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Gaps between avalanches in one-dimensional random-field Ising models
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We analyze the statistics of gaps (�H ) between successive avalanches in one-dimensional random-field Ising
models (RFIMs) in an external field H at zero temperature. In the first part of the paper we study the nearest-
neighbor ferromagnetic RFIM. We map the sequence of avalanches in this system to a nonhomogeneous Poisson
process with an H -dependent rate ρ(H ). We use this to analytically compute the distribution of gaps P (�H )
between avalanches as the field is increased monotonically from −∞ to +∞. We show that P (�H ) tends to a
constant C(R) as �H → 0+, which displays a nontrivial behavior with the strength of disorder R. We verify our
predictions with numerical simulations. In the second part of the paper, motivated by avalanche gap distributions
in driven disordered amorphous solids, we study a long-range antiferromagnetic RFIM. This model displays a
gapped behavior P (�H ) = 0 up to a system size dependent offset value �Hoff, and P (�H ) ∼ (�H − �Hoff)θ

as �H → H+
off. We perform numerical simulations on this model and determine θ ≈ 0.95(5). We also discuss

mechanisms which would lead to a nonzero exponent θ for general spin models with quenched random fields.
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I. INTRODUCTION

Many disordered systems when subjected to an external
drive, such as a ferromagnet in a magnetic field or a
sheared amorphous solid, display a characteristic intermittent
response, broadly classified as “crackling noise” [1,2]. This
response is characterized by sudden changes in global prop-
erties such as magnetization or stress through “avalanches”
within the system and can be attributed to the quenched
randomness present within these materials. The disorder is
caused, for example, by defects in crystalline solids, by
magnetic impurities in the case of spin systems, or the random
arrangement of particles in amorphous solids. The properties
of avalanches in disordered systems have been of considerable
interest in fields ranging from geology to physics [3–6].
Various characteristics of avalanches have been investigated
including the distribution of their sizes, duration, and spatial
features [7,8]. Theoretical models such as the well known
depinning model successfully describe many key features of
crackling noise in these systems [9]. However, developing
a general framework with which to describe the response
of disordered systems remains an outstanding challenge in
the field. Although this response depends nontrivially on the
rate of the driving [10], the limit of infinitesimally slow or
“quasistatic” drive is of particular interest.

Recent studies of amorphous materials subjected to a
quasistatic shear have focused attention on another aspect
of avalanches in these systems, namely the gaps between
successive events [11,12]. When subjected to increasing strain
γ , amorphous solids undergo stress drops, caused by internal
rearrangements. These occur at distinct values γ1 < γ2 <

· · · < γN for a given realization of the system. The statistics
of these gaps, P (�γ ) with �γ = γi+1 − γi , yields interesting
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information about the stability of the system [13]. Recently,
it has been shown that these “gap statistics” can also be used
to distinguish between different phases of such systems [12].
Crucially, there is a characteristic difference in the statistics
of gaps between the process of yielding in amorphous solids
and that predicted by the standard depinning process [11,14].
This difference is quantified by an exponent θ , defined as
P (�γ ) ∼ �γ θ as �γ → 0. θ is always zero in the depinning
model but is nonzero in some range of the driving field in
amorphous solids. In jammed packings of frictionless spheres,
the exponent θ can also be related to the distribution of internal
forces in the system [15].

Disordered spin models have been paradigmatic systems to
study avalanche behavior [1,16]. Many aspects of crackling
noise have been well described with models of interacting
Ising spins (Si = ±1) on a lattice with a quenched random
field {hi} at zero temperature. As an external field H is
increased quasistatically from −∞ to +∞, the magnetization
per site M changes from −1 to +1 in discrete steps (see
Fig. 1). For a given realization of the random field, these
changes in M occur at certain values of the external field
{H1 < H2 < H3 · · · < HNa

}, where Na represents the total
number of avalanches that occur between −1 < M < 1 and
varies for different realizations. The set {Hi} can then be treated
as a set of ordered random variables. The distribution P (�H )
of the gaps �Hi = Hi+1 − Hi is then a statistically interesting
quantity that provides information about the internal spin rear-
rangements. Another related quantity of interest is P (�H |H ),
the probability that beginning with a configuration at field H ,
�H is the smallest increment required to trigger an avalanche
[17]. Motivated by the avalanche statistics in amorphous solids
[14] it is then interesting to ask, under what conditions does a
disordered spin model with quenched random fields display a
nonzero θ exponent?

In this paper we study the gap statistics in one-dimensional
random-field Ising models (RFIMs) at zero temperature. The
outline of the paper is as follows. In Sec. II we study
a RFIM with short-ranged ferromagnetic interactions. We
map the sequence of avalanche events in this system to a
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FIG. 1. The increase in magnetization per site M in the random-
field Ising model at zero temperature as the external field H is in-
creased monotonically from −∞ to +∞. The jumps in magnetization
of size s correspond to avalanches in the system and occur at certain
values of the external field {H1 < H2 < H3 . . .}. We study the gaps
�Hi = Hi+1 − Hi between successive avalanches.

nonhomogeneous Poisson process and use it to derive the
distribution of gaps between events. In Sec. III we study the
nearest-neighbor ferromagnetic RFIM which falls into this
class of models. Using the above mapping, we compute both
the gap distributions P (�H |H ) and P (�H ) analytically. We
show that these distributions tend to constants as �H → 0 for
all values of the system parameters, i.e., θ = 0. We verify our
predictions with numerical simulations. In Sec. IV, we study
the long-range antiferromagnetic RFIM, that falls outside the
class studied in Sec. II. We perform numerical simulations and
use scaling arguments to determine that this model displays
a gapped behavior P (�H ) = 0 up to a system size depen-
dent offset value �Hoff, and P (�H ) ∼ (�H − �Hoff)θ as
�H → H+

off. We estimate θ ≈ 0.95(5) independent of model
parameters. Finally, in Sec. V we discuss a possible mechanism
which would lead to a nonzero pseudogap exponent θ in this
model.

II. GAPS BETWEEN AVALANCHES IN SHORT-RANGED
FERROMAGNETIC MODELS

In this section we examine the nature of the distribution
of gaps between avalanches in a generic system with short-
ranged destabilizing interactions in the presence of quenched
disorder. To examine the behavior of avalanches in such
systems, we consider a simplified model of N Ising spins
Si = ±1 in d spatial dimensions. We introduce a ferromagnetic
coupling with a finite range δ between spins, a quenched
disorder field {hi} at every site, and subject the system to
an increasing quasistatic external field H . The spins represent
the internal state of the constituents of the system, while the
ferromagnetic interaction represents a destabilizing interaction
between the components, i.e., when an internal restructuring
occurs (−1 → +1), it decreases the external field required

to restructure the neighboring constituents. The disorder {hi}
is drawn from an underlying distribution φ(h,R) where R

controls the strength of the disorder (typically through the
width of the distribution). We derive a generalized distribution
of gaps between avalanche events for such a model using a
coarse grained description, essentially treating failures in the
system as independent events. This formulation then relates
the gap distributions P (�H |H ) and P (�H ) to the underlying
density of failures ρN (H,R) in the system.

A. Mapping to a nonhomogeneous Poisson process

Consider a realization of the system with a quenched ran-
dom field {hi}, at an external field H = −∞ (i.e., all Si = −1).
We are interested in the avalanches that occur in the system as
the field is increased monotonically (and quasistatically) from
H = −∞ to H = +∞. At zero temperature, in the absence
of thermal fluctuations, the dynamics is deterministic. We can
thus, for a given realization of {hi}, group the spins in the
system into predetermined clusters that undergo avalanches
(failures) together at distinct values of the external field −∞ <

H1 < H2 < H3 · · · < +∞. A key feature of the ferromagnetic
interactions is that once a spin flips, it remains in that state.
Each spin can therefore be uniquely assigned to a cluster. This
assignment can of course fail for models with stabilizing (such
as antiferromagnetic) interactions which we will focus on in
Sec. IV. Every event is initiated at one constituent spin within
the cluster and propagates until the entire cluster of spins has
flipped. Therefore the size of each cluster si corresponds to the
size of the avalanche event.

Now when the field is incremented from −∞ to a value H ,
some fraction of the clusters have already undergone failure.
We denote the number of clusters yet to undergo a failure at H

by IN (H,{hi}), which is a monotonically decreasing function
of the field, and serves as a cumulative avalanche density. This
is represented schematically in Fig. 2.

We next argue that for the purposes of analyzing the gap
statistics of such models, as long as the interaction range δ and
the average avalanche size 〈s〉 is finite, the correlations between
the avalanche events can be neglected in the thermodynamic
limit N → ∞. In this case, the clusters interact only through
their boundaries up to a finite distance δ. Therefore, events
separated by large enough distances in space are uncorrelated
with each other. Since the events within a given window
[H,H + �H ] can occur in any part of the system (see Fig. 2),
it then follows that the probability of events being in close
proximity in H and in space tends to zero as N → ∞ (see
Appendix A). Therefore, in the thermodynamic limit, we can
essentially treat the avalanches as uncorrelated events.

With this in mind, we consider the ensemble of configu-
rations at different realizations of the quenched disorder at a
given R and an external field H > −∞. We define IN (H,R)
to be the average number of clusters which have not failed up
to H . We then have

IN (H,R) = 〈IN (H,{hi})〉{hi }, (1)

where the average is taken over all realizations of the quenched
disorder. The average density of events at H is then given by

ρN (H,R) = − ∂

∂H
IN (H,R). (2)
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FIG. 2. A schematic representation of avalanches in the disor-
dered Ising system. On the left are two realizations of the system at a
particular value of the external field H . The white region represents
spins that have already flipped from −1 to +1. The colored areas
depict clusters of spins that flip together (avalanche) and have yet to
undergo a failure. The number of such regions in each configuration
is denoted by IN (H,{hi}), where N is the total number of spins in
the system. When the field is incremented by a value �H , some of
these regions undergo failures at different values of H (represented
by stars). The green regions on the right represent these clusters
postavalanche. In the limit of large N , the correlations between
events tends to zero, and each of these events can be treated as being
independently drawn from an underlying distribution ρ(H ).

The mutual independence of failure events now allows us
to map the sequence of avalanches in this model to a
nonhomogeneous Poisson process [18] with an H -dependent
rate ρN (H,R). Henceforth for clarity of presentation, we will
drop the explicit dependence on R and N of the coarse-grained
quantity ρN (H,R) (and all subsequent distribution functions
derived using it), keeping in mind that ρ(H ) ≡ ρN (H,R). We
then have

N1(−∞,+∞) =
∫ ∞

−∞
ρ(H )dH = N

〈s〉 . (3)

We can then use this to compute the statistics of gaps between
avalanches. In Sec. III we test the validity of this mapping
using simulations of the one-dimensional nearest-neighbor
ferromagnetic RFIM.

B. Gap distribution

The probability of an avalanche occurring at a given value
of the external field H is proportional to ρ(H ). The probability
that successive avalanches occur at field values H and H ′ can
be computed as the joint probability that events occur at H

and H ′ > H , with no events between them. This is given by

P (H,H ′) ∝ ρ(H )ρ(H ′)e− ∫ H ′
H

ρ(y)dy . (4)

Testing such a quantity in experiments or simulations would
require conditioning the measurement on an avalanche occur-

ring exactly at H , which is a low probability event. Instead,
we can focus on a related measure P (�H |H ), defined as
the probability that starting at a configuration at H , the first
avalanche occurs at a field increment �H . This quantity is
sometimes referred to as the instantaneous interoccurrence
time [18], and is easier to measure in practice in comparison to
P (H,H ′). In systems where the gap distribution has different
qualitative behaviors at different values of H , for example a
system which develops long-ranged correlations at some Hc,
the distribution P (�H |Hc) becomes a more relevant quantity
[17]. P (�H |H ) can be simply computed as the probability
that no avalanche happens in the system when the field is
increased from H to H + �H and an avalanche happens at
H + �H . This is given by

P (�H |H ) = N2ρ(H + �H ) exp

(
−
∫ H+�H

H

ρ(y)dy

)
,

(5)
where N2 is a normalizing factor that ensures∫∞

0 P (�H |H )d(�H ) = 1 at each H , and can be computed
to be

N−1
2 = 1 − exp

(
−
∫ ∞

H

ρ(y)dy

)
. (6)

For models where the average cluster size 〈s〉 is finite, it can be
seen from Eq. (3) that the integral in the exponential in Eq. (5)
scales as N , the total number of spins. In Sec. III, we measure
this distribution in detail for the one-dimensional nearest-
neighbor ferromagnetic RFIM using numerical simulations,
and compare it to an analytic expression derived using Eq. (5).

We can next use the expression in Eq. (5) to investigate
the pseudogap exponent θ for P (�H |H ). The expression in
Eq. (5) in the small �H regime can be simplified to

P (�H |H ) ∼ N2ρ(H + �H ) exp(−ρ(H )�H ). (7)

From this we see that the small �H behavior of P (�H |H )
is completely governed by the behavior of the ρ(H ). If
the density of avalanches at some Hc is zero and has a
behavior ρ(Hc + �H ) ∼ (�H )θ as �H → 0+ in its vicinity,
P (�H |H ) would also exhibit a nonzero θ exponent. It is
therefore worthwhile to study models where one can compute
the density of avalanches exactly. In Sec. III we study the one-
dimensional nearest-neighbor ferromagnetic RFIM, where we
use the techniques developed in Ref. [19] along with the
formalism developed in this section to compute P (�H |H )
exactly.

Finally, we consider the distribution of gaps between
avalanches in the entire sweep of the magnetic field from
H = −∞ to +∞, which is a quantity that is accessible
in typical experimental observations. This is given by the
expression (see Appendix B)

P (�H ) =
∫ +∞

−∞

ρ(H ′)ρ(H ′ + �H )

N1(−∞,+∞)
e− ∫ H ′+�H

H ′ ρ(y)dydH ′;

(8)

N1(−∞,+∞) = N/〈s〉 is the normalization defined in
Eq. (3). It is then straightforward to extract the small �H
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behavior from this expression. We have

C(R) = lim
�H→0

P (�H ) =
∫ +∞
−∞ ρ(H ′)2dH ′∫ +∞
−∞ ρ(H ′)dH ′ . (9)

As long as ρ(H ) is finite in a finite range of H , P (�H )
saturates to a constant C(R) as �H → 0. Therefore, we
conclude that the pseudogap exponent θ = 0 for P (�H ) in this
class of systems. In Sec. III we analyze the one-dimensional
nearest-neighbor ferromagnetic RFIM and show that the
predictions for the gap distributions P (�H |H ) and P (�H )
from our theory agree well with the results from simulations.
As this model falls into the class considered in this section, we
verify that the pseudogap exponent θ = 0 in this case. Finally,
it is clear from the form of Eq. (8) and using the fact that
ρ(H ) ∼ N from Eq. (3) that as N → ∞, the gap distribution
P (�H ) has the scaling form

P (�H ) = NP(N�H ). (10)

Our treatment of avalanches as mutually independent events
leads to the conclusion that in order for a system to display
a nonzero θ exponent either in P (�H |H ) or P (�H ), some
of the assumptions made in the above model must fail. This
can occur in any number of ways: the correlations between
clusters can become long ranged, the interactions themselves
can have a long-ranged component, or there can be stabilizing
interactions in the system. In Sec. IV we construct a long-
ranged antiferromagnetic model that has two of these features,
and we find that indeed, beyond a system size dependent offset
value �Hoff, this system displays P (�H ) ∼ (�H − �Hoff)θ ,
with θ = 0.95(5).

III. NEAREST-NEIGHBOR FERROMAGNETIC RFIM

In this section we analyze the properties of the nearest-
neighbor ferromagnetic random-field Ising model at zero tem-
perature. This model has been successfully used to describe the
noisy response of ferromagnets to external fields [1,20], which
was observed experimentally by Barkhausen [3]. In contrast to
that of the nearest-neighbor ferromagnetic Ising model where
long-range order occurs for d > 1, the presence of arbitrarily
small disorder destroys long-range order in d � 2 [21].

The ferromagnetic RFIM has several intriguing properties,
such as a no-crossing property [22], an Abelian property, and a
return point memory [23], that make it theoretically accessible
[19,24]. For the nearest-neighbor RFIM on a Bethe lattice it
is indeed possible to compute the probability of an avalanche
of size s originating from a given site P (s,H ) exactly [19]. It
is easy to see that one can then compute the coarse grained
density of avalanche events ρ(H ). Defining the generating
function G(x,H ) = ∑∞

s=1 P (s,H )xs (see Appendix C), the
probability of an avalanche of any size originating from a
given spin is simply G(x = 1,H ). We therefore obtain

ρ(H ) = NG(1,H ). (11)

Then, using the formalism developed in Sec. II we can derive
the distribution of gaps between avalanches from Eqs. (5), (8),
and (11). We compute these distributions for two cases with
quenched random fields chosen from (i) a bounded distribution
(which we choose as a uniform distribution) and (ii) an

unbounded distribution (which we choose as an exponential).
We show that these two cases have qualitatively different be-
haviors for the gap distribution. We also numerically simulate
this model and show a very good agreement between our
theoretical predictions and those obtained from simulations.

The Hamiltonian of the system is given by

H = −J
∑
〈i,j〉

SiSj −
∑

i

(hi + H )Si, (12)

where J > 0 represents the ferromagnetic coupling between
nearest-neighbor spins on the one-dimensional (1D) chain;
H represents the external magnetic field. {hi} represents the
quenched random field at every site, chosen from a distribution
φ(h,R), where R controls the strength of the disorder. The
system evolves under the zero-temperature Glauber single-
spin-flip dynamics, i.e., a spin flip occurs only if it lowers the
energy. This is achieved by making each spin align with its
effective local field he,i given by

he,i = J (Si−1 + Si+1) + hi + H. (13)

The system is then relaxed until a stable configuration is
obtained at that value of the field H , which in the zero-
temperature dynamics is simply determined by the condition

Si = sgn(he,i). (14)

We use this dynamics to analyze the generic features of the
gap distributions P (�H |H ) and P (�H ) for two cases of the
distribution of quenched random fields φ(h,R): (i) a uniform
distribution and (ii) an exponential distribution In the first case,
{hi} is chosen from a uniform distribution with a width R as

φ(h,R) =
{

1
2R

|h| � R,

0 |h| > R,
(15)

and in the second case, {hi} is chosen from an exponential
distribution with a width

√
2R as

φ(h,R) = 1

2R
exp

(
−|h|

R

)
. (16)

In both cases, R is the parameter that controls the strength
of the disorder by controlling the width of the distribution
φ(h,R).

A. Uniform disorder

For the case of uniform disorder, given by Eq. (15), we find
three different regimes depending on the relative strengths of
the disorder R and the interaction J . When R < J , there is a
single system sized avalanche which occurs at H = 2J − R,
and the magnetization per site jumps from M = −1 to M =
+1. The other two cases are when R > 2J and J < R � 2J .
Here there are several avalanches with a distribution of sizes
at different field strengths H . There is, however, a qualitative
difference in the nature of avalanches for the cases R > 2J and
J < R � 2J [19]. The form of G(1,H ) for these two cases is
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given by (see Appendix C)

G(1,H ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 H � 2J − R,
1

2R
2J − R < H < −2J + R & R > 2J ,

(R−H )(H+3R−4J )
8R(R−J )2 2J − R < H < R & J < R � 2J ,

(R−H )(H+3R−4J )
8R(R−J )2 −2J + R < H < R & R > 2J ,

0 H > R.

(17)

Equation (17) can be used directly to calculate ρ(H )
[Eq. (11)], which in turn allows us to compute the distribution
of gaps between avalanches P (�H |H ) using Eq. (5). As
argued in Sec. II, the small �H behavior of P (�H |H ) is
controlled by the small �H behavior of the density ρ(H ) and
consequently G(1,H ). Expanding Eq. (17) we find

P (�H |H ) ∼ �H 0 as �H → 0+, ∀ H (18)

leading to a zero pseudogap exponent for P (�H |H ) in this
case. This result can be understood as follows: From the
arguments in Sec. II, the presence of a nonzero θ exponent
for P (�H |H ) requires that G(1,H ) vanish at some Hc and
have a behavior of the form G(1,Hc + �H ) ∼ (�H )θ as
�H = (H − Hc) → 0+. The only points at which G(1,H )
vanishes are H = R and H = 2J − R. G(1,H ) is identically
zero for all H > R, and jumps discontinuously from 0 to a
finite value at H = 2J − R, leading to θ = 0 for P (�H |H )
for all H , for the case with uniform disorder. In Fig. 3 we
plot P (�H |H ) for H/J = 2.9 computed using Eqs. (5), (11),
and (17) for the uniform disorder distribution with R = 5.
The discontinuities which appear in the gap distribution in
Fig. 3 are purely due to the fact that the underlying disorder
distribution φ(h,R) has a discontinuity. In the next section,
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FIG. 3. Distribution of gaps between avalanches P (�H |H ) in
the nearest-neighbor ferromagnetic RFIM with uniform disorder at
R = 5 and H = 2.9 for 107 realizations of the disorder. The bold lines
represent analytical results computed using Eqs. (5), (11), and (17).
The points represent data obtained from simulations. We find a very
good agreement between our analytical results and those obtained
from the simulations. The discontinuity in the distribution occurs at
�H = 2J − R − H = 0.1 [Eq. (17)], and reflects the discontinuity
in the underlying disorder distribution.

we indeed observe that these discontinuities are absent for the
case with a continuous (exponential) distributed disorder.

Next, we compute the distribution of gaps P (�H ) eval-
uated over an entire sweep in the magnetic field. In Fig. 4
we plot P (�H ) computed using Eqs. (8), (11), and (17) for
various values of the disorder strength R at different system
sizes. We find that this obeys the scaling form provided in
Eq. (10). This distribution saturates to a constant C(R) as
�H → 0, which can be computed using Eqs. (9) and (11).
We show the behavior of C(R) as a function of R in the
inset of Fig. 4. We find that C(R) reaches a value 2/5 as
R → 1+, and decays as R increases. The region below R < J ,
is inaccessible as the system displays a single system sized
avalanche at H = 2J − R.

B. Exponential disorder

For the case of an exponentially distributed disorder given
by Eq. (16), the form of G(1,H ) is given by (see Appendix C)

G(1,H ) =

⎧⎪⎪⎨
⎪⎪⎩

4e(2J+H )/R−e(2J+3H )/R+e(2H−|H+2J |)/R
2R (2e2J/R+eH/R−e(2J+H )/R)2 H < 0,

3e(2J+H )/R+e(3H−2J )/R

2R (e2J/R+e2H/R )2 0 � H � 2J,

2 e(H−2J )/R

R (2eH/R+1−e2J/R )2 H > 2J.

(19)
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FIG. 4. Distribution of gaps between avalanches P (�H ) in the
nearest-neighbor ferromagnetic RFIM with uniform disorder for
different R. The bold lines represent analytical results computed
using Eqs. (8), (11), and (17). The points represent data obtained
from simulations. The data have been averaged over 107 realizations.
We find a very good agreement between our analytical results and
those obtained from the simulations. Inset: The saturation value
C(R) = lim�H→0+ P (�H ) for different values of R.
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FIG. 5. Distribution of gaps between avalanches P (�H |H= 1)
in the nearest-neighbor ferromagnetic RFIM with exponential dis-
order at R = 5 and H = 1 for 107 realizations of the disorder. The
bold lines represent analytical results computed using Eqs. (5), (11),
and (19). The points represent data obtained from simulations. The
data have been averaged over 107 realizations. We find a very good
agreement between our analytical results and those obtained from the
simulations.

In contrast to the bounded uniform distribution, there are
no discontinuities in the gap distribution, since there are no
discontinuities in the distribution φ(h,R). In Fig. 5 we plot
P (�H |H ) computed using Eqs. (5), (11), and (19) for the
exponential disorder distribution with R = 5 at a field strength
H/J = 1 for various system sizes. In this case, G(1,H ) is finite
everywhere, and therefore from the arguments of Sec. II, once
again θ = 0 for P (�H |H ) for all H in this case. In Fig. 6
we plot P (�H ) computed using Eqs. (8), (11), and (19) for
various values of the disorder strength R at different system
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FIG. 6. Distribution of gaps between avalanches P (�H ) in the
nearest-neighbor ferromagnetic RFIM with exponentially distributed
random fields for different R. The bold lines represent analytical
results computed using Eqs. (11), (8), and (19). The points represent
data obtained from simulations. The data have been averaged over 107

realizations. We find a very good agreement between our analytical
results and those obtained from the simulations. Inset: The saturation
value C(R) = lim�H→0+ P (�H ) for different values of R.

sizes. We find that this distribution obeys the scaling form
given in Eq. (10). This distribution once again saturates to
a constant C(R) as �H → 0, which can be computed using
Eqs. (11) and (9). We show the behavior of C(R) as a function
of R in the inset of Fig. 6. Unlike the uniform distribution, we
are able to access the very low disorder regions R 
 √

2J , and
probe its properties. We find that C(R) displays an intriguing
nonmonotonic behavior around the point R ∼ J . In the high
disorder regime, C(R) decays to 0 exponentially as R → ∞.
In the low disorder regime, it decays to 0 with an essential
singularity as R → 0+.

C. Numerical simulations

To test the predictions made by our theory, we perform
numerical simulations. We generate a particular realization of
the quenched random field ({hi}), drawn from the disorder
distribution φ(h,R). We start from a configuration in which all
the spins in the lattice are −1, corresponding to H = −∞. The
spins are then relaxed to their stable configuration at a given H

using single spin flip energy minimizing dynamics [Eqs. (13)
and (14)]. Once the spins are relaxed, the smallest increment
in the external field required to flip a spin from this stable
configuration is computed (�H ). The field is then incremented
to this value (H + �H ) and the spins are once again relaxed
to their stable configuration. The statistics of these increments
are used to compute P (�H |H ). The avalanche size s is
defined as the number of spins which change their state as
the field is increased from H to H + �H . We repeat this
procedure for several realizations of the disorder to generate a
distribution of avalanche sizes and gaps at a given H . Finally
we compute P (�H ), by performing a full sweep in H from
−∞ to +∞. Our simulations are carried out with periodic
boundary conditions and the units are chosen so that J = 1.
We compare the distributions obtained from the theory and
simulations in Figs. 3–6.

In summary, we find a very good agreement between our
theory and simulations in all regions of the parameter space
for both P (�H |H ) and P (�H ), verifying our analysis of
Sec. II. Our exact results show that the pseudogap exponent θ

is zero for the RFIM in one dimension. Although this follows
naturally from the fact that the RFIM can be mapped onto
a depinning process [21,25] which is known to have a zero
pseudogap exponent [11], we have been able to analytically
compute this. The question we next seek to address is the
following: What kind of physical interactions in a random-field
model can give rise to a nonzero θ exponent for P (�H |H )
or P (�H ). For P (�H |H ) to display a nonzero θ at some
value of the field Hc, we require a vanishing of the avalanche
density ρ(Hc). Thinking physically, this can happen if the
avalanche that occurred prior to the system reaching Hc renders
all other regions further from failure, i.e., this avalanche affects
a thermodynamically large region of the system. From an often
used random walk picture of yielding [14], the interaction
needs to have a stabilizing component for an avalanche to
render regions further from failure. A thermodynamically large
region can be affected in a system with long-range interactions
or at a critical point for a system with short-range interactions.
Amongst spin systems with random interactions, it is known
that spin glasses have nonzero θ exponents [13]. Since we are
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focused on random-field models, a disordered spin model with
long-range antiferromagnetic interactions is a good candidate
for a spin model with a nonzero θ exponent [26].

IV. LONG-RANGE ANTIFERROMAGNETIC RFIM

In this section we study a long-range antiferromagnetic
RFIM that displays a gapped behavior P (�H ) = 0 up to
a system size dependent offset value �Hoff, and P (�H ) ∼
(�H − �Hoff)θ as �H → H+

off. We consider N Ising spins
on a one-dimensional lattice. The Hamiltonian of the system
is given by

H = J0

N∑
i=1

N∑
j = 1
j �= i

SiSj

|i − j |1+α
−

N∑
i=1

(hi + H )Si. (20)

Here J0 > 0 represents the antiferromagnetic interaction be-
tween the spins. Once again H represents the external field
and {hi} represents the quenched random field at every site
chosen from a distribution φ(h,R). We consider exponentially
distributed random fields governed by the distribution given in
Eq. (16). α > 0 controls the range of interaction in the system.
The limit α → ∞ yields the short-ranged antiferromagnetic
RFIM. In the limit α → 0 and fixed magnetization per site M ,
this Hamiltonian can be exactly mapped onto the Hamiltonian
of the Coulomb glass [27,28].

This system has no frustration and has two well defined
ground states in the zero disorder, zero external field limit,
namely the staggered antiferromagnetic ground (Néel) states.
This long-range order is destroyed in the presence of any
disorder [29], which we show using an Imry-Ma type argument
in Sec. IV A. Due to the antiferromagnetic nature of the
interaction, every spin prefers to be antialigned with every
other spin in the system. Therefore when the driving field
causes a spin to flip from −1 to +1, this stabilizes all the other
spins in the lattice, rendering them further from failure.

Since the interaction is antiferromagnetic, it is possible for
spins to flip back (i.e., a spin goes from being aligned to the
external field to antialigned), in contrast to the ferromagnetic
case. Therefore, it is not possible to uniquely group the spins
into clusters that undergo avalanches together as was done
in the analysis in Sec. II. When this system is subjected to
an external field, there can be spin rearrangements which
do not change the magnetization. It is therefore possible to
classify avalanches into two types: (i) spin rearrangements
that change the total magnetization of the system, which is
the bulk response and (ii) spin rearrangements that leave
the magnetization unchanged. In the ferromagnetic case all
avalanches were of type (i) since spins only flip from −1
to +1 and once flipped, remain in that state. Typically
one is interested only in avalanches of type (i), since bulk
measurements are only sensitive to them.

A. Absence of long-range order

We begin by investigating the stability of the Néel ground
state to the presence of disorder at H = 0 using an Imry-Ma
type argument. Consider a block of L spins in the ground state
(initial configuration), numbered k = 1 through L (see Fig. 7).
We then consider the energetic contributions from spins to the
left of this block. By symmetry the spins to the right can be

k L. . .

. . . . . .

1 . . .

. . .

......

. . .

Initial

Final

B A

2 k L. . .

. . . . . .

1 . . .

2

FIG. 7. A schematic representation of states in the spin model
[up (down) arrows correspond to Si = +1 (−1)]. Starting from the
ground (Néel) state (Initial), a block of spins numbered 1,2 . . . L is
flipped. The A term represents the interaction of a spin k with the
spins to its left within the block and B represents the interaction of
this spin with spins to its left outside the block. The cost of flipping
this block of spins can be made arbitrarily small as L → ∞, for any
finite disorder.

treated in the same manner. The total energy contribution from
the interaction of the spins in this block with all the spins to
the left is denoted by El

initial. To investigate the cost of creating
a domain of size L in the system, we flip all the spins within
the block (final configuration). The interaction energy between
the block and the left spins in this case is El

final. We then have

Einital
l = −J0

L∑
k=1

∞∑
n=1

(−1)n

n1+α
, (21)

along with

Efinal
l = −J0

L∑
k=1

⎛
⎜⎜⎜⎜⎝

k−1∑
n=1

(−1)n

n1+α︸ ︷︷ ︸
A

−

B︷ ︸︸ ︷
∞∑

n=k

(−1)n

n1+α

⎞
⎟⎟⎟⎟⎠. (22)

In the above expression, the different terms correspond to
contributions from spins to the left of the spin at site k, with
A being spins within the block and B being spins outside the
block. Next, we compute the cost of creating the domain as
the energy difference between these two states. We have

�El = Efinal
l − Einitial

l = 2J0

L∑
k=1

∞∑
n=k

(−1)n

n1+α
(23)

and as expected, we find that �El > 0. So, to examine the
stability of the ordered state to disorder, we must compare this
to the energy gained from disorder which scales as �Edisorder ∼
L1/2. The relative contribution from these two terms in the
thermodynamic limit is

lim
L→∞

�El

�Edisorder
= 2J0 lim

L→∞
1

L1/2

L∑
k=1

∞∑
n=k

(−1)n

n1+α︸ ︷︷ ︸
I (L,α)

. (24)

Taking the large L limit of I (L,α), which we do numerically,
we find that

lim
L→∞

I (L,α) = 0 ∀ α > 0. (25)
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This leads to the antiferromagnetic ground state being unstable
in the presence of disorder. Therefore there is no long-range
order in the system at zero temperature.

B. Numerical simulations

The long-ranged antiferromagnetic model does not have
the useful properties of return point memory, no-crossing, and
Abelian dynamics that make the short-ranged ferromagnetic
model analytically accessible. We therefore analyze this
system using numerical simulations. Due to the non-Abelian
nature of the dynamics and the absence of return point memory,
the spin configurations at a given value of H depend on the
details and history of the relaxation protocol.

In our simulations we start by generating a particular
realization of the quenched random field {hi} drawn from the
exponential distribution given in Eq. (16). The protocol that
we employ proceeds as follows: first, we start with all spins in
the −1 state corresponding to H = −∞. We then determine
the value of H at which the first spin flips. This is the point at
which the effective field he,i at any site becomes positive, with

he,i = J0

N∑
j = 1
j �= i

Sj

|i − j |1+α
+ hi + H. (26)

The system is then relaxed starting from the spin at site 1,
to obtain the configuration at that value of the field using
single spin flip energy minimizing dynamics [Eq. (14)]. Next,
we compute the value of H at which the next spin flips,
increment H to that value, and relax the spins to obtain
the stable configuration. This procedure is repeated until we
reach the state where all spins are +1, which completes a
“sweep” of the external field in the simulations. Once each
configuration is stable, we measure the number of spin flips,
the change in magnetization, and the gaps between successive
increments in H . We collect statistics over many realizations
of the quenched disorder. All of the simulations use periodic
boundary conditions and we choose units where

N∑
i=1

J0

i1+α
= 1. (27)

C. Statistics of avalanches

We next examine the size and gap statistics of avalanches
in this model. Since there are two types of avalanches in the
system, we can study the distribution of avalanches using
(a) changes in the spin configuration and (b) the jumps
in magnetization. In measuring the statistics of the sizes
of avalanches, we use the definition (a), which includes
avalanches of types (i) and (ii). We define the size s of an
avalanche as the number of spins that undergo a rearrangement
in an avalanche event. The distribution P (s), including
avalanches of types (i) and (ii), is shown in Fig. 8, and follows
an exponential distribution for the entire range of parameters
that we have simulated. This is consistent with the fact that
there is no long-range ordering in the system at any finite
disorder. This also indicates that both types of avalanches
separately do not have any long-range ordering component.

10-8

10-6

10-4

10-2

1

 1  2  3  4  5  6  7  8  9  10

 

 

 

 

 

s

α = 1
2
, R = 1

4
, N = 500

α = 1
4
, R = 1

4
, N = 500

α = 1
4
, R = 1

2
, N = 1000

α = 1
4
, R = 1

4
, N = 1000

α = 1
2
, R = 1

4
, N = 1000P (s)

FIG. 8. Distribution of avalanche (changes in spin configuration)
sizes P (s) in the long-range antiferromagnetic RFIM for a range of
model parameters. The data have been averaged over 105 realizations
of the quenched disorder. We find that this follows a fast-decaying
exponential distribution, consistent with the fact that there is no long-
range order in the system.

1. Gap statistics

Next, we examine the statistics of gaps between successive
avalanches in this model. We can define two different gap
distributions by either considering gaps between events where
there is any change of spin configuration, which includes type
(i) and type (ii) avalanches, or define gaps between events
that change the magnetization, which measures gaps between
type (i) events. These two gap distributions have significantly
different forms. The typical behavior of the gap distribution
between all events is shown in Fig. 9. The figure clearly
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ΔHoff = 2J0

(N/2)1+α
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4

ΔH

type (ii)

FIG. 9. Statistics of gaps between avalanches (changes in spin
configuration) for a lattice of size N = 1000 with α = 1

4 and a
range of disorder strengths R. The plot shows two distinct types of
avalanches (i) that change the total magnetization and (ii) that leave
the magnetization unchanged. There is a crossover from type (ii) to
type (i) dominated regions at �Hoff. The data have been averaged
over 5 × 104 realizations of the quenched disorder.
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demarcates the two distinct populations of avalanches: the low
�H region consists of events predominantly from type (ii)
avalanches, while contributions to larger �H are dominated
by avalanches of type (i). The crossover from the type (ii) to
type (i) dominated regions occurs at

�Hoff = 2J0⌊
N
2

⌋1+α
, (28)

where �N
2 � is the maximum distance any spin can have from

another spin on the lattice. This can be understood in the
following way: the stabilization brought about by the flip of a
single spin from −1 to +1 increases the distance to failure of all
the other spins by at least �Hoff. This distance can however be
decreased by avalanches with multiple spin flips (in opposite
directions), as the sum of stabilizing and destabilizing effects
can, for a particular spin, be made arbitrarily small. If such a
spin then triggers the next avalanche, the gaps can be made
arbitrarily small. Avalanches which leave the magnetization
unchanged [type (i)] can therefore be separated by gaps smaller
than �Hoff.

For avalanches that increase the magnetization, at a suf-
ficiently large distance away from the avalanche, the effect
is always of the −1 to +1 variety, since the effects from
opposite spin flips cancel each other. Therefore the number
of spins experiencing a stabilization smaller than �Hoff scales
subdominantly with N in comparison to the number with a
stabilization larger than �Hoff. Hence, the probability of gaps
with �H < �Hoff also scales subdominantly in comparison to
those with �H > �Hoff. In contrast, events that decrease the
magnetization can lead to gaps with �H < �Hoff. However,
we find from our simulations that such events are rare, and
also scale subdominantly with N . In the subsequent analysis
we therefore ignore gaps that succeed events that decrease the
magnetization.

Finally, we analyze the gap distribution between events
that change the magnetization. This is the gap that one would
typically measure in experiments. In this case, the region with
gaps below �Hoff is absent. We focus on the region close to
this offset value �H → �H+

off. We find that close to �Hoff,
the distribution grows as a power with a nonzero θ exponent,
in a range of parameters for this model. In Fig. 10 we plot
the distribution P (�H ) for a range of disorder strengths R

at a fixed value of the range of interaction α = 1/4. In each
case we find that the distribution of gaps between avalanches
has a gap up to the value �Hoff and a nontrivial power law
increase P (�H ) ∼ (�H − �Hoff)θ for �H > �Hoff. The
exponent θ does not seem to depend on the strength of the
disorder R. We next analyze the nature of the gap distribution
as the range of interaction is varied. In Fig. 11 we plot this
distribution for many different α at a fixed disorder strength
R = 1/4. Once again we find that the distribution of gaps has a
nontrivial power law increase P (�H ) ∼ (�H − �Hoff)θ for
�H > �Hoff. Since �Hoff represents the smallest increment
required to trigger an avalanche, the relevant scale in the
small �H region is �Hoff, which depends nontrivially on
α [Eq. (28)]. In the inset of Fig. 11, we plot the distribution of
gaps scaled by �Hoff, displaying a very good scaling collapse
in the small �H region. Remarkably, we find that the exponent
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FIG. 10. Statistics of gaps between avalanches (changes in
magnetization) for a lattice of size N = 1000 with α = 1

4 and a range
of disorder strengths R. The distribution shows a nonzero θ = 0.95(5)
independent of R as �H → �H+

off. The data have been averaged over
5 × 104 realizations of the quenched disorder. Inset: The same data
displayed in linear scale.

θ does not depend on the range of interaction α either (we have
checked this behavior up to α � 2).

2. Finite size scaling

We next analyze the scaling properties of the gap dis-
tribution with the system size N . There are two relevant
scales in the system, �H ∼ O(1/N ) beyond which we expect
successive events to occur at uncorrelated regions in space, and
�H ∼ O(�Hoff). As the system size is increased, �Hoff → 0,
and consequently the size of the gapped region also vanishes.

FIG. 11. Statistics of gaps between avalanches (changes in
magnetization) for a lattice of size N = 1000 with disorder strength
R = 1

4 and various interaction ranges α. The distribution shows
a nonzero θ = 0.95(5) independent of α as �H → �H+

off. The
data have been averaged over 5 × 104 realizations of the quenched
disorder. Inset: The rescaled distributions show a universal behavior
for small �H , with the best fit value γ = 0.50(2).
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FIG. 12. Scaling of P (�H ) with system size in the small �H

regime for α = 1
4 and 1

2 at fixed disorder strength R = 0.25. The
distribution shows a nonzero θ = 0.95(5) independent of model
parameters as �H → �H+

off. The data have been averaged over
5 × 104 realizations of the quenched disorder. The α = 1

2 plots have
been shifted to the left by one decade to aid visibility. Inset: The
scaling of the same data using the scaling ansatz provided in Eq. (29)
with the best fit value γ = 0.50(2) shows a very good collapse for a
range of model parameters in the small �H regime.

For the region �H � 1/N , we have verified the expected
scaling behavior given in Eq. (10), with avalanches occurring
essentially as uncorrelated events. In the �H ∼ �Hoff regime,
the events are correlated due to the long-range interaction,
controlled by the range α, and is expected to have a different
scaling with N . In Fig. 12 we plot P (�H ) for various system
sizes, at two different values of α = 1/4 and 1/2 at a fixed
disorder strength R = 1/4. We find that once again, when the
distributions are scaled by �Hoff, they collapse with a simple
scaling with N . Finally, we find that for different ranges of the
interaction α and different system sizes N , the distribution in
the �H/�Hoff ∼ O(1) region obeys the scaling ansatz

P (�H ) ∼ N

αγ
P
(

�H

�Hoff
− 1

)
, (29)

with P(x) ∼ xθ as x → 0+. Our best fit estimate is γ =
0.50(2), and the scaling collapse using this value is illustrated
in the inset of Fig. 12.

V. DISCUSSION

In this paper, we have examined the statistics of gaps
between successive avalanches in two disordered spin mod-
els in one dimension. In the case of the nearest-neighbor
ferromagnetic RFIM, by mapping the avalanche events to
a nonhomogeneous Poisson process with a field-dependent
density, we were able to relate the distribution of gaps to the
underlying density of avalanche events in the system. This
allowed us to derive the gap statistics exactly, and we verified
our results using numerical simulations. This result confirms
that the pseudogap exponent θ for this model is 0 which is
known from the mapping of the RFIM to the depinning process
[11,21,25].

We next considered a model of Ising spins interacting via
a long-range antiferromagnetic coupling, which is expected to
display a nonzero θ [26]. Our analysis is relevant, since models
with antiferromagnetic interactions are seldom studied [30,31]
in relation to the avalanches that occur during a hysteresis
loop. We investigated this model using numerical simulations
and analyzed the features of the gap distribution. We found
that this model displays a gapped behavior P (�H ) = 0
up to a system size and interaction range dependent offset
value �Hoff [Eq. (28)], and P (�H ) ∼ (�H − �Hoff)θ as
�H → H+

off. We determined θ ≈ 0.95(5), independent of
model parameters. An interesting property of this model is
the sharp transition in P (�H ) between regions dominated by
avalanches that conserve magnetization and avalanches which
change the magnetization at �Hoff (see Fig. 9).

It is interesting to contrast our study of the long-range
antiferromagnetic RFIM with the Coulomb glass, where
avalanche statistics have been studied in detail [13,27,32]. The
dynamics of the Coulomb glass conserve the number density,
i.e., the equivalent RFIM follows a magnetization conserving
Kawasaki dynamics, whereas the model studied in this paper
follows a single spin flip Glauber dynamics which allows
for changes in magnetization. Furthermore, avalanches in the
Coulomb glass are usually studied using spatially varying
(electrostatic) potentials [27], whereas we have used a spatially
uniform external (magnetic) field. From the Coulomb glass
literature, it is known that the distribution of local fields P (he,i)
has no gap or pseudogap in one dimension (for α > 0) and a
pseudogap in higher dimensions. The gap distribution P (�H )
is directly related to the distribution of local fields P (he,i), and
a pseudogap implies a scale free behavior of the avalanche
size distribution [13]. In contrast, the model studied in this
paper, displays a gap in one dimension, and an exponentially
decaying avalanche size distribution (see Fig. 8).

Finally, we would like to discuss a plausible mechanism
that leads to the nontrivial differences between the two models
considered in this paper. Since the stable spin configurations
are governed by Si = sgn(he,i), with positive effective fields
corresponding to spins +1, it is illuminating to parametrize the
system in terms of these effective fields [Eqs. (13) and (26)].
These values −∞ < he,i < ∞ can be thought of as the heights
of a membrane at each site (see Fig. 13). As the external field
H is increased, the membrane drifts upwards by this amount,
until an avalanche event. At each H , the smallest negative he,i

governs the distance (gap) to the next avalanche.
In the case of the nearest-neighbor ferromagnetic RFIM,

each avalanche destabilizes the neighboring spins. Since the
spins only flip from −1 → +1, to analyze the avalanches we
only need to consider the he,i which are below zero. With
each avalanche event, the neighboring he,i’s move closer to 0
creating a nonzero density near zero (i.e., θ = 0). In higher
dimensions, the Poissonian analysis of Sec. II breaks down
under certain conditions. Below a threshold disorder strength
Rc for d > 2 [21], long-range ordering leads to a diverging
average avalanche size 〈s〉, and hence correlations between
values of H at which avalanches occur [33]. However, a
similar argument as for one dimension implies that purely
destabilizing interactions lead to θ = 0. In the case of the
long-range model, each spin flip from −1 → +1 moves the
local fields of its neighbors further away from 0, roughening
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he,i

i

he,i

i

he,i
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he,i

FIG. 13. Evolution of the local fields he,i at each site, as the
system undergoes an avalanche event (left) for the nearest-neighbor
ferromagnetic RFIM and (right) the long-range antiferromagnetic
RFIM. Since the stable spin configurations are governed by Si =
sgn(he,i), positive local fields correspond to spins +1. The smallest
negative he,i governs the distance (gap) to the next avalanche. In
the case of the nearest-neighbor ferromagnetic RFIM, since each
avalanche destabilizes the neighboring spins, their he,is move closer to
0. This effectively decreases the roughness of the membrane. For the
long-range model, each avalanche roughens the membrane, depleting
the density of near-failure regions.

this membrane (see Fig. 13). Since most avalanche events are
dominated by spin flips of this type, this depletes the density of
events near zero, causing a gapped behavior with a nontrivial
power law increase.

Alternatively, we can construct a Langevin-type equation
for the evolution of he,i for the long-range model. Differenti-
ating Eq. (26) with respect to the external field H and using
Eq. (14) we have

∂he,i

∂H
=

N∑
j = 1
j �= i

ηj

|i − j |1+α
+ 1, (30)

where

ηj = 2J0δ(he,j )
∂he,j

∂H
. (31)

Here ηj represents a noise term that can be attributed to the
quenched randomness and the interactions between spins. This
picture is then closely related to a coarse grained model that
was explored by Lin et al. [11] where an evolution equation
of the type of Eq. (30) was considered, with ηj drawn from
an uncorrelated underlying distribution. In this case, it was
argued that the presence of positive as well as negative ηj

would give rise to a nonzero θ . In our case as well, ηj can
be positive or negative as the spins can flip from either −1
to +1 or vice versa with increasing external fields, providing
a possible mechanism for the observed nonzero θ exponent.
However, there are crucial differences, as the noise ηj in our
model is clearly correlated. In the case of [11], the θ exponent
varies with the range of interaction α (in some range of α),
whereas in our case this does not seem to occur. It would be
interesting to explore the origin of these differences and the
effects of the correlated noise in detail.
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APPENDIX A: JOINT DISTRIBUTION
OF SUCCESSIVE AVALANCHES

In this Appendix we analyze the joint density of successive
avalanches in the RFIM with ferromagnetic coupling of range
δ, with a quenched random field {hi} at each site. As argued
in Sec. II, the spins in the system can be grouped into clusters
that undergo avalanches together as the external field H is
increased monotonically and quasistatically. Corresponding
to each realization of {hi}, we have a unique cluster decom-
position {cj ,Hj }, with the spins being grouped into clusters
cj = {Sj,1,Sj,2 . . .} with j = 1,2 . . . Na and Na is the total
number of avalanches in the realization. The {Hi} correspond
to the values at which each cluster undergoes an avalanche.
This set varies for each realization, and we are interested in
the statistics of the ordered set {H1 < H2 . . . < HNa

}. The
disorder average can now be performed in two steps, first over
all realizations of the quenched randomness consistent with
a cluster decomposition, and then over all possible cluster
decompositions

〈. . .〉{hi } = 〈〈. . .〉{hi }|{cj }
〉
{cj }. (A1)

We next consider the joint density ρ(H,H ′|{cj }) such that
given a cluster decomposition {cj }, two successive avalanches
occur at values H and H ′. We have

ρ(H,H ′|{cj }) = 〈
ρ(H,H ′|{cj },{hi})

〉
{hi }|cj

, (A2)

along with

ρ(H,H ′) = 〈ρ(H,H ′|{cj })〉{cj }. (A3)

where ρ(H,H ′) is the probability that two successive
avalanches occur at H and H ′ over all realizations of disorder.
We first consider the disorder average in Eq. (A2). We
define ρind(H,H ′|{cj }) as the two point density of successive
avalanches computed using the one point density ρ(H |{cj })
and assuming that events at H and H ′ are independent. We are
interested in the correlation between the events at H and H ′
which can be estimated by the deviation from ρind(H,H ′|{cj }).
Since we are only concerned with successive events, the
contribution to this deviation �j occurs only through the
interaction of the avalanche at H with its neighboring clusters.
Next, since the clusters interact through their boundaries, this
deviation can be expected to scale as

�j = |ρind(H,H ′|{cj }) − ρ(H,H ′|{cj })| ∝ δ〈s〉(d−1)/d
j .

(A4)

However, the number of clusters unaffected by this avalanche
scales as Na = N/〈s〉j where 〈s〉j is the average cluster size in
{cj }. Now, since ρind(H,H ′|{cj }) has contributions from all the
clusters in the system, the relative importance of correlations
therefore scales as δ〈s〉(2d−1)/d

j /N .
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We can now estimate the importance of correlations over
all realizations of the disorder as

� = 〈�j 〉cj
∝ δ

〈〈s〉(d−1)/d
j

〉
{cj }. (A5)

In the absence of long-range ordering 〈s〉j has a well-
defined distribution with no diverging moments, and therefore
〈〈s〉μj 〉{cj } ∼ 〈s〉μ. The relative number of correlated events
therefore scales as δ〈s〉(2d−1)/d/N and vanishes in the ther-
modynamic limit as long as 〈s〉 and δ remain finite. In our
system, the interaction is finite ranged and therefore δ is finite.
In addition, there is no long-range ordering in the system,
hence 〈s〉 is finite. We can therefore treat the avalanches as
independent events in the thermodynamic limit.

APPENDIX B: DISTRIBUTION OF GAPS IN THE
NONHOMOGENEOUS POISSON PROCESS

In this Appendix we derive an expression for the distribution
of gaps between avalanches in a finite window of the external
field. To do this we consider a system starting at H1 and
compute the distribution of gaps between events as the field
is increased up to H2 > H1. We first compute the cumulative
probability S(x; H1,H2) of the occurrence of a gap of size
�H > x over the magnetization sweep from H1 to H2. This
can be computed as the probability that an event occurs at
a value H ′ + x with no events between H ′ and H ′ + x,
with H1 < H ′ < H2 − x. This ensures that the avalanche is
preceded by a gap of a size at least x. We then have

S(x; H1,H2) =
∫ H2−x

H1

ρ(H ′ + x)

N (H1,H2)
e− ∫ H ′+x

H ′ ρ(y)dydH ′, (B1)

where N (H1,H2) = ∫ H2

H1
ρ(H ′)dH ′ is the expected number of

events in the interval [H1,H2]. The gap distribution is then
simply

P (x; H1,H2) = −dS(x; H1,H2)

dx
. (B2)

Taking the derivative of Eq (B1) and integrating by parts, we
arrive at [6,34]

P (�H ; H1,H2)

=
∫ H2−�H

H1

ρ(H ′)ρ(H ′ + �H )

N (H1,H2)
e− ∫ H ′+�H

H ′ ρ(y)dydH ′

+ρ(H1 + �H )e− ∫ H1+�H

H1
ρ(y)dy

N (H1,H2)
.

The distribution of gaps over the entire sweep from −∞ to
+∞ can then be derived using

P (�H ) = lim
H1→−∞

lim
H2→+∞

P (�H ; H1,H2). (B3)

Since ρ(H ) → 0 as H → ±∞, this yields Eq. (8).

APPENDIX C: GENERATING FUNCTION
FOR AVALANCHE SIZES: G(x,H)

In this Appendix, we compute the generating function
for the avalanche size distribution G(x,H ) for the nearest-
neighbor ferromagnetic RFIM on a Bethe lattice with coordi-
nation number z at zero temperature, reproducing the work of

r = 0

r = 1

r = 4

X

Y

TX

r = 3

r = 2

FIG. 14. Illustration of a Bethe lattice with coordination number
z = 3, along with two of its associated Cayley subtrees with four
generations (r = 4). The site at r = 0 is the origin. The shaded region
denotes a subtree TX rooted at X with a parent node Y . The linear
chain, considered in this paper, corresponds to z = 2.

Sabhapandit et al. [19,24]. The case z = 2 reduces to the one-
dimensional model considered in Sec. III. The Hamiltonian of
the system is given by H = −J

∑
〈i,j〉 SiSj − ∑

i (hi + H )Si ,
where 〈〉 denotes nearest neighbors on the Bethe lattice (see
Fig. 14).

1. Magnetization per site

We begin with the system at H = −∞ (i.e., all the spins
Si = −1) and increase the external field to a value H > −∞.
Due to the return point memory of this model, the resulting
configuration is exactly the same for any history of external
field increments. We can therefore directly increase the field
from −∞ to H . We define pm ≡ p(m,H ) as the probability
that a spin Si is +1 at H given that m of its neighbors are +1.
This is given by the probability that the local field he,i at this
site is positive. This can be computed as

p(m,H ) = P (he,i > 0) =
∫ ∞

J (z−2m)−H

φ(h)dh. (C1)

Due to the Abelian property the final stable configuration
is independent of the order in which the spins are relaxed. We
therefore choose a relaxation protocol that propagates upwards
from the last generation of the Bethe lattice (see Fig. 14).
We define P (r)(H ) as the probability that a spin in the rth
generation is +1 when its parent spin at (r − 1) is −1, with all
its descendants in their stable configuration. We then have

P (r)(H ) =
z−1∑
m=0

(
z − 1

m

)
[P (r+1)(H )]m

× [1 − P (r+1)(H )]z−1−mp(m,H ). (C2)

Since the sites deep in the tree are all equivalent, P (r)(H ) →
P ∗(H ) for “r” deep inside the tree. The value of P ∗ ≡ P ∗(H )
can therefore be computed by substituting this into Eq. (C2),
yielding

P ∗(H ) =
z−1∑
m=0

(
z − 1

m

)
[P ∗(H )]m[1 − P ∗(H )]z−1−mp(m,H ).

(C3)

Choosing the site in the bulk as the origin, i.e., r = 0,
the magnetization per site can be computed by evaluating
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P (r=0)(H ). This is simply the probability that the spin at the
origin is +1. We have

P (0)(H ) =
z∑

m=0

(
z

m

)
[P ∗(H )]m[1 − P ∗(H )]z−mp(m,H ).

(C4)

The magnetization per site of the nearest-neighbor ferro-
magnetic RFIM on the Bethe lattice is therefore determined
by the behavior of P ∗(H ). From Eq. (C3), it can be seen that
the equation determining P ∗(H ) is of degree z − 1. Therefore,
for the linear chain (the z = 2 Bethe lattice), this equation is
linear, leading to a magnetization that is a continuous function
of the external field H .

2. Avalanche size distribution

Next, consider the Cayley tree rooted at some spin X at
generation r deep in the Bethe lattice (see Fig. 14). The subtree
formed by X and all its descendants is referred to as the subtree
rooted at X and denoted by TX. Let Qn be the probability that
exactly “n” spins in TX that were −1 when the parent spin
at (r − 1) was −1 flip to +1 when the parent spin flips to
+1. If the spin at X was already +1, which occurs with the
probability P ∗, the spins in the subtree would be unaffected
by the flip of the spin at Y and we obtain

P ∗(H ) +
∞∑

n=0

Qn(H ) = 1. (C5)

By definition, Q0 is the probability that the spin at X was
−1 when Y was −1, and remained −1 when Y flipped to
+1. The probability of any descendant of X being +1 when
X is −1 is given by P ∗, hence the probability that m of the
descendants of X were +1 after the relaxation is given by
(z − 1

m )(P ∗)m(1 − P ∗)z−1−m. Now, if m of its descendants were
+1, the probability that X remains −1 after the spin flip at Y

is (1 − pm+1). We then have

Q0 =
z−1∑
m=0

(
z − 1

m

)
(P ∗)m(1 − P ∗)(z−1−m)(1 − pm+1). (C6)

Now, we can recursively compute Qn for general n. For
example Q1 is the probability that the spin at X which was
−1 when Y was −1 flipped to +1 when Y flipped to +1 and
among the z − 1 − m descendants of X which were −1, none
of them flipped to +1 when X flipped. This occurs with a
probability of (pm+1 − pm)Qz−1−m

0 (P ∗)m. So we have

Q1 =
z−1∑
m=0

(
z − 1

m

)
Qz−1−m

0 (P ∗)m(pm+1 − pm). (C7)

We can similarly compute Qn recursively for higher n, noting
the fact that determining Qn requires only the knowledge of

10-8

10-6

10-4

10-2

1

 2  4  6  8  10  12

N = 10000

P (s)

s

N = 100

N = 500

N = 1000

N = 4000

N = 7000

FIG. 15. Size distribution of avalanches for the one-dimensional
RFIM with random fields drawn from a uniform distribution [Eq. (15)]
with R = 5 at an external field H = 1, for different system sizes N .
The data have been averaged over 107 realizations of the disorder.
The bold line corresponds to the analytic expression for N → ∞
computed using Eq. (C11).

Qi ∀ i < n. The recursion is given by

Qn =
z−1∑
m=0

(
z − 1

m

)
(P ∗)m(pm+1 − pm)

×
⎡
⎣ ∞∑

{ni }=0

(
z−1−m∏

i=1

Qni

)
δ
(∑

ni,n − 1
)⎤⎦,

where δ represents the Kronecker δ function. The recursion
relation becomes much simpler when we express it in terms of

10-8

10-6

10-4

10-2

1

 2  4  6  8  10  12

N = 10000

P (s)

s

N = 500

N = 1000

N = 4000

N = 7000

FIG. 16. Size distribution of avalanches for the one-dimensional
RFIM with random fields drawn from an exponential distribution
[Eq. (16)] with R = 5 at an external field H = 1, for different system
sizes N . The data have been averaged over 107 realizations of the
disorder. The bold line corresponds to the analytic expression for
N → ∞ computed using Eq. (C11).
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the generating function Q(x) = ∑∞
n=0 Qnx

n. We have

Q(x) = Q0 + x

z−1∑
m=0

(
z − 1

m

)
(P ∗)mQ(x)z−1−m (C8)

× (pm+1 − pm). (C9)

Next, we define P (s) ≡ P (s,H ) as the probability that an
avalanche of size s is initiated at the origin when the field is
increased from H to H + dH . P (1,H )dH is the probability
that an avalanche of size 1 is initiated at the origin when the
field is increased from H to H + dH , i.e., no descendant spin
which was −1 flipped in response to this avalanche at the
origin. If m of the descendants of the origin were +1 at H , the
probability of the spin at the origin flipping from −1 to +1
during the field increment H → H + dH is the probability
that the local disorder field (h0) satisfies J (2m − z) + H +
h0 < 0 and J (2m − z) + H + dH + h0 > 0. This is simply
given by φ(J (z − 2m) − H )dH . We therefore have

P (1,H ) =
z∑

m=0

(
z

m

)
(P ∗)mQz−m

0 φ[J (z − 2m) − H ]. (C10)

Following the same arguments as for Qn, we can recursively
compute P (s,H ) and then express it in terms of the generating
function G(x,H ) = ∑∞

s=1 P (s,H )xs . We have

G(x,H ) = x

z∑
m=0

(P ∗)m[Q(x)]z−mφ[J (z − 2m) − H ].

(C11)

We then compute this generating function for avalanche
sizes G(x,H ) for the RFIM in one dimension (the z = 2 Bethe
lattice) with uniform and exponential disorder distributions
chosen from Eqs. (15) and (16). In both cases, we compare the
result obtained to the distributions obtained by direct numerical
simulations (see Figs. 15 and 16). We find that the avalanche
size distribution is a fast-decaying exponential in the region
of parameters that we explore and the simulation results agree
well with the analytical results.

Finally, we use the expression in Eq. (C11) to compute the
quantity G(1,H ) which is the average density of avalanche
events at a given H as ρ(H ) = NG(1,H ) [Eq. (11)]. Using
the expressions in Eqs. (C3), (C9), and (C11), along with the
disorder distributions given in Eqs. (16) and (15), we arrive at
the expressions announced in Eqs. (17) and (19).
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