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main text.

DISTRIBUTION OF AREAS

In Fig. 1 we plot the distribution of the normalized areas α = ag,c/σ
2
g , obtained from numerical simulations, at

different energies EG. We simulate a system of bidispersed disks, which causes peaks to occur at five values of α
corresponding to the different possible combinations of disks within a zv = 3 (ordered) cycle (see ordered structures
section). The peak at α = 1/2 corresponds to the “disordered divergence” pDO(α) whereas the other five peaks
correspond to the “ordered divergences” (pO(α)). These peaks (pDO(α) and pO(α)) get sharper as EG → 0+ and are
infinitely sharp at the transition. The rest of the distribution represents the “regular part” preg(α) that does not have
a diverging energy dependence as EG → 0+.

TWO POINT DISTRIBUTION p(~r1, ~r2)

In this section we develop a diagrammatic expansion for the two point distributions of contact vectors p(~r1, ~r2).
From Eq. (10) in the main text we have

p(~r1, ~r2) = p(|~r1|)p(|~r2|)ρ(θ). (1)

along with
∫
d2~r2p(~r1, ~r2) = p(~r1) =

1

2π
p(|~r1|), (2)

where p(~r1) represents the one point distribution of contact vectors. We then have

ρ(θ) =
p(~r1, ~r2)

p(|~r1|)p(|~r2|)
. (3)
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FIG. 1: The distribution of the normalized areas α = ag,c/σ
2
g , obtained from numerical simulations, at different energies EG.

The plot shows the distribution of α for NG = 2048 bidispersed disks with diameter ratio 1 : 1.4 interacting via harmonic
potentials (µ = 2). α → 1/2 corresponds to disks with relative contact angles close to π/2. The peak at α = 1/2 corresponds
to the “disordered divergence” pDO(α) whereas the other five peaks correspond to “ordered divergences” (pO(α)) arising from
zv = 3 cycles (five different possibilities for a bidispersed system, see ordered structures section). The peaks get sharper as
EG → 0+ and are infinitely sharp at the transition. The rest of the distribution corresponds to the “regular part” preg(α) and
does not have a diverging energy dependence as EG → 0+.
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FIG. 2: Diagrams appearing in the expansion for the joint distribution p(~r1, ~r2). The different terms correspond to the minimum
cycles with different numbers of sides. The vectors r̃ are integrated over. The terms corresponding to zv = 3 have a fixed

length for all the sides as EG → 0+, and therefore give rise to ρ(θ) localized around a single value θ = arcsin
√
3

2
. The terms

corresponding to zv > 3 have unconstrained sides (depicted with dashed lines) and therefore contribute a finite amount to ρ(θ)
at θ = π/2.

This function ρ(θ) therefore encodes the non-trivial correlations between the vectors that arise from the loop con-
straints. These constraints depend on the number of sides zv within each cycle. In order to compute the above
function ρ(θ), it is therefore useful to split the joint distribution of the vectors ~r1, ~r2 into separate categories based
on the minimum cycles to which they belong. We do this as follows

p(~r1, ~r2) = 3p(3)p(~r1, ~r2|3)︸ ︷︷ ︸
p(~r1,~r2,3)

+ 4p(4)p(~r1, ~r2|4)︸ ︷︷ ︸
p(~r1,~r2,4)

+... (4)

where p(n) is the probability of occurrence of a minimum cycle with zv = n sides, p(~r1, ~r2|n) is the conditional
probability that given a cycle with zv = n sides two adjacent vectors are ~r1, ~r2, p(~r1, ~r2, n) represents the joint
probability of occurrence of vectors ~r1, ~r2 together with a cycle of zv = n sides, and the combinatorial factor accounts
for the different ways in which the vectors can be placed within the cycle.

Next, the marginal distribution of these two vectors can be computed from the joint distribution of all the vectors
in the cycle as

p(~r1, ~r2|n) =

∫ 1

0

dr̃3

∫ 1

0

dr̃4...

∫ 1

0

dr̃np
(
~r1, ~r2, ~̃r3, ~̃r4, ...~̃rn|n

)
, (5)

where p
(
~r1, ~r2, ~̃r3, ~̃r4, ...~̃rn|n

)
represents the probability that a given minimum cycle of zv = n sides has the (ordered)

set of vectors ~r1, ~r2, ~̃r3, ~̃r4, ...~̃rn. We represent this decomposition as a diagrammatic expansion in Fig 2.
In order to proceed further, we next make the crucial assumption that the joint probability of occurence of the n

vectors can be represented as a product form, along with the loop constraints. We have

p
(
~r1, ~r2, ~̃r3, ~̃r4, ...~̃rn|n

)
= p(~r1)p(~r2)p(~̃r3)p(~̃r4)...p(~̃rn)× δ

(
~r1 + ~r2 + ~̃r3 + ~̃r4 + ....~̃rn

)
, (6)

where each p(r) is chosen from the one point distribution in Eq. (2). This somewhat drastic assumption is justified by
the very good agreement between the angular and area distributions obtained from numerical simulations and those
obtained by this analysis. This highlights the fact that the crucial correlations in the system arise primarily from
these loop constraints. Finally, in order to simplify the analysis further, we assume that all the disks have the same
radii (monodisperse), and that each of the contact vector lengths are drawn from a uniform distribution with width

E
1/µ
G , consistent with the scaling form provided in Eq. (8) in the main text. We have

p

(
r =
|~r|
σg

)
=

1

EG
1/µ

Θ
(
r − 1 + EG

1/µ
)

Θ (1− r) . (7)

As the energy of the system approaches zero, the fluctuations in the lengths decrease and r ∼ 1. From Fig. 2 it is clear
that there is a fundamental difference between cycles with zv = 3 and zv > 3 sides. This is because the structures
with zv = 3 have a fixed length for all the sides as EG → 0+, and therefore give rise to ρ(θ) localized around a single

value θ = arcsin
√
3
2 . The terms corresponding to zv > 3 have unconstrained sides (as depicted with dashed lines)

and therefore contribute a finite amount to ρ(θ) at θ = π/2. We can also explicitly derive the distribution of angles
(p(sin θ)) for the zv = 3 case using the above assumptions, which we detail in the next section.
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FIG. 3: The three-disk minimum cycle (zv = 3) used to compute the the area distribution in Eq. (9) and angular distribution
in Eq. (12). In our analysis we focus only on the case where all the disks have an equal size.
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FIG. 4: Scaling collapse of the distribution of areas of the ordered (zv = 3) cycles p(α, 3) obtained from numerical simulations,
around the divergence at α =

√
3/4. The plot shows the distribution of α for NG = 4096 disks interacting via harmonic

potentials (µ = 2) at different energies. The scaling is consistent with Eq. (4) in the main text.

Ordered Structures (zv = 3)

In this section, we compute the distribution of areas for the zv = 3 cycles and provide the scaling form for the
“ordered divergence” mentioned in the main text. From Fig. 3 it is straightforward to compute

sin θ =

√
4r21r

2
2 − (r21 + r22 − r23)

2r1r2
. (8)

Using the above expression, the distribution of areas for the zv = 3 cycles can be computed as

p(α, 3) =

∫ 1

0

dr1

∫ 1

0

dr2

∫ 1

0

dr3 p(r1)p(r2)p(r3) δ

(
α−

√
4r21r

2
2 − (r21 + r22 − r23)

4

)
. (9)

Next, replacing p(r) with the uniform distributions in Eq. (7) leads to the following scaling form for the ordered
divergence in the distribution of areas

p(α, 3) =
1

EG
1/µ
PO

(
α−

√
3
4

EG
1/µ

)
, (10)

which is Eq. (4) in the main text. In Fig. 4 we plot the scaling collapse of the distribution p(α, 3) obtained from
numerical simulations, around the divergence at α =

√
3/4. The scaling is consistent with the above analysis and
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FIG. 5: (Left) Scaling collapse of the distribution of contact areas of the zv = 3 cycles obtained from numerical simulations
along with the prediction from the theory. The plot shows the distribution of α for NG = 4096 bidispersed disks interacting
via harmonic potentials (µ = 2). The bold line represents the theoretical distribution obtained by numerically integrating
Eq. (9) using a uniform distribution of contact vector lengths given in Eq. (7) with µ = 2. The dashed line has a slope 2.
(Right) Scaling collapse of the theoretical distribution of p(sin θ, 3) obtained by numerically integrating Eq. (12) for µ = 2.
The distribution obeys the scaling form provided in Eq. (13).

with Eq. (4) in the main text. The scaling behaviour of the distribution obtained from our theoretical analysis is
illustrated in Fig. 5 where we plot the distribution of areas computed numerically using Eq. (9), along with the
distributions obtained from numerical simulations. We find a good agreement between the distributions in the limit
α→

√
3/4. The scaling function has the following behaviour

PO(x) ∼ x2 for x→ 0. (11)

We note that in our analysis we have only focussed on monodispersed disks. The generalization to the polydisperse
case involves all combinations of disks that can produce a zv = 3 cycle. For the bidispersed case with diameter ratio
1 : 1.4 that we simulate, the peaks in the area distribution occur at α =

√
3/4 = 0.433013 (for equal sized disks),

0.406116, 0.45453, 0.378775 and 0.473803 [1] (see Fig. 1). The scaling analysis for each of these cases remains the
same.

Similarly, using the product assumption in Eq. (6), the distribution of the angles p(sin θ) for finite energies corre-
sponding to the zv = 3 cycles can be explicitly computed as

p(sin θ, 3) =

∫ 1

0

dr1

∫ 1

0

dr2

∫ 1

0

dr3 p(r1)p(r2)p(r3) δ

(
sin θ −

√
4r21r

2
2 − (r21 + r22 − r23)

2r1r2

)
. (12)

Next, replacing p(r) with the uniform distributions in Eq. (7) we find the following scaling form for the angular
distribution

p(sin θ, 3) =
1

EG
1/µ
Pθ
(

sin θ −
√
3
2

EG
1/µ

)
. (13)

This behaviour is illustrated in Fig. 5 where we plot the angular distributions computed numerically using Eq. (12)
for µ = 2.

Disordered Divergence: pDO(α)

In this section we derive an expression for the disordered divergence pDO(α) in the distribution of areas. We begin
by assuming a product form for the joint distribution of contact vectors

p(~r1, ~r2) =
1

2π
p(r1)p(r2). (14)

In the above decomposition, we have assumed a uniform distribution for ρ(θ) in the region [0, 2π]. This assumption is
justified since we are interested in the distribution close to θ ∼ π/2. The analysis presented in this section can easily
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FIG. 6: Scaling collapse of the theoretical distribution of pDO(α) obtained from Eqs. (19) and (21) for different repulsive
potentials µ = 1.5, 2 and 2.5 at varying global energies. The distribution obeys the scaling form provided in Eq. (2) in the
main text. The scaling function has the limiting behaviours announced in Eq. (3) in the main text.

be generalized to smaller ranges of θ. We have checked that the scaling features of the distribution near the transition
are unchanged by extending the range of θ. We then have

ρ(sin θ) =
1

2π

1√
1− sin2 θ

. (15)

Next, from Eq. (9) in the main text we have the following equation for the distribution of the areas

p(α) =

∫ 1

0

dr1

∫ 1

0

dr2

∫ 1

0

d sin θ p(r1)p(r2)ρ(sin θ) δ

(
1

2
r1r2 sin θ − α

)
. (16)

Once again to simplify the analysis, we replace the one point distribution of contact vector lengths p(r) by the
uniform distribution in Eq. (7). Finally, performing the integral over sin θ we arrive at the following expression for
the distribution of areas

pDO (α) =
4

πEG
2/µ

∫ 1

1−EG1/µ

∫ 1

1−EG1/µ

Θ(xy − 2α)√
x2y2 − 4α2

dxdy. (17)

In order to perform this computation we compute the simpler indefinite integral defined as

SDO(α, x, y) =

∫ ∫
1√

x2y2 − 4α2
dxdy. (18)

This does not explicitly contain the Θ function. We can account for the Θ(xy−2α) constraint by breaking the definite
integral into regions depending on the value of α. The definite integral can then be expressed as combinations of the
above indefinite integral. We have

pDO(α) =
4

πEG
2/µ

(
SDO(α, 1, 1)− SDO(α, 1, 1− EG1/µ)− SDO(α, 1− EG1/µ, 1) + SDO(α, 1− EG1/µ, 1− EG1/µ)

)
.

(19)

Explicit expression for SDO(α, x, y)

We derive below an exact expression for the above indefinite integral SDO(α, x, y). First, performing the integral
over x we arrive at

SDO(α, x, y) =

∫ log
(
y
√
x2y2 − 4α2 + xy2

)

y
dy. (20)
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Next, the integral with respect to y can be performed exactly. After some algebraic simplifications (using Mathemat-
ica), the explicit expression is

SDO(α, x, y) = −1

2
Li2


 2α2

2α2 − xy
(
xy +

√
x2y2 − 4α2

)


− 1

2
log2

(√
x2y2 − 4α2 + xy

)
+ log(xy) log

(√
x2y2 − 4α2 + xy

)

+ log(2) log

(√
x2y2 − 4α2

x
+ y

)
+

1

2
log(α) log

( α
x2

)
+

1

2
log2(y)− π2

8
− 1

2
log2(2), (21)

where Li2 is the Polylogarithm function. Although the above expression is not explicitly symmetric under the (x, y)→
(y, x) transformation, it is easy to see that the expression pDO(α) preserves this symmetry. Using Eq. (21) it
is straightforward to show (for example, using Mathematica) that the function pDO(α) given in Eq. (19) has the
asymptotic behaviours mentioned in the scaling form in Eq. (3) in the main text.

In Fig. 6 we show the scaling collapse of the theoretical distribution pDO(α) obtained from Eqs. (19) and (21) for
different repulsive potentials µ = 1.5, 2 and 2.5. The distribution obeys the scaling form provided in Eq. (2) in the
main text. The scaling function has the limiting behaviours announced in Eq. (3) in the main text.
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