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Abstract. Dense suspensions can exhibit an abrupt change in their viscosity in response to increasing shear rate.

The origin of this discontinuous shear thickening (DST) has been ascribed to the transformation of lubricated

contacts to frictional, particle-on-particle contacts. Recent research on the flowing and jamming behavior of

dense suspensions has explored the intersection of ideas from granular physics and Stokesian fluid dynamics to

better understand this transition from lubricated to frictional rheology. DST is reminiscent of classical phase

transitions, and a key question is how interactions between the microscopic constituents give rise to a macro-

scopic transition. In this paper, we extend a formalism that has proven to be successful in understanding shear

jamming of dry grains to dense suspensions. Quantitative analysis of the collective evolution of the contact-

force network accompanying the DST transition demonstrates clear changes in the distribution of microscopic

variables, and leads to the identification of an “order parameter” characterizing DST.

1 Introduction

A remarkable property of dense stabilized suspensions of

particles in the tens of nanometers to tens of microme-

ter size range is that they can abruptly transform from a

low to a high viscosity phase (or even a solid-like phase)

with increasing applied stress [1–5]. Under steady shear,

these suspensions undergo a discontinuous shear thicken-

ing (DST) transition [1–3]. A confluence of ideas from

the granular and fluid dynamics communities has led to

new understanding and a new set of questions regard-

ing the flowing and jamming behavior of dense suspen-

sions [3, 6, 7]. In this paper, we analyze the DST transition

using a force-space representation [8] that was originally

developed for granular systems. We extend the formal-

ism to suspensions and identify distinct, quantitative sig-

natures of the DST transition in this representation.

There is developing consensus that particle contact

and friction play a crucial role in dense suspension rhe-

ology [9, 10]. Combining fluid mechanical interactions

with contact friction between particles has been shown to

capture critical features of both DST [11–14] and shear

induced jamming (SJ) [15]. Furthermore, clear connec-

tions have been made between a dynamic shear jamming

front and impact-driven solidification [5]. The appear-

ance of non-monotonic flow curves in numerical models
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of DST [11, 12] is reminiscent of classical phase transi-

tions. As in classical phase transitions, the key question

is how interactions between the microscopic constituents

give rise to a macroscopic transition.

The essential idea underlying the jamming-based rhe-

ology model [3, 6] for DST is that it requires a shear-

stress driven transition from the lubricated to the frictional

branch of the viscosity. Reduction of the jamming pack-

ing fraction through the creation of frictional contacts [7]

yields a higher viscosity at any φ. If shearing changes the

relative fractions of frictional and lubricated contacts, the

suspension can transition to the frictional branch. We are

interested in understanding the nature of the collective re-

organization of particles that gives rise to this change in

rheology. Simulations show that DST is accompanied by

significant changes in the network of frictional contacts

and contact forces with minimal changes in structure fac-

tors and pair correlation functions [2]. We present a quan-

titative analysis of changes in the force network by study-

ing the organization in “force space”, which is dual to

the positional network of grains in a sense to be defined

below [8, 16]. The density of points in this space nat-

urally decreases as the stress increases since the number

of contacts is roughly constant, but more importantly we

show that the rheological behavior characterizing DST is

accompanied by changes in the form of the density distri-

bution of points in this space. The change in distribution is

a consequence of the constraints of local mechanical equi-
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librium applied to grains as contacts change from lubri-

cated to frictional.

2 Model

The combination of frictional and viscous interactions be-

tween surfaces of suspended particles has recently been

addressed through simulations [11–14] that use a hy-

bridization [11, 12] of Stokesian Dynamics (SD) with

discrete-element modeling (DEM) [17]. The SD method

is simplified by only considering the near-field, or lubri-

cation, hydrodynamic interactions. To allow contact, the

lubrication resistance singularity is cut off at a distance

hc between particle surfaces. The DEM approach uses a

Coulomb friction law: for Ftan ≤ μFnorm, where μ is the

interparticle friction coefficient, there is no slipping of the

contact, while there is slip when the friction is fully mobi-

lized for Ftan = μFnorm. To model the transition from lu-

bricated to frictional contacts, a repulsive force, represen-

tative of electrostatic repulsion or steric hindrance due to a

grafted layer, is used. For low stress or low shear rate, the

repulsive force maintains surfaces separated at h > hc and

thus interactions are lubricated, as if μ = 0, while at large

enough stress to push particles to h < hc, frictional con-

tacts are activated. 2D simulations of this model capture

the progressively steeper shear thickening with increasing

φ (Fig. 2a) seen in experiments.

3 Force Balance in 2D Suspensions

Owing to the size (≤ 10μm) of the particles and the shear

rates at which DST is observed (usually around 1s−1), it

is a very low Stokes number phenomenon, and particle in-

ertia can be neglected. As a consequence, the constraints

of mechanical equilibrium are strictly obeyed at both the

local and global levels. We analyze data obtained from

stress-controlled simulations of a bidisperse suspension

of particles using the hybrid SD-DEM model [11, 12] in

2D. Each disk in the suspension experiences a hydrody-

namic force, �FH , a short range repulsive force, �FR, and

frictional contact force, �FC . The hydrodynamic compo-

nent includes a non pairwise force (Stokes drag) and pair-

wise forces (lubrication), whereas �FR and �FC are pairwise

interactions. The force balance equation for each disk is
�FH + �FR + �FC = 0. The repulsive force is modeled as a

short range electrostatic repulsion,

�F(i, j)
R ∝

⎧⎪⎪⎨⎪⎪⎩
− aia j

ai+a j
e−κh(i, j)

h(i, j) ≥ 0

− aia j

ai+a j
h(i, j) ≤ 0 ,

(1)

with Debye length, 1/κ, much smaller than the radius of ei-

ther particle, a = (ai or a j). Adjacent grains that overcome

this repulsive force form frictional contacts and contribute

to the �FC . Thus, |FR| sets a stress scale, σ0 ≈ |FR |
a2 , whose

interplay with the hydrodynamic stress scale determines

the stress (shear rate) dependent rheology.
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Figure 1. (a) Construction of force tiles: The vectors �fg,c form

a closed polygon (light brown) (Eq. 2), and there is strict edge

sharing between grains g and g′ (Eq. 3). (b) A force tiling con-

structed from a configuration at σ = σxy/σ0 = 0.1. The shape

and size of the bounding parallelogram is determined by the com-

ponents of the imposed stress tensor: σ controls the opening an-

gle. The number of tiles is equal to the number of particles in the

force-bearing network

3.1 Force tilings in granular materials

In packings of dry grains, labeling the contacts of grain g
by (g, c) (Fig. 1), the force balance condition is:

�FC ≡
∑

c

�fg,c = 0, (2)

where the sum is taken over all the contacts {c} for a given

grain g. In addition, Newton’s third law states:

�fg,c = − �fg′,c. (3)

These constraints can be used to construct a representa-

tion known as the “force tile" representation or Maxwell-

Cremona tiles [18]. Eq. (2) can be represented as a closed
polygon, if the sum is taken cyclically over the contacts

for each grain. Eq. 3 dictates that the tiles of touching

grains have to share an edge. We can, therefore, construct

a force tiling, as illustrated in Fig. 1. The vertices of the

force tiling form a point pattern. In previous studies of

the shear-jamming process in dry granular systems, it has

been shown that the onset of shear-jamming is marked by

distinct changes in this point pattern [8, 16].

3.2 Generalization to Suspensions

The Stokes drag is a non-pairwise force that prevents in-

dividual force tiles from closing:
∑

c
�fg,c = �fS tokes. In ad-

dition, suspended grains experience pairwise, non-contact

forces. The latter can be included by extending the defini-

tion of the contact network, {g, c}, and { �fg,c} to include �FR,
�Fc and the pairwise lubrication force. Given these, and
�fS tokes, there is a unique way of obtaining effective contact

forces such that all force tiles close [19]. We use an itera-

tive algorithm [8] in which the contact forces are modified

to ensure that Eqs. 2 and 3 are satisfied at every iteration.

The final solution is unique up to global translation.

4 Results

We construct force tilings for each member of the en-

semble of steady states over a range of shear stresses,
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σ ≡ σxy/σ0 and at packing fractions, φ = 0.76 and 0.78.

The point patterns of force-tiling vertices from three rep-

resentative configuration at σ below and above the DST

transition for φ = 0.78 are shown in Fig. 2. The lengths of

the boundaries increase with increasing σ, and they have

been scaled by σ in order to aid in the visualization of the

patterns. It should be pointed out that the shape of the

bounding boxes fluctuate even at a given σ, which fixes

only the opening angle. Fig. 2 (b) illustrates the effect

of increasing σ on the density of vertices. This density is

observed to follow ρv ∝ 1/σ2 for up to six decades, and

occurs as φ is held constant with no change in the real-

space density. Given the dramatic change in ρv across the

DST, one could expect significant changes in the patterns
of vertices. We have employed a clustering analysis of

these point patterns based on purely local densities. In the

next section we demonstrate that there is a clear signature

of the DST transition in the clustering properties of the

vertices.

4.1 Point Patterns of Vertices
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Figure 2. (a) Viscosity as a function of shear stress in stress-

controlled simulations of a non-Brownian suspension. (b) Den-

sity of grains and vertices as a function of shear stress.

4.1.1 Density based clustering analysis

If the repulsive force between two contacts is overcome

to create a frictional contact, the constraints of mechanical

equilibrium will necessarily induce a change in the shape

of the force tiles, and hence a collective reorganization

of the point pattern of vertices. We performed a density

based clustering analysis of the vertices of force tiles us-

ing the DBSCAN algorithm [20] to detect these changes.

In DBSCAN, two points belong to the same cluster if their

distance is less than a probing length scale, l (which here

will dimensionally be a stress scale). The connected set of

all such points define a unique cluster, which are separated

from each other by distances greater than l. In usual im-

plementations of DBSCAN, clusters are determined using

an optimum probing radius.

We use DBSCAN to analyze how the clustering pat-

tern changes as the probing length scale is varied. For a

large enough length scale, all points will belong to one

cluster and for small enough length scales, each point will

be its own cluster. Our algorithm probes the density distri-

bution of point patterns at different length scales by mon-

itoring the number of clusters, Nc(l), as a function of the

probe length, l. For a point pattern with uniform density,

Nc(l) decreases continuously with l. In a periodic lattice,

where the distance distribution of nearest neighbors is a

delta function, Nc(l) exhibits a jump discontinuity at the

lattice spacing. For a complex pattern, we expect Nc(l) to

show significant changes in its derivatives at length scales

where the distance distribution has structure.
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Figure 3. Illustration of DBSCAN analysis. Left: Sample tiling

at φ = 0.78, σ = 100 at s = 0: all clusters are of size 1 and

Nc(s = 0) = Nv, the number of vertices. Right panel: Zoomed

in point pattern analyzed with increasing probe length s. The

clusters are colored by their size as indicated by the color bar.

In applying the clustering analysis to point patterns in

force tilings, the probing “length scale” is to be interpreted

as an isotropic probing stress scale, σprobe. We measure

the variation in the number of clusters Nc(s) as the dimen-

sionless probe stress, s = σprobe/σ, is increased (Fig. 3).

Identifying significant variations in Nc(s) yields character-

istic stress scales in the patterns, just as in real-space.

4.1.2 Clustering Analysis of DST

We calculate Nc(s) for each force tiling and then ensemble

average over tilings sampled at a given φ and σ. Fig. 4

(a) shows that at φ = 0.78, and σ below the DST transi-

tion, Nc(s) decays continuously with s, indicating the lack

of any characteristic scale in the distribution of distances

between the vertices. We note that vertices that are close

to each other are not necessarily connected by an edge in

the tiling. Therefore, the distance distribution is not equiv-

alent to the contact force distribution.

Above the DST transition, we can clearly identify

three different decay regimes in Nc(s), with a plateau-like

structure clearly identifiable in the derivative, dNc(s)/ds
shown in Fig. 4 (b). As seen from Fig. 4 (c), this struc-

ture in dNc(s)/ds is much more pronounced for φ = 0.78

than it is for φ = 0.76. The observed structure in Nc(s)

indicates that there are density inhomogeneities in the pat-

tern of the vertices characterized by both s∗, marking the
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onset of the plateau, and s∗∗, the edge of the plateau. The

abrupt change in dNc(s)/ds to a much smaller value at s∗
implies that incremental changes in s beyond s∗ incorpo-

rate the “noise points”: isolated vertices that lie in low-

density regions. Beyond s∗∗, dNc(s)/ds starts decreasing

as s increases indicating that clusters separated by s ≥ s∗∗
are beginning to merge. Fig. 3 illustrates how the cluster

pattern changes with s. The difference Δs = s∗∗ − s∗ pro-

vides a measure of the separation of high density regions in

force tilings: the more pronounced the plateau the sharper

is the distinction between high and low density regions.

Fig. 4 (d) demonstrates that Δs increases sharply at a

characteristic value of σ that depends on φ. Moreover the

saturation value of Δs decreases with decreasing φ, sug-

gesting that Δs can be considered as an “order parameter”

characterizing DST.
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Figure 4. Top: Cluster analysis at φ = 0.78: Number of clusters,

Nc, versus s = σprobe/σ, at different values of σ. b) dNc/ds
vs s. Each curve is obtained by averaging over fifty steady state

configurations. The black dashed lines highlight the behavior

change at σ ≈ 2. Bottom: (c) dNc/ds vs s for σ = 0.1 and 100

at φ = 0.76 compared to φ = 0.78. (d) Plateau size Δs (See inset

for the definition) as a function of the control shear stress σ for

packing fractions 0.76 and 0.78 .

5 Discussion

Using a clustering analysis, we have demonstrated that the

rheological changes at DST are accompanied by a collec-

tive reorganization in the space of forces. This collective

response is necessitated by the constraints of mechanical

equilibrium, applied at the local grain level, as lubrica-

tion forces change to frictional contact forces. We iden-

tify a characteristic stress scale in the pattern, Δs, from the

plateau in dNc(s)/ds. This plateau suggests that the ver-

tices are clustered into clumps with an approximately uni-
form density of points with the clumps separated by ≈ Δs.

Equilibrium clumped phases are observed in systems with

ultrasoft interaction potentials [21, 22]. Indeed, our pre-

liminary DBSCAN analysis of the clumped phase shows a

plateau structure remarkably similar to Fig. 4 (b). We are

currently exploring this connection further.
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