where
δ represents the binwidth (we choose δ = 0.025).
The time-integrated histogram of fractal dimensions
T (df) obtained from the two sets of experiments at
concentrations 8 µM and 1 µM are plotted in panel
(b) of figure 4. This T (df) histogram will have a triv-
ial maximum located around the saturation value
of the average fractal dimension; what is of interest,
however, is the presence of any pre-saturation peaks.

The presence of such pre-saturation peaks in this his-
togram suggests that the two processes controlling the
growth of the aggregate dominate at different fractal
dimensions.

The histogram for 8 µM clearly indicates the pres-
ence of a pre-saturation maximum, confirmed further
by fitting a double Gaussian to this data. The data at
1 µM, on the other hand, fits best to a single Gaussian,
which shows there are no pre-saturation maxima in
this data. In addition, the plots indicate that the sat-
uration maximum for 1 µM and the pre-saturation
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maximum for 8 µM are at similar values of the fractal
dimension. This further supports our conclusion that
the secondary nucleation mechanism—responsible
for the formation of branches—is not dominant at
the lower concentration. Taken together, our obser-
vations naturally motivate the simulation of two
step aggregation to more quantitatively estimate the
microscopic parameters governing the aggregation
process observed in the experiments.

The second maximum in the histogram for the
8 µM concentration appears at a fractal dimension of
∼1.75. From panel (a) of figure 4, it can be observed
that this is approximately equal to the final satura-
tion value for the average fractal dimension at this
concentration. The small size of the error bars in the
same plot also suggests that the standard deviation of
the distribution of the fractal dimension of clusters
at the saturation stage is very small. This observation
is further corroborated by the small standard devi-
ation of the Gaussian function that fits the second
maximum of the 8 µM data in the T (df) histogram
displayed in figure 4. From these observations we con-
clude that in the 8 µM dataset, most clusters acquire
a fractal dimension df ≈ 1.75 by the time they reach
the saturation stage, with a few clusters saturating at
lower values, as observed from the individual cluster
trajectories in the inset of figure 4(a).

Our Gaussian fits of T (df) histogram for 8 and
1 µM therefore suggest a transition between two
different aggregation pathways as the concentra-
tion is decreased—a two-step aggregation mecha-
nism consisting of linear and branching growth at
the higher concentration, and purely linear growth
at the lower concentrations. Consequently, we posit
the existence of a critical concentration between 1
and 8 µM—where the aggregation process transitions
over from one mechanism to the other. The histogram
of fractal dimension therefore serves as an order
parameter for this transition between purely linear
growth and linear growth with branching. Addi-
tionally, we can rule out other space-filling mecha-
nisms—such as fibrils from bulk attaching to the sur-
face, or space-filling linear growth of the fibrils—as
possible origins for the observed evolution of 〈df (t)〉.

4. Discussion

In this paper, we have demonstrated that single-
molecule techniques such as TIRF microscopy allow
for a microscopic characterization of the kinetics of
protein aggregation. The large amounts of data gen-
erated in such techniques is hard to analyze directly,
and therefore to utilize their full potential it is neces-
sary to develop methods to conveniently organize and
analyze large datasets. In this study, we have combined
approaches from different domains of image process-
ing, computer science and mathematics to develop a
semi-automated analysis procedure for images of pro-
tein aggregates obtained from TIRF microscopy. Our

fractal analysis technique provides direct evidence of
a two step mechanism in the aggregation of the Aβ42
peptide. Our analysis methodology is quite general
and can easily be adapted to analyze the aggregation of
other proteins from TIRF microscopy, as well as other
single molecule imaging techniques. The average frac-
tal dimension of the images from TIRF data, without
clustering and isolation of single fibrils, also shows a
plateau in the fractal dimension, and therefore our
technique helps to extract such behavior from noisy
data, where isolation of fibrils is not always possible.
However, we have not included this in the present
manuscript as we have insufficient experimental runs
to draw a conclusive quantification that the single
cluster data allows.

The main advantages of our methodology is that
our technique works when isolation of linear fibrils
is not available. The clustering algorithm is robust to
noise, and therefore can be used in situations where
intensity of data is low. It is in general hard to clas-
sify the irregular shapes of aggregation clusters, and
therefore a single quantifiable characteristic such as
the fractal dimension allows for a quantitative char-
acterization of the growth process in real time.

However, our method is useful only for data with
good signal-to-noise ratio. For data with poor signal-
to-noise ratio, thresholding the image becomes very
difficult. Without proper segmentation, the determi-
nation of the fractal dimension in the later stages
becomes less robust. Similarly, our method bene-
fits greatly from higher-resolution data. If the size of
aggregates within the field of view is too small, this
reduces the number of box sizes available to the box-
counting algorithm, and makes the estimation of the
fractal dimension correspondingly less robust.

Further, the measurements of the average fractal
dimension over time, shown in panel (a) of figure 4,
shows that there is a fundamental difference in the
growth behavior between the aggregates at concen-
trations of 1 µM and 8 µM, with the lower con-
centrations demonstrating primarily linear growth.
This observation suggests the existence of a critical
concentration below which the dominant mechanism
of aggregation is linear elongation, and above which
both linear elongation and branching are present. The
existence of a critical concentration for amyloid-β 42
aggregation has been suggested previously in the lit-
erature based on ensemble experiments [52]. How-
ever, the critical concentrations observed in ensemble
experiments are in the nanomolar range. We attribute
the difference in the critical behavior observed in the
data analyzed in this study to the two-dimensional
nature of the experimental setup. TIRF microscopy
utilizes the evanescent field formed due to total inter-
nal reflection of light at the boundary between two
media to excite fluorophores in the experimental
medium. As the evanescent field decays exponentially
with distance from the boundary, we can only observe
a slice of the experimental medium that lies along this
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boundary. Such a confinement leads to changes in the
aggregation kinetics that manifest as a shift in the rate
constants as well as the critical concentration for lin-
ear growth with branching. It would be interesting to
perform a systematic study of the effect of confine-
ment on the aggregation kinetics of the amyloid pro-
teins, to better understand the nature of the two-step
mechanism present in live cells that exhibit different
confinement geometries [53, 54]. Another important
future direction for our work would be to expand our
analysis methodology and apply it to image data from
microscopy sources other than TIRF microscopy. Of
particular interest would be the application of this
fractal analysis technique to 3D protein aggregation
data. Furthermore, it would be interesting to apply
this technique to study the aggregation process in
complex proteins which are not well-characterized,
such as many intrinsically disordered proteins [55].

Author contributions

SM and KR conceived of the project; SCB designed
the TIRF setup, performed experiments and collected
data; SM and KR performed the data analysis; and
SM, SCB and KR wrote the paper.

Acknowledgments

We thank Kanchan Garai for providing experimental
data. We thank Vishnu V Krishnan, Chaitanya Athale,
Saroj Nandi, Aprotim Mazumder, Mustansir Barma,
Stephy Jose and Roshan Maharana for useful discus-
sions. This project was funded by intramural funds
at TIFR Hyderabad from the Department of Atomic
Energy (DAE).

Data availability statement

The data that support the findings of this study are
available upon reasonable request from the authors.

Appendix A. TIRF microscopy

When electromagnetic waves—including light—
undergo total internal reflection at the boundary
between two media, an evanescent field that oscillates
with the same frequency as the original wave is
formed in the medium across the boundary. The
energy of the evanescent field does not propagate
like a wave, instead, it stays concentrated around

the vicinity of the origin. In terms of fluorescence
microscopy, using the evanescent field to excite
fluorophores instead of direct illumination means
that only the fluorophores very close to the boundary,
such as surface-bound fluorophores, are excited. This
provides TIRF microscopy with two advantages over
standard epifluorescence microscopy:

(a) As the entire volume of the solution is not illumi-
nated, background fluorescence is greatly dimin-
ished, which improves the signal-to-noise ratio of
observations.

(b) Only the fibrils lying along the glass slide are
selectively monitored, thus the lengths of the fib-
rils as obtained from these images are close to
their exact length.

The TIRFM setup was built on an inverted Nikon
(model No. Ti-E) microscope. The evanescent field
was generated using a high NA (NA = 1.49) oil
immersion objective (Nikon) using objective-type
TIR. For excitation of ThT (fluorescent marker) a
solid-state laser (λ = 450 nm) was used. An excitation
filter (450 ± 10 nm) was used to clean up the laser.
The beam expander, mounted on a micrometre trans-
lation stage, was used for translating the laser beam
to attain the critical position of incidence required in
TIRFM. The excitation beam was focused on the back
focal plane of the objective after being reflected off a
dichroic mirror. The objective is mounted on a piezo
stage (PI, Germany) and was used to generate the
evanescent field and collect the resultant fluorescence.
The fluorescence was then transmitted through the
dichroic and detected using a sCMOS camera (PCO,
Germany) after being focused with a tube lens. An
emission filter (510 ± 40 nm) was used to separate
ThT fluorescence signal from any other light con-
tamination. An infrared diode laser (λ = 980 nm),
the objective piezo stage, a quadrant photodiode
(QPD, Thorlabs) and a PID controller were used
for building the auto-focus system. The sample was
mounted on a motorized XY stage (Thorlabs, USA)
on top of the objective. The temperature of the stage
and the objective was controlled at 23 ± 0.1◦C using
a PID temperature controller (SELEC, India). The
dichroic mirror and the optical filters were procured
from Chroma, USA. All the other components were
procured from Thorlabs, USA. Multiple position
imaging was achieved by the grid creation feature
available in multi-dimensional acquisition in micro-
manager [56, 57]. The images were stored in the com-
puter HDD as separate stacks for each position during
data acquisition and analysed afterward.
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Figure B1. Plot of individual trajectories of clusters in fractal dimension-time space, at 8 µM concentration. These clearly
indicate a slowdown at fractal dimension ∼1, consistent with the average fractal dimension displayed in figure 4 of the main paper.

Appendix B. Following individual
clusters

(Figure B1) Figure B2 plots the evolution of the
average fractal dimension for four different con-
centrations—8 µM, 4 µM, 2 µM and 1 µM, with
two datasets at each concentration. This comparison
across concentrations shows that there exists a crit-
ical concentration >1 µM and !2 µM, where there
is a change in the dominant aggregation mechanism.
Below this critical concentration, aggregation hap-
pens primarily through the linear pathway, as shown
by the average fractal dimension plots at concentra-
tion 1 µM, which saturate at a value <1. Above the
critical concentration, secondary nucleation, which
causes branching, seems to become more dominant,
and the average fractal dimension plots from experi-
ments at concentrations "2 µM grow beyond 1, and
go on to saturate at value ∼1.75. Figure B1 shows the
fractal dimension curves for individual clusters from a
dataset at concentration 8 µM. The slowdown in the

growth of the fractal dimension can be observed in
this plot of individual cluster traces.

B.1. Analysis of mean t1 distribution
Our fractal analysis technique gives us access to
another important quantity that can be used to char-
acterize the aggregation process—an aggregate-level
timescale t1, defined as the time required for the
aggregate to acquire a fractal dimension "1. The
aggregation process is highly stochastic at the scale of
a single aggregate, thus the timescale t1 can also be
expected to be a highly stochastic variable.

In figure B3, the mean t1 as obtained from TIRF
experiments at multiple concentrations has been
plotted against the respective concentrations, along
with errorbars. At lower concentrations, the aggre-
gation process is more stochastic, as shown by the
larger errorbars at those concentrations. In addi-
tion, these plots further show that at concentra-
tions <20 µm, the mean t1 does not depend upon
concentration.
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Figure B2. Plots of the average fractal dimension for four concentrations—1 µM, 2 µM, 4 µM and 8 µM. This comparison
between different concentrations shows that there exists a critical concentration >1 µM and !2 µM where there is a change in
the dominant mechanism of aggregation. Below this concentration, primarily linear growth is observed, while above this
concentration, growth occurs both linearly and along the surface.

Figure B3. Plot of mean t1 against concentration, for concentrations at 2, 4, 5, 8, 16 and 20 µM. For concentrations below 20 µM,
the mean t1 does not display any dependence on the concentration. Errorbars are ±3 times the standard deviation.
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