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Abstract. We analyse properties of contact networks formed in packings of 
soft frictionless disks near the unjamming transition. We construct polygonal 
tilings and triangulations of the contact network that partitions space into 
convex regions which are either covered or uncovered. This allows us to 
characterize the local spatial structure of the packing near the transition 
using well-defined geometric objects. We construct bounds on the number of 
polygons and triangulation vectors that appear in such packings. We study 
these networks using simulations of bidispersed disks interacting via a one-
sided linear spring potential. We find that several underlying geometric 
distributions are reproducible and display self averaging properties. We find 
that the total covered area is a reliable real space parameter that can serve as 
a substitute for the packing fraction. We find that the unjamming transition 
occurs at a fraction of covered area ( )=∗A 0.446 1G . We determine scaling 
exponents of the excess covered area as the energy of the system approaches 
zero → +E 0G , and the coordination number ⟨ ⟩zg  approaches its isostatic value 

⟨ ⟩ ⟨ ⟩ →∆ = − +Z z z 0g g iso . We find ( )∆ ∼ ∆A EG G
0.28 1  and ( )∆ ∼ ∆A ZG

1.00 1 , 
representing new structural critical exponents. We use the distribution functions 
of local areas to study the underlying geometric disorder in the packings. We 
find that a finite fraction of order ( )Ψ =∗ 0.369 1O  persists as the transition is 
approached.
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1. Introduction

As finite sized rigid particles are brought together by increasing their density or by 
compression, they undergo sharp transitions into globally rigid structures, a phenom-
enon known as jamming [1–5]. Such systems do not in general form periodic spatial 
patterns associated with crystalline solids, instead they display rigidity in an amor-
phous fashion. The physical properties of such amorphous solids are intimately linked 
with the underlying disorder in their packing. The packing of particles into mechani-
cally rigid structures has been of interest in diverse fields including physics, biology and 
geology and has wide-ranging industrial applications. Several characteristics of rigid 
particle packings have been studied experimentally and also via numerical simulations 
[6–18]. Many theoretical studies have focussed on frictionless particles with hard core 
interactions, and much of our rigorous understanding stems from the study of such sys-
tems [19–24]. Particles with isotropic shapes such as spheres and disks are par ticularly 
appealing in terms of their mathematical tractability, and have a long history of study 
in their own right [24–31]. They have frequently been used as idealized models to study 
more general problems of granular materials, glassy systems and even information 
theory [24]. Although hard cores serve as a good first approximation to real particles, 
the incorporation of distance dependent interactions represents a non-trivial general-
ization which continues to be a subject of active research. A natural way to introduce 
such interactions is by considering particles with soft cores, with an energy dependent 
on the amount of overlap between particles. Soft particle packings, which yield hard 
particle systems in the limit of zero overlap, have also been the subject of considerable 
interest [32–35]. Recently such packings of soft frictionless particles have also been 
realized experimentally [36–39].

The jamming of soft frictionless disks in two dimensions has been investigated in 
great detail over the last decade [40–48]. As soft disks are gradually compressed, they 
undergo a transition to a marginally jammed state at a well-defined protocol-dependent 
density. This marginal state, although at zero pressure and zero energy, nevertheless 
displays peculiar spatial characteristics, such as local randomness and long range hype-
runiformity [22, 49–51]. The reproducibility of several properties of marginal states, 
such as zero energy packing fractions and contact numbers, despite their seemingly 
random internal structures have led to a renewed interest in their structural properties. 
Several entropic arguments have been proposed to explain these characteristics of soft 
disks close to the jamming transition including that the marginal state is maximally 
random [21, 50], or that the majority of states belong to basins that jam at the same 
density [40, 42]. Bulk properties of jammed soft disks have been extensively investi-
gated and several average properties of marginally jammed disks have been well corrob-
orated. The average number of contacts per particle in the marginally jammed state of 
sphere packings is well known: ⟨ ⟩ =z d2g iso  where d is the dimensionality of the embed-
ding space. This condition is also referred to as isostaticity. For disks that we consider 
in this paper ⟨ ⟩ =z 4g iso . The distributions of the contact lengths, contact angles and 
two point correlations have also been studied in detail [47]. However despite consider-
able effort, several questions about jamming transitions of even simple frictionless soft 
disks remain unanswered [34]. In particular, the local microstructures in packings close 
to the transition remain relatively less understood. Similarly, the spatial randomness 
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of the network and the nature of the underlying disorder is an aspect that has not 
received much attention. Although there is a well defined transition in the bulk prop-
erties of the system with continuously measurable quantities such as packing fraction, 
there are discontinuous jumps in several structural variables that are ill-defined on one 
side of the transition. These include network properties such as connectivities of par-
ticles, shear and pressure. It is not a priori obvious that the two sides of the transition 
can be described with a single theory, and indeed by the same microscopic variables. In 
this context it becomes important to identify the relevant microscopic variables with 
which to describe the behaviour of the system near the transition.

2. Summary and overview of results

In this paper we study the spatial structures that arise near the well-studied jamming 
transition of frictionless soft disks. We focus specifically on jammed configurations near 
the unjamming transition point, i.e. we approach the transition from mechanically 
stable packings with decreasing energies. The main results of this paper can be summa-
rized as follows. We introduce a representation that assigns convex polygonal areas to 
the disks and also to the voids (see figure 1). We also assign a measure to this polygonal 
construction using a Delaunay triangulation of the underlying network. This allows us 
to study the structural properties of both voids and disks and accurately measure their 
statistics. Although the underlying degrees of freedom have complicated joint probabil-
ity distributions arising from constraint satisfaction, we find that they display self aver-
aging behaviour, such that system averages are equivalent to ensemble averages. This 
allows us to measure reproducible distribution functions of these individual quanti ties. 
We find that the total area occupied by the grain polygons serves as a reliable real 
space parameter that displays non-trivial scaling as the transition is approached. We 
perform large scale simulations to measure scaling exponents associated with this area 
as the transition is approached. We then distribute this total area into microscopic 
variables by assigning well-defined areas to each contact and find this works well as 
a local field. Finally we use this construction to study the nature of the disorder that 
arises in such packings. Our study relies on the special convexity properties that appear 
in frictionless force balanced systems (see section 4.2). This highlights the difference 
between the contact networks that emerge in frictional and frictionless systems. We are 
not aware of any other real space representation where such a difference is manifest.

The paper is organised as follows. In section 3 we describe the potential energy 
function and define the jammed configurations we focus on in our study. In section 4 
we introduce two representations of the disk packing referred to as the ‘polygonal’ and 
‘triangulation’ graphs. This allow us to accurately characterise the spatial properties of 
jammed disk packings. In section 5 we characterise the total number of voids, contacts 
and triangulation vectors that arise in such packings. We derive conservation laws for 
the triangulation graph that allows us to assign the triangulation vectors uniquely to 
the local polygonal objects. We use these network properties to characterise the spa-
tial degrees of freedom of the system and use these geometrical degrees of freedom to 
construct an isostaticity condition. In section 6 we perform large scale simulations to 
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measure statistics of these contact networks, focussing on the lengths of contact vec-
tors, their relative angles and the local areas of the polygons. In section 7 we provide 
evidence that the total grain area can be used as a reliable parameter with which to 
describe the unjamming transition. In section 8 we use the distribution functions of 
the local areas to study the underlying geometrical randomness in the packings. We 
find that a finite fraction of order persists as the transition is approached. We also 
find that the excess order in the system displays non-trivial scaling as the transition 
is approached. Finally, in section 9 we measure particle and contact correlations that 
we use to estimate the length scales over which the jammed packings display disorder.

Although we focus specifically on frictionless disks, our methods can be readily 
applied to frictional systems and other convex particles as well. In this paper, we refer 
to the particles interchangeably as disks or ‘grains’. We use capitalized letters to rep-
resent global quantities and lower case letters to represent local properties.

3. Jammed configurations

We begin by defining an energy function for a given configuration of disks. A configuration 
is fully specified by the set of positions of the centres of grains { }→rg  and their associated 
radii { }σg . The total energy of the system is given by a sum of two body interactions 

( )→
′V rg g, , where → → →= −′ ′r r rg g g g,  is the distance between the disks g and ′g . This interaction 

potential is modelled as a one-sided linear spring repulsion potential of the form

Figure 1. (Left) A section of a jammed packing of bidispersed frictionless disks. 
The contact points are highlighted in red. The distance vectors between the 
centres of grains are depicted by black (bidirectional) vectors. Particles that do 
not overlap with any others (rattlers) are shown in yellow. The graph formed 
by the distance vectors is referred to as the ‘contact network’. The faces of the 
contact network are referred to as ‘minimum cycles’. The areas lying outside 
the grains (white) are referred to as ‘voids’. (Right) The same section with ‘edge 
vectors’ cyclically connecting the contacts within each grain. The grains that are 
part of the contact network are depicted in green and the rattlers are shown in 
yellow. This construction partitions the space into convex polygons defined as 
‘grain polygons’ (blue) and ‘void polygons’ (white). Together they tesselate the 
entire space. The rattlers in this representation lie within the void polygons.
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where Θ is the Heaviside function and σ σ σ= +′ ′g g g g,  is the sum of the undistorted radii 
of disks g and ′g . The total number of grains is referred to by NG. When quoting NG 
from simulation data, we follow the convention that all grains used in the simulation 
are counted, regardless of whether they are a part of the contact network in the final 
jammed state. In computing all other system quantities, NG refers only to the grains 
that are part of the rigid structure, i.e. ≡ −N N NG G R, where NR is the number of ‘rat-
tlers’, particles that are not in contact with any of the others (see figure 2). The total 
energy per grain of the system is then given by

( )
( )

→∑=
′

′E
N

V r
1

,G
G g g

g g
,

, (2)

where the sum is taken over all pairs ( )′g g, , with ≠ ′g g . The potential energy function 
therefore acts as a tuning parameter that defines a distance to the unjamming trans-
ition located at precisely EG  =  0. In this paper we approach the transition from finite 
positive energies → +E 0G . A configuration is defined as jammed if and only if EG  >  0 
and

( )    
→

→∑
∂

∂
= ∀

≠′

′V r

r
g0 .

g g

g g

g

,
 (3)

Equation (3) is simply a statement of force balance for every grain g. Two disks are 
in contact if → σ| | <′ ′rg g g g, , . We refer to the collection of distance vectors { }→

′rg g,  between 
grains in contact as the ‘contact network’. The force balance condition ensures that 
configurations with finite energies possess a system spanning contact network. In this 
paper we only consider configurations that are jammed. We consider systems with 
periodic boundary conditions in both directions. This boundary condition makes the 
embedding plane a genus 1 torus with an Euler characteristic χ = 0. We will use this 
property in section 5.

4. Contact network

We next introduce two representations of the disk packing generated using the network 
of contacts that form between the disks. We generate a ‘polygonal graph’ by partition-
ing the two dimensional space into polygonal tilings of grains and voids, and a ‘trian-
gulation graph’ by a Delaunay triangulation of locally convex sections of the contact 
network. Recently Voronoi tesselations have proved fruitful in understanding the local 
spatial structures of packings [52]. Our procedure differs from the Voronoi tesselation 
in that it is able to assign well defined sections of space to grains as well as to voids.

The packing of disks in the two dimensional plane can naturally be considered as 
a decomposition of space into regions that lie within the circular areas associated with 
the disks and regions that lie outside. We refer to these exterior regions as ‘voids’. In 

http://dx.doi.org/10.1088/1742-5468/2016/11/114002


Disordered contact networks in jammed packings of frictionless disks

7doi:10.1088/1742-5468/2016/11/114002

J. S
tat. M

ech. (2016) 114002

jammed packings, these voids are completely enclosed by the areas of grains surround-
ing them, and in general have a complicated, non-convex shape (see figure 1). The total 
number of such voids is referred to by NV. In order to characterize these voids we can 
use the positions of the surrounding grains to build circuits around them. This is done 
by constructing a circuit of distance vectors with vertices at the centres of the grains 
surrounding each void v as { }→ → →= ″ ″′′ ′M r r r, , ...v g g g g g g, , ,  (see figure 1). These circuits are 
also referred to as minimum cycles of the contact network since they represent the 
shortest possible loops in this network. Each minimum cycle is uniquely associated 
with a void, and completely encloses the non-circular shaped space formed between the 
disks.

4.1. Contact vectors and edges

Using the positions and radii of the grains in a given configuration we can next con-
struct the contacts between the grains. Although the contacts occur as finite regions 
of overlap between grains, we assign them to unique points in space. The positions 
of the contact points are represented by the set of contact positions { }→rc . We use the 
convention

( )→ → → →σ
σ σ

= +
+

−
′ ′r r r r ,c g

g

g g
g g (4)

where c is the contact between grains g and ′g . Here c  =  1, 2, 3...NC where NC is the total 
number of contacts in the system. In this convention every contact is counted twice, 
once for each grain. The convention in equation (4) also ensures that configurations 

Figure 2. (Left) The labeling convention. The positions of the centers of the grains 
are represented by the set of vectors rg{ }→  with associated radii g{ }σ . The positions of 
the contact points are represented by the set of vectors rc{ }→  where c  =  1, 2, 3...NC,  
the total number of contacts. The contact vectors belonging to every grain g 
are represented by rg c,

→  where c  =  1, 2, 3...zg, the connectivity of the grain. The 
edges associated with every grain g are represented by g e,{ }→ε  with e  =  1, 2, 3...zg. 
The edges within each grain circulate in an anti-clockwise direction. The triangle 
formed by the points r r r, ,g c c( )→ → →

′  (shaded area) is labelled by the unique edge g e,
→ε  

and is referred to as an ‘edge triangle’ with an associated area ag,e. (Right) The 
jammed configuration of figure 1 along with the associated polygonal construction 
and Delaunay triangulation. The vectors coinciding with real contacts are depicted 
in black and the ‘fictitious contacts’ are shown in red.

http://dx.doi.org/10.1088/1742-5468/2016/11/114002
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that are related by a simple expansion or contraction of all disks have the same contact 
network. Using the positions of contacts belonging to every grain, we can assign ‘con-
tact vectors’ to each grain as

→ → →= −r r r ,g c c g, (5)
where g refers to the grain index and c refers to the contact number associated with the 
grain, c  =  1, 2, 3...zg. The number of contacts zg is also referred to as the ‘connectivity’ 
of the grain. Every contact vector has two degrees of freedom which can be param-
etrized by its length | |rg c,  and its angle in relation to the x-axis θg c, . The system can then 
be parametrized in terms of the contact vectors, although this is an overcounting of the 
degrees of freedom. The contact vectors must satisfy constraints in order for them to 
be a valid packing. We discuss these constraints in detail in section 5.4.

4.2. Semi-circle condition and convexity

The normality of forces in the system of frictionless disks leads to special convexity 
properties of the contact network. The force balance condition on each grain disallows 
any configuration in which contacts lie on only one semi-circle of a disk, since this 
would generate a net force along the direction normal to this semi-circle. We refer to 
this statement as the ‘semi-circle condition’. This then ensures that the relative angles 
between the contact vectors obeys

θ θ π− <′ ,g c g c, , (6)
where ( )′c c,  is taken cyclically within each grain. Using this property, we can deduce 
that each minimum cycle surrounding a void forms a convex polygon. Therefore the 
contact network partitions space into locally convex regions, with each of these regions 
being uniquely associated to a void. The partitioning of space into locally convex 
regions greatly simplifies the characterization of the underlying structure of the pack-
ing and allows us to construct convex tilings associated uniquely with grains and also 
with the voids. It is important to note that there is no such semi-circle condition for 
frictional systems. The network construction therefore highlights a crucial difference 
between frictionless and frictional systems.

4.3. Grain polygons and void polygons

Using the contact vectors, we can next build a collection of edges { }→εg e,  defined as

r r ,g e g c g c, , ,= −′
→ → →ε (7)

where the edges connect pairs of contacts ( )′c c,  belonging to the grain g in a cyclic 
manner based on their angles (see figure 2). Here e is the edge number associated with 
the grain, e  =  1, 2, 3...zg. We use the convention that the edges circulate in an anti-
clockwise manner within each grain. Every contact belonging to a grain therefore has a 
unique edge associated with it, namely the outgoing edge vector at each contact. The 
edges associated with the grains naturally form a zg-sided polygon. We refer to these 
embedded polygons as ‘grain polygons’. Since we are dealing with convex disks, the 
associated polygons are also convex and hence have an associated convex area ag. The 
total area covered by the grain polygons is denoted by AG. We then have

http://dx.doi.org/10.1088/1742-5468/2016/11/114002
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where the edge e connects the contacts ( )′c c, . We refer to the individual areas ag,e as 
‘edge triangles’, since they are triangular in shape and are uniquely associated with an 
edge e (see figure 2). We measure the statistical properties of these edge triangles in 
section 8.

Next, we can also use the contact vectors to construct ‘void polygons’. These are 
created using the edges surrounding each void in the same manner as the grain poly-
gons and have an associated area av. For fricitionless packings of disks, the convexity 
of the circumscribing minimum cycle enclosing every void also ensures the convexity of 
the void polygon. The edges associated with the void polygons circulate in the clock-
wise direction. Once again we can define a void connectivity zv as the total number of 
edges associated with the void. An important property of the void polygons is that they 
circumscribe the voids between the disks, which has a non-convex shape, with a convex 
polygon. For marginally jammed disks, the void polygon is precisely the convex hull of 
the non-circular area of the void. This makes the characterization of the shape and size 
of individual voids easier. We note that our void construction is similar to the circulat-
ing currents of Ball and Blumenfeld [53], however their assignment of grain areas is 
different. Our construction is aimed at introducing a grain area parameter that serves 
as a substitute for the packing fraction, which can then be used to test scaling proper-
ties of the system. We refer to the graph ({ } { })→ →= εG r ,c g eP ,  with vertices at the position 
of contacts and edges formed by the edge vectors as the ‘polygonal graph’.

4.4. Delaunay triangulation and fictitious contacts

In order to assign a measure to our network, we use the positions of the grains to con-
struct a triangulation of the two dimensional space. As we have seen, for frictionless 
disk packings, the contact network naturally breaks up the space into convex mini-
mum cycles enclosing the voids. We can then individually triangulate each cycle with 

the distance vectors →
′rg g,  that form the convex hull of each cycle, and extra vectors →

′r g g
f
,  

traversing through the minimum cycles. We refer to these extra triangulation vectors 
as ‘fictitious contacts’ since they mostly represent disks that are almost in contact. It 
should be noted that the fictitious contacts are infact distance vectors in our conven-
tion. The statistics of these fictitious contacts are of interest to us since they provide 
significant information about how the contact network is embedded in space. The union 

of the individual triangulations then yields a global triangulation ({ } { })→ → →= ′ ′G r r r, ,g g g g g
f

T , ,  

with vertices at the position of grains and edges formed by the grain distances and 
fictitious contacts. We refer to GT as the ‘triangulation graph’.

The natural triangulation to use within each minimum cycle is the Delaunay trian-
gulation [54], which maximizes the minimum angle among all possible triangulations. 
This forms the least scalene triangulation possible and is convenient for developing 
discrete calculus frameworks for microscopic properties of granular systems [57–59]. 
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Disordered contact networks in jammed packings of frictionless disks

10doi:10.1088/1742-5468/2016/11/114002

J. S
tat. M

ech. (2016) 114002
Since the union of Delaunay triangles yields the convex hull [54], this ensures that the 
distance vectors are a subgraph of the triangulation of each minimum cycle. Therefore 
the contact network forms a subgraph of the triangulation graph. This construction is 
unique since each minimum cycle contains points that are not collinear, ensuring the 
uniqueness of the individual triangulations. It is important to note that the union of the 
individual Delaunay triangulations does not necessarily yield the global Delaunay tri-
angulation obtained by simply triangulating the vertices of grain positions. For mono-
disperse disks, this union does indeed yield the global Delaunay triangulation. To show 
this it is sufficient to prove that two disks in contact are connected by a global Delaunay 
edge. This can be proved by recognizing that the Delaunay triangulation is simply the 
adjacency graph of the Voronoi tesselation, i.e. if two points share an edge in a Voronoi 
tesselation, they will be connected by a Delaunay edge. The voronoi area associated 
with each vertex →rg is defined as all points →r  such that    → → → →| − | < | − | ∀ ′′r r r r gg g . For non-
overlapping disks, the associated circular areas therefore lie within their Voronoi areas. 
At each overlap the Voronoi area of two disks in contact are modified by the amount 
of overlap, and therefore are adjacent in the Voronoi tesselation, leading to them being 
connected by a Delaunay edge. This property therefore breaks down if one considers 
highly stressed states with more than two disks in overlap.

It is easy to show that for bidispersed systems with particle radii σA and σB with 
/σ σ < +1 2A B , as → +E 0G  the global Delaunay triangulation coincides with the union 

of Delaunay triangulations of minimum cycles. This is true for the bidispersed case 
with diameter ratio 1 : 1.4 that we simulate. In the case of highly polydisperse systems 
the global Delaunay triangulation is no longer the best choice, however our construc-
tion using the union of minimum cycles still holds. To deal with such cases several 
generalizations of Voronoi tesselations have been proposed in the literature, the best 
studied of which is the radical Voronoi tesselation [60]. Using this construction, the 
argument for the monodispersed case can easily be generalized to systems with varying 
sizes of disks.

5. Network properties

The polygonal graph and the triangulation graph are both representations of the same 
underlying system. However, they have different properties. We list some of the proper-
ties for each graph below.

5.1. Polygonal graph

 • The grain polygons and void polygons form a bipartite graph, i.e. voids are con-
nected to only grains through their edges, and vice versa. This can also be stated 
alternatively as the adjacency graph of grains and voids forms a bipartite network. 
For the hexagonal close packed structure this adjacency graph is simply the dice 
lattice.

 • The network is space filling, i.e.
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+ =A A 1,G V (9)

  where AG and AV are the total areas associated with the grain polygons = ∑A aG g g 
and the void polygons = ∑A aV v v respectively. This property differs crucially 
from other measures of packing fraction used in the literature, that include the 
excess volumes of overlaps between disks.

 • Every node has exactly four neighbours (z  =  4). Every contact has two incoming 
edges and two outgoing edges since each contact belongs to two grains.

 • The network is planar, i.e. none of the edges formed by the contact vectors cross 
each other. This property allows us to use Euler’s theorem to understand the 
properties of the graph.

5.2. Triangulation graph

 • The contact network forms a subgraph of the triangulation graph. This is true by 
construction (see section 4.4).

 • The network is planar, i.e. none of the network vectors cross each other. This 
property follows directly from the fact that we only consider two-disk overlaps as 
valid and the properties of the Delaunay triangulation [54].

 • Triangulation Property: Every triangulation has the following general property 
[54]: Let P be a set of n points in the plane, not all collinear, and let k denote 
the number of points in P that lie on the boundary of the convex hull of P. Then 
any triangulation of P has: 2n  −  2  −  k triangles and 3n  −  3  −  k edges. We will use 
these properties to construct conservation laws in section 5.3.

5.3. Conservation laws

We next consider the intersection of the polygonal and triangulation graphs. In doing 
so we can assign distinct regions of the triangulation graph to regions of the polygonal 
graph. The grain distances can be uniquely associated with the grain polygons as each 
of these vectors lies completely within two grain polygons in contact. The question of 
assigning fictitious contact vectors uniquely to regions of the polygonal graph is more 
subtle. We show below that these fictitious contact vectors can be uniquely associated 
with the voids.

To do so we derive local conservation laws associated with every void polygon. The 
semi-circle condition stated in section 4.2 necessitates that the centre of each disk lie 
within its grain polygon. We can then introduce a topological winding number for every 
grain polygon, defined as

( )
( )
∑π θ θ= −

′
′w

1

2
,g

c c
g c g c

,
, , (10)
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where the sum ( )′c c,  is taken cyclically around every grain. The semi-circle condition 
can then be stated alternatively as: the winding number of each grain polygon is equal 
to 1. This property breaks down for frictional packings since contacts on a single side 
of a disk can be stabilized by tangential forces. The winding numbers therefore add 
discrete structural degrees of freedom to frictional systems.

Next, since the enclosing minimum cycle for every void is convex and because the 
distance vectors and the fictitious contacts within each cycle together form a triangula-
tion, the remaining triangulation vectors within this circuit must be fictitious contacts, 
traversing through the void polygon. We therefore associate these fictitious contacts 
with the void polygon. This association is unique as every fictitious contact has a single 
corresponding void polygon. Then using the general property of triangulation, and 
since the contacts making up the void all lie on the convex hull of the void, we arrive 
at the following local conservation law for every void polygon:

= −n z 3,f v (11)
where nf is the number of fictitious contacts associated with every void polygon. 
Similarly we can associate all the triangles formed by the fictitious contacts within the 
convex hull uniquely to each void. Once again following the circuit of distance vectors 
enclosing the void polygon and using the general triangulation condition, leads to

= −n z 2,t v (12)
where nt is the number of triangles associated uniquely with every void polygon.

As a check, we can sum these local properties over the entire system to yield the 
Euler conditions. For the toroidal boundary conditions we consider in this paper, the 
Euler characteristic is χ = 0. The Euler conditions for the polygonal and triangulation 
graphs are summarized in table 1. Summing equation (11) leads to

( ) ( )∑= −
=

∞
N z n z3 ,F

z
v v v

3v

 (13)

where NF is the total number of fictitious contacts, and ( )n zv v  is the number of void 
polygons with zv sides in a given configuration. In the above summation we have dis-
regarded all voids with zv  <  3. This can occur if a disk has only two contacts, leading 
to the contacts being connected by a single void with a vanishing area, i.e. exact align-
ment of forces. This is atypical in a general packing and disfavoured entropically, we 
do not consider such packings as valid in our analysis. Since ( )∑ =z n z Nv v v C (the total 
number of contacts), we have

= −N N N3 .F C V (14)
The Euler condition for the triangulation graph yields (see table 1)

+ =N N N2 6 .F C G (15)
This property was also derived for the monodisperse case in [58]. Using equations (14) 
and (15) leads to

= −N N N2 .F G V (16)
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Equations (14) and (16) together yield the Euler condition for the polygonal graph 
= +N N N2 2C G V . Dividing this Euler condition by 2NC gives the duality relation for the 

average connectivities of the grain and void polygons

⟨ ⟩ ⟨ ⟩
+ =

z z

1 1 1

2
.

g v
 (17)

Finally, summing the triangle conservation law in equation (12) over the entire system 
yields the total number of triangles NT as

= −N N N2 ,C VT (18)
which when combined with the Euler condition for the polygonal graph, yields the Euler 
condition for the triangulation graph. Conservation laws such as the one derived in this 
section could prove useful in building microscopic models for frictionless networks.

5.4. Coordination and isostaticity

Since the number of fictitious contacts is a strictly positive quantity, this can be 
used to construct bounds on the total number of voids and contacts in the system. 
Equation (14) leads to the trivial bound on the average void coordination of marginally 
overlapping disks, ⟨ ⟩ ⩾z 3v . Equation (16) leads to the non-trivial bound

⩽N N2 .V G (19)
Once again imposing strict positivity on NF from equation (15) we arrive at

⟨ ⟩ ⩽z 6.g (20)
The two conservation laws equations (14) and (16) are saturated when NF  =  0, leading to 

=N N2V G and =N N3C V and consequently to ⟨ ⟩ =z 6g  for toroidal boundary conditions. An 
important consequence of the local conservation law is that since ⩾n 0f , this requires that 
every void is exactly zv  =  3 when this bound is saturated. This is true for the hexagonally 
close packed structure. We also note that this bound is independent of polydispersity, since 
the only conditions we imposed on the packing was frictionless force balance. This agrees 
with previous bounds on maximum coordination numbers for disk packings [28].

Table 1. Properties of the polygonal and triangulation graphs.

Polygonal graph Triangulation graph

V NC/2 NG
E NC N N2C F/ +
F N NG V+ N N2 GT =
Euler N N N2C G V/ = + N N N2 3C G F/ = −

Note: V, E and F refer to the number of vertices, edges and faces respectively. The 
planarity of these graphs ensures that they obey the Euler identity: V E F χ− + = , where 
χ refers to the Euler characteristic of the embedding plane. For the toroidal boundary 
conditions that we consider, 0χ = . The Euler identity for the triangulation graph can 
be used to compute the total number of fictitious contacts in the system using the 
triangulation condition =N N2 GT .
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The next question we address is the lowest coordination available to the system. 

It has been noticed in several studies that marginally jammed packings ( → +E 0G ) are 
exactly isostatic [40, 42]. This can be argued from the fact that there are no special con-
servation laws for the forces, however a sound theoretical argument for this statement is 
still missing. The standard isostaticity argument for frictionless systems can be summa-
rized as follows: the basic degrees of freedom in the system are the forces that determine 
whether a system is rigid, i.e. force balanced. These vector forces can be decomposed 
into two scalar components fN and f T, the normal and tangential components at each 
contact respectively. For frictionless systems =f 0T  identically at every contact. Since 
each force is uniquely associated with a contact, the total number of contact forces in 
the system is equal to the total number of contacts NC. Next, since Newton’s third law 
has to be satisfied at each contact, this reduces the total number of free variables by a 
factor of 2, and hence the number of degrees of freedom /=N N 2Cdof . The constraints of 
force balance are determined at every grain, these are vector constraints at each grain, 
yielding the total number of constraints = ×N N dGconstraints , where d is the dimension 
of system. At isostaticity, the number of degrees of freedom exactly matches the num-
ber of constraints, and hence ⟨ ⟩ =z d2g . This argument, although correct, requires an 
implicit knowledge of the angles of the forces in order to move from the scalar variable 
fN to the vector contraints at each grain. It also invokes constraints in real space to 
impose constraints on the forces [62]. In addition, since this is essentially a mean field 
analysis, the argument ignores loop constraints [63]. This argument also fails to predict 
isostatic values for systems with other types of convex particles. An interesting aspect 
of isostaticity is that it is independent of the force law for frictionless disks and spheres, 
hinting at a more basic geometric origin of the isostatic condition.

We can construct an isostaticity argument for frictionless disk packings using only 
the spatial degrees of freedom from the polygonal graph as follows. At EG  =  0 the dis-
tances between the contacts and the centres of the disks are completely determined. 
Therefore the independent degrees of freedom in the system are the angles of each 
contact vector. For disk packings, the contact angles for a contact between disks g and 
′g  are related by

θ π θ= − ′2 .g c g c, , (21)
Using the above condition and accounting for one global rotational degree of freedom 
gives us the total degrees of freedom of the system

= −N
N

2
1.C

dof (22)

Given the angles in the system, the edge lengths are completely determined by

( )
( )
σ θ θ
σ θ θ

≡ = −
≡ = −

′

′

ε ε

ε ε

cos cos ,

sin sin ,

v e
x

g e
x

g g c g c

v e
y

g e
y

g g c g c

, , , ,

, , , ,
 (23)

where the edges can be uniquely assigned to a grain →εg e,  or the corresponding void 
→εv e, . This mapping from angles to edge vectors is unique and invertible, i.e. given 
a configuration of edge vectors { }→εg e, , the contact angles { }θg c,  are completely deter-
mined. However, these degrees of freedom are not all independent. In order for the set 
of edge vectors to be a valid packing they must satisfy loop constraints within each 
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grain and void. The constraints for every grain, i.e. the edge vectors within each disk 
form a cyclic polygon, are automatically satisfied by equation (23). Next, we need to 
construct a set of independent constraint equations, such that a combination of any 
of these equations do not yield any of the others, that determine all the constraints in 
the system. For frictionless systems, these equations can be easily seen to be the loop 
constraints for every void polygon

v

v

0 for every void polygon ,

0 for every void polygon .
e

v e
x

e
v e
y

,

,

       

       

∑

∑

=

=

ε

ε (24)

It should be noted that these equations represent all the spatial constraints in the sys-
tem, since larger loop constraints can be built by summing the constraints of the indi-
vidual void polygons enclosed by such a loop. Such sets of constraint equations have 
been recognized in the literature [53, 55, 56] and were recently used to determine forces 
from the positions of jammed packings of soft disks [64]. Clearly each of these loop 
constraints is independent of the others, since each void polygon has distinct edges. In 
this respect, this is an ‘entropic’ argument, i.e. we demand that the void polygons do 
not possess special conservation laws amongst themselves that renders some constraints 
unnecessary. We expect this to be true for states prepared by an unbiased sampling 
of all available solutions of equation (3). Hence the total number of independent con-
straints is

=N N2 .Vconstraints (25)
For the packing to be valid, it should satisfy all possible geometric constraints. This 
occurs if and only if ⩾N Ndof constraints. Using equations (22) and (25), we arrive at the 
Maxwell criterion

⩾ +N N4 2.C V (26)
Next, using the Euler condition for the polygonal graph, we arrive at the lower bound 
on the number of voids in the system

⩾ −N N 1,V G (27)
which combined with equation (16) leads to a bound on the total number of fictitious 
contacts in the system

⩾+N N1 .G F (28)
At isostaticity, these bounds are saturated, leading to the value for the isostatic coor-
dination number

⟨ ⟩ = −z
N

4
2

.g
G

iso (29)

Another derivation of the above isostatic condition can be arrived at by consider-
ing the triangulation graph of the packings. The fictitious contacts provide the missing 
equations needed to determine the positions of the grains, and in turn the contacts, 
completely. This can be parametrized in terms of the angles of the triangulation, given 
the position of a single disk, the angles of the triangulation completely determine the 
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positions. In this case the undetermined quantities are the ‘ficititious angles’ that are 
formed between the grain distance and fictitious vectors, and between two fictitious 
vectors. Using the local condition for the number of triangles and the fact that the 
number of determined contact angles for each void is zv, we find the undetermined 
angles belonging to each void is equal to 2zv  −  6. Summing over the entire system, and 
this time accounting for a global translational degree of freedom leads to

= − −N N N2 6 2.C Vdof (30)
All the constraints in the system can then be derived from the constraints on each of 
the basic triangular units. For example, every loop constraint can be obtained by sum-
ming the triangle constraints in the interior of the loop. Therefore

=N N .constraints T (31)
We can then use the number of triangles from equation (18), and the criterion 

⩾N Ndof constraints to obtain the bound on the number of undetermined angles, leading 
directly to equation (26).

6. Distribution functions

We next perform simulations in order to generate contact networks of jammed friction-
less disks close to the transition. We then use these configurations to study distribu-
tion functions of the underlying geometrical degrees of freedom such as contact angles, 
lengths of triangulation vectors, and the areas of the grain and void polygons.

6.1. Simulation protocol

As the protocol dependence of jamming is well-known [11, 16, 18, 49, 68, 69] care must 
be taken in producing configurations. The configurations we study are produced using 
a variant of the O’Hern protocol that effectively samples all available energy minima 
in an unbiased manner [40, 42]. We use periodic boundary conditions in both direc-
tions, the configurations are in a box size 1 (i.e. = =L L 1x y ). The protocol to generate 
a packing is as follows:

 (1) We randomly place grains (circular disks) in the box,

 (2) We then minimize the potential energy in equation (2) using non-linear 
conjugate-gradient,

 (3) Once an energy minimum to within a desired tolerance (10−16 in our case) is 
reached, we change the grain size.

Steps (2) and (3) are repeated until a packing is found. The grain size is changed as 
follows: after energy minimization the configuration has an energy per particle EG. The 
grains are grown if <E EG min, and shrunk if >E EG max, where Emin and Emax represent 
a tolerance window for our marginally jammed configurations. We shrink or grow the 
particles according to a parameter ∆ > 0 as
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/( ) ( )σ σ σ= + ∆ + ∆1 or 1 .g g g (32)

The disks are grown or shrunk until the un-minimized energy of the packing falls 
outside the tolerance window. We reduce the step size ∆ by half after every step of 
energy minimization. Our marginally jammed configurations have energies per particle 
between × −1 10 16 and × −1.1 10 16.

6.2. Energy ensemble

An important open question in the field of granular materials is that of ensembles. 
In the usual statistical mechanics framework one takes a simple weighted sum of all 
available states of the system, with a weight chosen using an energy functional and the 
temperature. In the case of granular materials, the system is inherrently ‘athermal’, i.e. 
there is a very weak dependence of the properties of the system with temperature. The 
natural question then becomes, how does one group the configurations for an athermal 
system? There are several proposed methods of generalizing ensembles to granular sys-
tems including grouping by the total stress, the configurational entropy and also using 
real space volumes [45, 65–67].

For soft disks if one focusses solely on the ensemble of jammed states, as we are 
doing, the energy of the system represents a continuously tunable parameter close to 
the transition. In this sense we approach the transition only from stressed states with 
well defined energies and all states below the transition are absent from our ensemble. 
There is evidence that grouping configurations by the energy of configurations does 
indeed yield accurate statistical results [45, 46]. We define configurational averages of 
system properties in the microcanonical ensemble as

⟨ ( )⟩ ( ( ) ) ( )
( ( ) )

δ
δ

= ∑ Ω − Ω
∑ Ω −
Ω

Ω
x E

E E x

E E
,G

G

G
 (33)

where Ω refers to an individual configuration, ( )Ωx  represents the value of a system 
property for the configuration, ( )ΩE  refers to the energy of the configuration and the 
summation is taken over all configurations Ω. In practice, since obtaining statistics for 
large system sizes is computationally intensive, we allow for a finite energy width in 
our samples of [ ]E E, 2G G . We have tested that this does not significantly change the 
statistics. Similarly we can define distribution functions

( ) ⟨ ( ( ))⟩δ= − ΩP x x x ,EG (34)
where the angular brackets represent configurational averages as in equation (33). The 
moments of system quantities can then be computed as

⟨ ( )⟩ ( )∫=x E x P x xd .n
G

n
EG (35)

We perform simulations on bidispersed systems with a ratio of grain diameters 
1 : 1.4 (referred to as type-A and B respectively). We simulate systems with an equal 
number of disks of type-A and type-B. We use bidispersed disks to avoid crystalliza-
tion as we are interested in the disordered structures that arise near the transition. The 
diameter ratio 1 : 1.4 ensures incommensurability within numerical error, upto the sizes 
that we measure and has been well studied in the literature [40]. We measure various 
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properties of the networks formed by the disks in order to characterise their spatial 
structure near the jamming transition.

6.3. Self averaging quantities

The structural properties of jammed systems displays randomness that arises from the 
constraint satisfaction of a large number of degrees of freedom (equation (3)). This is 
very similar to properties of structural randomness arising from quenched disorder in 
glassy systems [24]. In order to assign microscopic degrees of freedom to the jammed 
packings it becomes relevant to test which quantities in the system display self averag-
ing properties, i.e. any physical property x of the system, such that

⟨ ⟩
⟨ ⟩

→     → ∞Ω
Ω

x

x
N1 as ,

n

n (36)

where ⟨⟩Ω represents an average over a single configuration Ω of size ΩN  and ⟨⟩ represents 
an average over all configurations. In practice, averages up to the second moment are 
good enough to test this behaviour as the central limit theorem becomes valid. Such 
an ensemble can then be completely described by a single large system, and one can 
define reproducible distribution functions as in equation (34). Such quantities can then 
be used to construct extensive variables that can be described by microscopic theories. 
We find that the distributions of contact angles, lengths of contact vectors, the areas 
of grain and void polygons and consequently the total covered area, displays self aver-
aging behaviour. This is indicative of only short-range order close to the unjamming 
transition. Self averaging behaviour can be destroyed by long range correlations, and 
therefore it is necessary to test under what circumstances such behaviour is valid. In 
section 9 we test the length scales up to which real space correlations persist in such 
packings.

6.4. Contact vectors and contact angles

We first investigate the distribution of contact angles that form in the packings of bidis-
persed disks close to the unjamming transition. We measure the distribution of relative 
angles θ θ θ= −′g c g c, , , where c and ′c  are chosen cyclically within each grain. This quantity 
has been well-studied in the literature [41]. In figure 3 we plot the distribution ( )θP sin , 
measured in packings of NG  =  2048 disks at different energies. Also plotted alongside is 

a distribution of completely random relative angles ( )θ =
π θ−

P sin 2 1

1 sin2
. We find that 

the relative contact angles display a random behaviour except at well-defined points 
that we can identify as ordered structures. We discuss these structures, and specifically 
those formed by three disks in contact in detail in section 8. For the diameter ratio 
1 : 1.4, the peaks can be shown to occur at θ = 1.245 65, 1.141 02, 1.0472, 0.947 97 and 
0.859 551.

We next measure the distribution of the lengths of the contact vectors formed 
in the packings. In order to account for the changes in grain radii between different 
configurations we normalize the length of the contact vectors by the radius of the grain 
to which they belong as /σ= | |→r rg c g, . In the case of linear spring potentials as we are 
studying, this distribution is equivalent to measuring the distribution of forces in the 
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system. This can be seen by taking a first derivative of equation (1) with respect to the 
distance vector →

′rg g, . Since the sum of squares of these individual forces is equal to the 

total energy in the system it is natural to normalize the contact vector lengths by EG. 
In figure 3 we plot the distribution of ( )/− r E1 G. We find that the lengths of contact 
vectors scaled with this factor displays the well-studied force distribution curve. This 
distribution increases as a power law at small lengths ( ) ∼P x x0.17 as →x 0 similar to 
those observed in [48], and falls with the well-known exponential decay ( ) ( )∼ −P x xexp  
as → ∞x .

6.5. Connectivity

The next question we address is the connectivities of the grain and void polygons that 
we investigated in section 5.4. Although the isostaticity condition predicts the average 
values of the grain and void connectivities, the question of their distributions is non-
trivial. It has been noted in several studies that ⟨ ⟩zg  attains its exact isostatic value for 
marginal states. In addition, recent studies have found that individual sections of mar-
ginal states are locally isostatic [61]. This suggests that one can define connectivities of 
the network at the local level. To test this we measure the distributions of connectivities 
of the grains and also of the voids near the unjamming transition. We find that these 
distributions do indeed display self averaging behaviour. Since the connectivity graphs 
for grains and voids are dual to each other, their average connectivities are related by 

the duality relation ⟨ ⟩ ⟨ ⟩+ = 2
z z

1 1

g v
 (equation (17)). Close to the unjamming transition 

the average connectivities approach their isostatic values ⟨ ⟩ ⟨ ⟩ →=z z 4g v . We plot these 
distribution functions in figure 4. The connectivity of each grain is limited by geo-
metrical constraints. Using the allowed angles between contact vectors, the maximum 
allowed connectivity of a grain can be computed as ⩽ ⌊ / ⌋π θ =z 2 7g min . In contrast, the 

Figure 3. (Left) Distribution of relative contact angles g c g c, ,θ θ θ= −′ . These 
relative contact angles display random behaviour except at well-defined points that 
corresponds to ordered structures formed by three of more disks in contact. The 
five most prominent peaks can be identified as arising from three disks in contact. 
(Right) Distribution of lengths of contact vectors measured in packings with 

NG  =  2048 at different energies. The plot shows the distribution of r E1 G( )/− , 

where r rg c g, /σ= | |→ . This distribution displays the well-studied force distribution 
curve [48].
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connectivities of the voids are unconstrained. We find that the distribution of void con-
nectivities exhibits an exponentially decaying behaviour as → +E 0G  (see figure 4).

7. Grain area

In this section we focus on the total area occupied by the grain polygons. We measure 
statistical properties of these areas and provide evidence that this polygonal mea-
sure can be used as a reliable jamming parameter in a manner similar to the packing 
fraction.

7.1. Grain area as a reliable jamming parameter

One of the fundamental problems in the field of granular materials is the reliable 
definition of packing fractions as a measure of occupied volumes or areas. The standard 

way of computing packing fractions for soft particles φ πσ= ∑g g
2 involves the summa-

tion of volumes of undistorted particles. At high energies this overestimates the true 
covered fraction of area as overlaps are also included. Another deficiency of standard 
packing fractions is the treatment of rattlers that are not part of the contact network 
and therefore do not contribute to the stability of the network. In order to get reli-
able estimates of exponents from packing fractions, the areas of rattlers need to be 
included in φ. Such rattlers are naturally absent from the polygonal measure. Another 
issue with packing fractions becomes clear when one tries to probe local properties. It 
becomes harder to define such properties at the local level. Although Voronoi volumes 
have been considered in the literature for a long time, they fail to provide information 
about important quantities such as porosity [29]. The grain area differs crucially from 
the measure of Voronoi volumes as it allows us to measure the partitioning of space 

Figure 4. (Left) Distribution of the connectivities of the grains. The overlap 
constraints limit z 7g ⩽  for the ratio of grain diameters 1 : 1.4 and the energies 
that we consider. (Right) Distribution of the connectivities of the voids. The 
connectivities of the voids are unconstrained, however we find an exponential 
behaviour for large zv as E 0G → . Since the connectivity graphs for grains and voids 
are dual to each other, their average connectivities are related by the duality 

relation 
z z

1 1 1

2g v⟨ ⟩ ⟨ ⟩+ = .
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into grain and void sections, thereby allowing us to probe the structural properties that 
cause jamming. If one aims to construct a density based order parameter for the trans-
ition, the following properties should be satisfied: the sum of local order parameters 
should provide the global order parameter and it should scale with system size. It is 
easy to see that the first non-trivial parameter that one can construct using the local 
variables that satisfies the above properties is the grain area. In our case AG also serves 
as the area-fraction since the total space area is 1 ( = =L L 1x y ).

A primary quantity of interest in the polygonal representation is then the total 
area occupied by the grain polygons in jammed packings and in particular, near the 
unjamming transition. The total fraction of area occupied by the circular areas of 
disks at the transition is well known to be φ ≈ 0.84J  [40], which is relatively close to 
the hexagonal ordered structure /φ π= ≈12 0.9069. In contrast, we find that the 
‘reduced’ area defined by the polygonal construction for packings near the transition 
differs significantly from the reduced area of the close packed structure. In order to 
characterise these grain areas we measure P(AG), the probability of finding a packing 
with total covered area AG in the ensemble. We measure this distribution for packings 
created with different numbers of grains at varying energies near the unjamming trans-
ition. In figure 5 we plot the measured distributions of P(AG) for systems with increas-
ing densities of particles at the lowest measured energy. We find that this probability 
distribution does indeed get sharper as the density of grains is increased. We find that 
for the highest densities we have measured, the width of these distributions scales as 
/ N1 G, indicating that we can attribute local areas to such packings. We also find that 

this area varies in a well defined manner with energy (plotted in figure 5), allowing us 
to use it as a parameter to study the transition as → +E 0G , and also at higher energies.

7.2. Critical exponents and finite size scaling

We next use the total grain area to study critical exponents of the unjamming trans-
ition. We test the scaling behaviour of the total grain area with two parameters that 
acquire well defined values at the unjamming transition, namely the energy per grain 

→ +E 0G  and the excess coordination ⟨ ⟩ ⟨ ⟩ →∆ = − +Z z z 0g g iso . The unjamming trans-
ition is located precisely at EG  =  0, and at ∆ =Z 0. The value of ⟨ ⟩zg iso was derived in 
equation (29). We can therefore use the deviations from these two values to test the 
scaling of the total area AG. Since the polygonal measure is only sensitive to structural 
changes in the configurations (a simple expansion or contraction of all disks is given the 
same weight), it is interesting to see whether we can measure exponents that provide 
information about the geometric structure of the packings. We find that this is indeed 
the case, and that critical exponents measured from grain areas differ from those mea-
sured using standard packing fractions.

As the unjamming transition is approached from above → +E 0G , fewer disks are 
in contact, leading to a decrease in the total grain area. We plot the distributions of 
the area for different energies for NG  =  512 disks in figure 5. For higher densities, for 
example with NG  =  8192, we find ≈A 0.482G  for = −E 10G

5, ≈A 0.448G  for = −E 10G
10 

and ≈A 0.446G  for = −E 10G
15. It is then interesting to ask at what covered fraction 

of total area the transition occurs. In order to estimate this quantity, as is standard 
in the study of phase transitions, we use finite-size extrapolation. We first estimate 
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the transition point for a given system size (number of disks) as → +E 0G , and then 
extrapolate to → ∞NG . We can estimate these critical points using both EG and ∆Z . 
The locations of these points for different system sizes is summarized in table 2. We 
find that the finite size effects scale as 1/NG with the system size. Using these values, 
and accounting for statistical sampling error, we find

→ ( )    →     →= ∞∗ +A A E N0.446 1 as 0 and .G G G G (37)
∗AG therefore defines a new real-space parameter for the unjamming transition. We note 

that the polygonal construction produces AG  =  3/4 for the hexagonal ordered struc-
ture, with the value 0.446 significantly different from this number as compared to the 
closeness of the values in the packing fraction measure.

We next use the deviation of the total grain area from its value at the unjamming 
point ∆ = − ∗A A AG G G to test the scaling behaviour with our two control parameters 
EG and ∆Z . We define two scaling exponents βE and βZ that quantify this behaviour

( )
( )

∆ ∼
∆ ∼ ∆

β

β
A E

A Z

,

.
G G

G

E

Z
 (38)

In figure 6 we plot the scaling of ∆AG with total energy per particle EG. We find that 
the excess grain area scales as a power of the total energy in the system with expo-
nent ( )β = 0.28 2E . The estimates of βE from finite size extrapolation are summarized in 
table 2. This value of βE is in contrast with the known scaling of the packing fraction 
which displays an exponent  ≈0.5 [40]. This is a surprising feature of the polygonal 
measure, in that even though it measures the occupied area similar to the packing frac-
tion, it has different scaling properties close to the transition. We next test the scal-
ing of the total grain area with excess coordination near the transition. In figure 6 we 
plot the scaling of ∆AG with ∆Z . We find that the excess grain area scales as a power 

Figure 5. (Left) Distribution of the total area covered by the grain polygons AG 
in the packings of bidisperse grains at the lowest measured energy E 10G

15= − . The 
continuous curves represent the best-fit Gaussians associated with the distributions. 
As the number of grains is increased the width of the distribution decreases. Using 
finite-size scaling fits we find is A 0.446 1G ( )=∗  as NG → ∞ and E 0G → + (see table 2). 
(Right) Behaviour of the grain area distributions for different energies E 10G

15= −  
to 10−3 for packings of NG  =  512 disks. We find that the grain areas serve as 
reliable parameters with which to measure system properties at these energies.
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of ∆Z with exponent ( )β = 1.00 1Z . Once again this is in contrast with the scaling of 
packing fractions which displays an exponent  ≈2.0 [40]. Estimates of βZ from finite size 
extrapolation are summarized in table 2. The linear scaling of ∆AG with ∆Z suggests 
an assignment of individual areas to the contacts which can serve as a microscopic 
order parameter. We find that the edge triangles defined in section 4 serve as precisely 
such variables. We measure the statistics of these edge triangles and other geometrical 
characteristics of the underlying packings in section 8.

8. Measures of order

In this section we characterize the types of polygonal tilings that emerge in the packing 
of disks near the marginally jammed state. The area statistics of the individual grain 
polygons and the void polygons provide useful insight into the structural randomness 
present at the microscopic scale.

Table 2. Finite size scaling estimates for the transition point and scaling exponents 
using systems with varying number of disks NG.

NG A E 0G G( )=∗
Eβ A Z 0G( )∆ =∗

Zβ

128 0.4416(2) 0.299(3) 0.4424(2) 1.02(2)
256 0.4423(2) 0.286(3) 0.4431(2) 1.01(2)
512 0.4446(2) 0.285(3) 0.4448(2) 1.001(2)
1024 0.4454(2) 0.284(3) 0.4453(2) 1.001(2)
2048 0.4458(2) 0.284(3) 0.4458(2) 1.001(2)
4096 0.4461(2) 0.284(3) 0.4460(2) 1.001(2)
8192 0.4461(4) 0.284(4) 0.4460(3) 1.001(3)

Note: We can estimate the unjamming point ( ∗AG) from both → +E 0G  (left), and 

〈 〉 〈 〉∆ = − → +Z z z 0g g iso  (right). Using finite size scaling and accounting for statistical 
sampling error, we find ( )=∗A 0.446 1G , 0.28 2E ( )β =  and ( )β = 1.00 1Z .

Figure 6. (Left) Scaling of the excess grain area A A AG G G∆ = − ∗  with total energy 
per particle EG. We find that the excess grain area scales as a power of the total 
energy in the system with exponent 0.28 2E ( )β = . (Right) Scaling of AG∆  with 
excess coordination in the system Z∆ . We find that the excess grain area scales as 
a power of Z∆  with exponent 1.00 1Z ( )β = .

http://dx.doi.org/10.1088/1742-5468/2016/11/114002


Disordered contact networks in jammed packings of frictionless disks

24doi:10.1088/1742-5468/2016/11/114002

J. S
tat. M

ech. (2016) 114002
8.1. Edge triangles

One quantity that can be used to measure local disorder is the shape of the grain poly-
gons formed by the jammed packings. In order to characterize the shape of these grain 
polygons, we measure the areas of their constituent edge triangles introduced in sec-
tion 4. At exactly EG  =  0, the distribution of areas of edge triangles is directly related 
to the distribution of contact angles. At finite energies these differ as the edge triangles 
also includes the effect of overlaps between grains. The areas of the individual triangles 

can vary between 0 and σg1

2
2 where σg is the radius of the grain to which they belong 

(see figure 2). We note that { }σg  can vary between different configurations chosen with 
the same energy EG. In order to account for the different sizes between configurations, 
we measure the following normalized area /α σ= ae g e g,

2. This can take values between 0 

and 1

2
. The minimum value is not attained in ordinary packings at low compressions, 

however we can obtain good statistics of these triangular areas close to the maximum, 
corresponding to disks with contact angles close to /θ θ π− =′ 2g c g c, , . We plot the dis-
tribution of edge triangle areas ( )αP e  for a system with NG  =  2048 disks at different 
energies in figure 8. We find that this distribution displays self averaging behaviour and 
reaches a limiting form as the system size is increased. This is significant since it is then 
possible to distribute the total grain area AG into the ‘local’ areas of edge triangles. The 
edge triangles therefore serve as reliable local jamming parameters that can be used to 
construct microscopic theories.

We next focus on the well-defined peaks in the distribution of edge triangle 
areas. We find that these peaks become sharper as the transition is approached. 
These peaks can be identified as arising from ordered structures formed by three, 
four and higher numbers of disks in contact. The first five peaks in the distribu-
tion of αe can be identified as arising from three disks in contact. These arise from 
combinations of type-A and type-B disks, namely ( ) ( )≡A AA B BB , A(AB), B(AB), 
A(BB) and B(AA), where the brackets represent disks in contact with the unbrack-
eted disk, to which the edge belongs. At the marginally jammed state (with zero 
overlap), the distances between the disks in contact can take only unique values (see 
figure 7) leading to unique values of the angles and consequently the areas which can 
be computed exactly. For the ratio of diameters 1 : 1.4 these are ( ) ( )α α= =e

A AA
e
B BB

3 4 0.433 013, 0.406 116, 0.454 53, 0.378 775e
A AB

e
B AB

e
A BB/ ( ) ( ) ( )α α α= = = =  and e

B AA( )α =  

0.473 803.
We can quantify the amount of order present in the packing by measuring the area 

under these ordered peaks. We study this in detail in section 8.3. The disordered parts 
of the edge triangle areas, namely the areas not under any ordered peaks, exhibit charac-
teristics similar to those of the contact angles (see figure 3). This can be understood from 
the fact that the areas of the edge triangles are built from the underlying contact vectors 
and contact angles and that at low energies the contact vectors take well defined values.

8.2. Void areas

Another quantity that can be used to measure disorder at the microscopic scale are 
the voids that are formed in jammed packings. In order to characterise the spatial 
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structure of these voids, we measure the distribution of the areas of individual void 
polygons (av). In this respect, our polygonal construction has an advantage over previ-
ous measures of spatial anisotropy, since we can identify well defined sections of space 
that belong to voids alone. In order to account for the different sizes of the grains 
and changes in grain diameters for different configurations, we measure the follow-
ing normalized void areas /α σ= av v A

2, where σA is the radius of grains of type-A (the 
larger of the two) in a given configuration. We find that even though { }σg  varies for 
different configurations and also for different energies, the distribution of αv is repro-
ducible and also displays self averaging properties. In figure 8 we plot the distribu-
tion of these normalized void polygon areas ( )αP v  for a system of NG  =  2048 grains at 
three different energies = − −E 10 , 10G

5 10 and 10−15 approaching the marginally jammed 
state. As with the distribution of edge triangles, we find well defined ordered peaks 
that persist even as we approach the marginally jammed state. The first four peaks 
in this distribution can be identified as arising from triangular voids (zv  =  3) that 
arise from three-disk ordered structures. These four peaks arise from the four possible 
combination of type-A and type-B disks in the bidispersed system, namely (AAA), 
(AAB), (ABB), and (BBB). At the marginally jammed state with zero overlaps, the 
distances between the disks in contact can take only unique values (see figure 7) 
leading to a unique values of the areas of these three sided void polygons. We can 

compute the positions of these peaks exactly. For the ratio of diameters 1 : 1.4 these 

are ( ) ( ) ( )α α α= = =0.433 013, 0.338 43, 0.270 553v
AAA

v
AAB

v
ABB , and ( )α = 0.220 925v

BBB . In 
states with larger energies, the finite overlaps between disks causes a broadening of 
these peaks. Although the value at which the peaks occur are easily understood, the 
question of how many of the voids in the system contribute to them is non-trivial. In 
this context, an interesting quantity to measure is the area under these four ordered 
peaks, we measure this in section 8.3. The disordered parts of the void polygon areas 
exhibits interesting modulations, which can be attributed to ordered structures formed 
by four or more disks in contact.

Figure 7. The four ordered structures arising from three disks in contact that 
can occur in bidispersed systems. This causes ordered peaks to appear in the 
distribution of edge triangle areas (white triangles). For the diameter ratio 1 : 1.4 

these peaks occur at a 0.473 803, 0.454 53, 0.433 013, 0.406 116e g e g,
2/α σ= =  and 

0.378 775 (see figure 8). These structures also cause peaks to appear in the areas 
of void polygons (blue triangles). For the diameter ratio 1 : 1.4 these peaks occur 
at a 0.433 013, 0.338 43, 0.270 553v v A

2/α σ= = , and 0.220 925 (see figure 8). The 
fraction of the system in these ordered structures gives us a measure of order in 
the system OΨ .
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8.3. Maximally random jammed states

The marginally jammed states of soft disks have exactly zero overlap and can therefore 
be mapped on to systems with infinitely hard interactions. Such packings of frictionless 
hard disks have been the subject of continued interest and have a rich history [25]. 
Hard disk packings generated from random protocols have recently been argued to be 
maximally random [50], i.e. they present the least amount of order amongst all pos-
sible states available to the system. A natural question to ask is then: how random are 
the states of frictionless soft disk packings as the unjamming transition is approached. 
Inversely we can study the amount of order present in these soft disk packings close 
to the marginally jammed state in order to understand the nature of such maximally 
random states.

A natural measure of disorder is the absence of the ordered structures formed by 
three disks in contact identified in sections 8.1 and 8.2. In section 6.5 we derived local 
conservation laws for the number of fictitious contacts, assigning them uniquely to the 
voids with ≠z 3v . We can then define a measure of disorder as simply the total number 
of fictitious contacts in the system, or alternatively as a density measure

      ∑ψ ψ= Ψ =
n

N
and ,

f

V v
DO DO DO (39)

where the disorder density ψDO is assigned to every void. The normalization ensures 
that ⩽ ⩽Ψ0 1DO  as → ∞NG  (see equations (27) and (28)). Numerically, this can be easily 
computed for a given packing using relations derived in section 5.4. As we have shown, 
the number of fictitious contacts attains its maximum value at isostaticity. Therefore in 

Figure 8. (Left) Distribution of areas of the edge triangles. The plot shows the 

distribution of ae g e g,
2/α σ=  for NG  =  2048 at different energies. 1 2e → /α  corresponds 

to disks with relative contact angles close to 2/π . We find well defined ordered 
peaks that can be used to estimate the amount of order in the system. The five 
largest peaks arise from ordered structures formed by three disks in contact (see 
figure 7). These ordered peaks get sharper as E 0G → +. (Right) Distribution of 
areas of void polygons av v A

2/α σ= , where Aσ  is the radius of grains of type-A in the 
given configuration. The plot shows P v( )α  for configurations of bidispersed grains 
with NG  =  2048 at different energies. We find four well-defined ordered peaks that 
correspond to three-disk ordered structures (see figure 7). The area under these 
ordered peaks can be used to estimate the fraction of order present in the system 

0.369 1O ( )Ψ ≈  as E 0G → +.
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this measure isostatic packings naturally have the largest amount of disorder Ψ = 1DO . 
Since we have also argued that marginally jammed packings that do not possess special 
conservation laws are isostatic, randomly created marginally jammed states are there-
fore the most disordered. Similarly the hexagonally close packed structure has the least 
amount of disorder Ψ = 0DO .

Another closely related measure of order is the fraction of the system under the 
ordered peaks in the microscopic distribution functions measured in sections 8.1 and 
8.2. In the simplest construction we only account for the ordered structures formed by 
three disks in contact in the system. This can be estimated from the amount of area 
under the five ordered peaks in the distribution of edge triangle areas or alternatively 
the four ordered peaks in the distribution of the void areas. This measure can be recog-
nized as simply the total number of voids with a coordination zv  =  3. We can therefore 
define a measure of order as

( ) ( )       ∑ψ ψ= = = = Ψ =n z

N
P z

3
3 , and ,O

v v

V
v O

v
O (40)

where nv is the number of voids with connectivity 3 in a packing with NV voids and 
P(zv) is the distribution of void connectivities studied in section 6.5. As the peaks 
sharpen, ΨO decreases, but remains finite even in the → +E 0G  limit. For example for 
configurations prepared with NG  =  8192 disks, at = −E 10G

5 we find Ψ ≈ 0.435O , at 
= −E 10G

10 we find Ψ ≈ 0.373O , and at = −E 10G
15 we find Ψ ≈ 0.369O . Using finite size 

scaling as in section 7, we find that

→ ( )    →     →Ψ Ψ = ∞∗ +E N0.369 1 as 0 and .O O G G (41)
We obtain a similar estimate from the limit ⟨ ⟩ → ⟨ ⟩z zg g iso. Once again, as for the excess 
grain area, we can study the behaviour of the excess order ∆Ψ = Ψ − Ψ∗

O O O as the energy 
of the system and the coordination number is increased. The scaling of the excess order 
with energy and ∆Z are shown in figure 9. We find that ∆ΨO displays non-trivial scal-
ing with energy and also with the excess coordination.

( )
( )

( )

( )
∆Ψ ∼
∆Ψ ∼ ∆

E

Z

,

.
O G

O

0.27 3

0.98 3 (42)

Intriguingly these are the same exponents as those for the scaling of the excess grain 
area. It would be very interesting to understand the origin of these scaling exponents 
in such disordered packings of soft disks.

9. Correlations

Although several probability distributions of local properties are reproducible and self 
averaging, this does not imply a completely uncorrelated behaviour on the microscopic 
level. Several constraints such as force balance and the tilings constraints for polygons 
can cause local structures to emerge in correlated patterns. Hence it is important to 
assess the length scale over which these correlations persist in the real space networks, 
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and specifically for the quantities that we have measured. In this section we compute 
network-based correlation functions that we use to assess the length scale up to which 
short range order persists in this system. We use these correlation functions to estimate 
the system sizes needed for self averaging behaviour to become valid.

9.1. Particle and contact density fluctuations

In order to test the correlations in the system we measure the radial distribution func-
tion ( )P rg

radial  defined as the probability that the centre of a disk ′g  is within the annulus 
r and r  +  dr centered around g, normalized by πr2 . Here we normalize the distances 
by the size of the grain from which it is measured /σ= ′r rg g g, , where ′rg g,  is the distance 
computed in the real space packing r r rg g g g, = | − |′ ′

→ → . This is equivalent to computing a 
two point radial correlation function. We find peaks at well-defined distances which 
we can attribute to the short-range order present in the underlying packings. We have 
tested that the scaling near the ordered peaks follows the / −r1 1 behaviour observed 
in previous studies [40, 42].

Similarly we can define ( )P rc
radial  as the probability that a contact ′c  is within the 

annulus r and r  +  dr centered around the contact c, normalized by πr2 . Once again we 
normalize the distances by the size of the grain to which the central contact belongs 

/σ= ′r rc c g, , where ′rc c,  is the distance computed in the real space packing = | − |′ ′
→ →r r rc c c c, . 

We use this distribution function to study the fluctuations in the number of contacts 
within a given radius of another contact. This is in effect a two point contact cor-
relation function. In figure 10 we plot ( )P rc

radial  for a packing of 1024 disks at varying 
energies. We notice that this radial contact distribution function exhibits periodic 
modulations that persist for  ∼10 grain diameters. This length scale is set by the under-
lying geometrical randomness and therefore has only a very weak dependence on the 
energy of the system. This can be explained from the fact that contacts are located on 
the vertices of tilings of void and grain polygons. Since the distribution functions of the 
areas of these polygons exhibit ordered peaks, this also implies ordered peaks in the the 

Figure 9. (Left) Scaling of the excess order in the system O∆Ψ  with total energy 
per particle EG. We find that the excess order scales as a power of the total energy 
in the system with exponent  ≈0.28(3). (Right) Scaling of the excess order O∆Ψ  with 
the excess coordination Z∆ . We find that the excess order scales as a power of Z∆  
in the system with exponent  ≈0.98(3).
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linear size of these polygons. Next, since the distances between contacts can be formed 
by traversing linearly through these polygons, this leads to ordered peaks in the contact 
correlations. Since these distances are drawn randomly from the underlying distribu-
tion functions, these correlations will be randomized after a ‘persistence length’, ξ ∼10 
grain diameters in this case. This length scale sets a scale for the system sizes above 
which we can expect self averaging behaviour to become valid. Since we keep the box 
length fixed, the linear size (number particles traversed along a linear axis) of the sys-

tem grows as NG. This suggests that the effect of these correlations can be neglected 
beyond systems with ( )ξ> ∼ON 10G

2 2 . This agrees with our finite size studies of the 
scaling behaviour near the unjamming transition.

9.2. Length of fictitious contacts

Finally, to understand the spatial correlations in the triangulation network, we measure 
the distribution of the lengths of fictitious contacts formed in the Delaunay triangula-
tion graph. This gives us valuable information about the spatial separation of the disks 
that are almost in contact. The Delaunay triangulation is a geometric spanner, i.e. the 

length r of the shortest path along Delaunay edges is known to be ⩽     ⩽⎡⎣ ⎤⎦π πmax r

r2

4

3 3e
, 

where re is the Euclidean distance between vertices [70]. This allows us to understand 
the long distance correlations in the system based simply on the distributions of the 
lengths of vectors in the triangulation. As we have shown, the number of fictitious 
contacts increases and attains its maximum value as the transition is approached. This 
points to the fact that the fictitious contacts play a crucial role in determining the sta-
bility of the jammed networks close to the unjamming transition. Another important 
property of the fictitious contacts is that they traverse the void polygons, as shown in 
section 5.3. Therefore the lengths of these vectors can be used to estimate the linear 
dimension of the voids. This is important in measuring quantities such as porosity, that 
has been of interest in the literature [29, 71, 72].

In order to understand the behaviour of the fictitious contacts near the transition, 
we measure the distribution function P(r) defined as the probability that two grains are 
separated by a Delaunay edge of length r. We account for the different sizes of the disks 

by normalizing the length of the triangulation vectors as /( )σ σ= | | + ′′
→r rg g g g,  where →

′rg g,  is 
the length of the triangulation vector between grains g and ′g  and σg and σ′g are the radii 
of the disks connected by the vector. Distances of r  >  1 correspond to fictitious contacts 
and r  <  1 correspond to real contacts. Since we have already studied the distribution of 
lengths of contact vectors in section 6.4, we focus on the r  >  1 part of this distribution. 
This differs from the standard pair correlation function [44] since this distribution func-
tion only measures nearest-neighbour distances on the Delaunay network. In figure 10 
we plot the distribution P(r  −  1) for two system sizes with = −E 10G

15, i.e. marginally 

jammed. We find a clear 
−r

1

1
 behaviour as →r 1, in agreement with previous studies of 

the pair correlation functions [44]. In this case as well, we find sharp peaks that we can 
identify as arising from the ordered structures formed by four disks in contact. Finally, 
we note that the sharp drop-off in the distribution at  ∼3 grain diameters sets the length 
scale for the linear size of the voids, independent of the system size.
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10. Discussion

In conclusion, we have introduced a network based framework for analysing spatial 
characteristics of jammed packings. The polygonal construction differs from the well-
known Voronoi measure of local volumes since it allows us to probe the internal struc-
ture of both grains and voids in jammed packings. We have found that the grain area 
serves as a reliable parameter with which to describe the unjamming transition. We 
found evidence for a well defined transition at an area fraction ( )=∗A 0.446 1G . The con-
struction of polygonal tilings allowed us to precisely study the scaling behaviour near 
the unjamming transition. We measured the scaling properties of this area and found 
that it displays non-trivial scaling with both the energy and excess coordination as 
the transition is approached. We found new structural critical exponents ( )β = 0.28 2E  
and ( )β = 1.00 1Z  that describe this scaling behaviour near the transition. We expect 
the critical exponent βE to display non-universal behaviour for different potentials 
while the microscopic assignment of areas to the contacts makes the exponent βZ 
universal. Our measured distribution functions revealed signatures of a finite order 
even in the marginally jammed state. We estimated this fraction of order using the 
amount of ordered structures formed by three disks in contact in the marginal state as 

( )Ψ =∗ 0.369 1O . We also found that the excess order in the system displays non-trivial 
scaling near the trans ition, attaining a minimum value in the marginal state. Another 
interesting aspect of our analysis is the observed deviation of these exponents from 
simple fractions, similar to those observed in recent experiments [73]. It would be very 
interesting to understand the origin of these non-trivial exponents in such systems.

Figure 10. (Left) The radial distribution function P rc
radial( ) for contacts, with 

r rc c g, /σ= ′  and r r rc c c c, = | − |′ ′
→ → . Here g refers to the grain to which the central 

contact belongs. This has been computed for a packing with NG  =  1024 at different 
energies. We find well defined density modulations that are detectable up to  ∼10 
grain diameters that has only a weak dependence on energy. (Right) Distribution 

of the length of fictitious contacts P(r  −  1), where /( )σ σ= | | + ′′
→r rg g g g,  and rg g,

→
′ is the 

length of the triangulation vector connecting grains g and g′ with radii gσ  and gσ′  
respectively. The plotted distribution is at the lowest measured energy E 10G

15= − . 

We find a clear 
r

1

1−
 behaviour as r 1→ . The drop off at  ∼3 grain diameters sets 

the length scale for the linear dimension of the voids, independent of the system 
size.
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A natural extension to this study would be to analyse the quantities studied in this 

paper at different values of polydispersity. Since packing fractions seem to display some 
degree of robustness to polydispersity near the transition, it would be interesting to test 
the sensitivity of the polygonal measure in this regard. It would also be interesting to 
extend our analysis to convex particles with non-circular shapes, which our construc-
tion can straightforwardly be extended to. Our network construction is able to clearly 
distinguish between frictionless and frictional systems. An interesting aspect for further 
investigation would then be to study the effect of friction on the statistics of these 
jammed networks. Many of our constructions can be generalized to higher dimensional 
systems which would be an intriguing avenue of further research. Finally, it would be 
very interesting to use the underlying distribution functions studied in this paper to 
construct microscopic theories that describe the scaling properties of such systems near 
the unjamming transition.
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