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We study a one-dimensional version of the Kitaev model on a ring of size N, in which there is a spin
§>1/2 on each site and the Hamiltonian is J2,5}5", . The cases where S is integer and half-odd integer are
qualitatively different. We show that there is a Z,-valued conserved quantity W, for each bond (n,n+1) of the
system. For integer S, the Hilbert space can be decomposed into 2V sectors, of unequal sizes. The number of
states in most of the sectors grows as d”, where d depends on the sector. The largest sector contains the ground
state, and for this sector, for S=1, d:(\s‘g+ 1)/2. We carry out exact diagonalization for small systems. The
extrapolation of our results to large N indicates that the energy gap remains finite in this limit. In the ground-
state sector, the system can be mapped to a spin-1/2 model. We develop variational wave functions to study the
lowest energy states in the ground state and other sectors. The first excited state of the system is the lowest
energy state of a different sector and we estimate its excitation energy. We consider a more general Hamil-
tonian, adding a term A3, W,, and show that this has gapless excitations in the range \{ =N =\5. We use the
variational wave functions to study how the ground-state energy and the defect density vary near the two

critical points \{ and \5.
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I. INTRODUCTION

In recent years, there have been many studies of quantum
spin systems which are characterized by a high degree of
frustration and topological order. The word “frustration” here
refers to systems with competing interactions having a large
number of states with energy near the minimum energy. To-
pological order implies the existence of invariants which, for
topological reasons, are robust against a large class of per-
turbations. Such systems are often associated with a novel
structure of the ground-state and low-lying excitations, and
are interesting from the point of view of possible applica-
tions in quantum computation.'” A particularly interesting
model in this context is the two-dimensional frustrated spin-
1/2 model introduced by Kitaev.> This model has several
fascinating properties which have been studied in great
detail.®~!2 For instance, the model and its variants constitute
the only known class of spin models in two dimensions or
more dimensions that is fully integrable, being reducible to a
system of noninteracting Majorana fermions. A similar
model, called the compass model, although not exactly solv-
able, was introduced by Kugel and Khomskii many years
ago'3 to understand the magnetic properties of transition-
metal oxides which have orbital degeneracies. Recently
physical realizations of the spin-1/2 Kitaev model have been
proposed in optical lattice systems'* and in quantum
circuits.!> Variants of the model have also been studied in
two dimensions,!®2* three dimensions,?2° and also on
quasi-one-dimensional lattices.?’””? Finally, the spin-S Ki-
taev model has been studied in the large-S limit using spin-
wave theory,30 and the classical version of the Kitaev model
has been studied at finite temperatures using analytical and
Monte Carlo techniques.?! Their results indicate that while
the phenomenon of order by disorder’?-3> may occur in the
quantum-mechanical Kitaev model, it does not in the corre-
sponding classical model.
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For the Kitaev model with spin S>1/2, there is a 7,
invariant associated with each plaquette for arbitrary spin S,
which reduces to the conserved 7, gauge flux for the spin-1/2
case.’® However, the model does not seem to be fully inte-
grable. While some differences in the structure of the invari-
ants between the models with half-odd integer and integer
spins have been pointed out,*” the issue of whether there are
systematic differences in the nature of the low-energy spec-
trum is also of interest. In the present paper, we approach this
problem by examining the spin-1 Kitaev model. The two-
dimensional model appears difficult to analyze, but even the
one-dimensional version of it has a lot of interesting struc-
ture, as we proceed to show.

The plan of this paper is as follows. In Sec. II, we con-
sider the spin-§ Kitaev chain. In Sec. II A we show that this
model has local, mutually commuting conserved quantities
W,, for integer S. The eigenvalues of W, are *1. For open
boundary conditions, there are some additional conserved
quantities at the ends of the system. The existence of these
conserved quantities implies that the Hilbert space of a N-site
system can be decomposed into a sum of 2V disjoint sub-
spaces. The dimensions of these subspaces are not equal. In
Sec. II B we develop a formalism to compute the dimension
of these sectors. For large N, the dimension varies as d” in
most sectors, with the constant d depending on the sector.
The sectors show complicated spatial structures, arising from
the spatial structure of {W,}. We show this in Sec. I C, by
computing the nontrivial spatial dependence of expectation
values of spin operators in some sectors, averaged over all
states in the sector. We then consider the spin-1 model in
Sec. III. In Sec. III, we consider the ground state and lowest
excited state of the system. Exact diagonalizations of small
systems show that the ground state lies in a sector in which
W,=+1 for all n. In this sector, there is a gap between the
ground state and the first excited state. The lowest excited
state of the system is the ground state of a different sector
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FIG. 1. (Color online) Picture of the Kitaev chain showing one
of the conserved quantities W,,.

and the energy gap seems to approach a nonzero value in the
limit of the system size going to infinity. In Sec. IV, we
consider the sector containing the ground state, and show
that the Hamiltonian is equivalent to the Hamiltonian of a
deposition-evaporation process of a nearest-neighbor-
exclusion lattice gas model, which can be written as of a
spin-1/2 system with local interactions with a range extend-
ing to at most next-nearest neighbors. The Hamiltonian
seems to be difficult to diagonalize exactly, we present a
variational study of the ground state in Sec. V. The varia-
tional estimate of the ground-state energy is found to agree
well with the results obtained numerically for small systems.
We also analyze the first excited state of the Hamiltonian. In
Sec. VI, we consider a more general Hamiltonian, obtained
by adding a term N\X,W,, and discuss its ground states as a
function of A. We show that the ground state of this new
Hamiltonian is gapless for a range of couplings N{=A=A\J,
and gapped otherwise. We argue that for A just above \{, in
the sector containing the ground state, the density of negative
W’s is of order | . For \ just below AS, the density of

1
log(A=A{)
positive W’s goes to zero as (A5—\)"2. In the final section,
we summarize our conclusions and discuss the relationship
of this model with the Fibonacci chain.

II. ONE-DIMENSIONAL KITAEV MODEL

In this section, we will discuss a one-dimensional spin-S
model which is obtained by considering a single row of the
Kitaev model in two dimensions.

Let us begin with the Kitaev model on the honeycomb
lattice. This is governed by the Hamiltonian

Hir =0, ST+, SISY+J,. 2, 8385, (1)
(i) (ify {if),
where (ij), denote the nearest-neighbor bonds in the ath di-
rection. If we set J,=0, we get a set of decoupled chains. We
call this the Kitaev chain and this is the topic of this paper.
The Hamiltonian is by

H= E (J2n—]S§n—ISJZCn + J2nS¥i1S§n+l) . (2)

In general, the couplings J,, could be all different from each
other. If some of the couplings are negative, we can change
the signs of those couplings by performing the unitary trans-
formation,

X Qx y
Sm - Sm’ Sm - Sm’

and S5, — S5, (3)

on appropriate sites. We consider the simpler case, where all
couplings have the same value, J,,=J. Without any loss of
generality, we set J=1. Finally, the Hamiltonian can be uni-
tarily transformed to a more convenient form by the follow-
ing transformation on the even sites:
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)ch’l - S%l’l’ )ZYI'I - S)ch’ and Szill — = Sgn (4)
The Hamiltonian in Eq. (2) then takes the translation invari-
ant form

Hyiy= 2 SIS0, . (5)

A. Invariants

The Hamiltonian in Eq. (5) has the following local sym-
metries for all S. Let us introduce the operators on sites:

34 =e'™n (6)
and operators on bonds
Wy=22000 ()
as shown in Fig. 1. We then find that
[(W,,H]=0. (8)

The eigenvalues of X are =1 for integer S and =i for half-
odd-integer S. Thus for any value of the spin S, the eigen-
values of W, are *1.

However, there is a qualitative difference between integer
and half-odd-integer values of S. For integer values of S, all
the matrices EZ matrices commute with each other, whereas
for half-odd-integer values, X commutes with Efn for
n# m but anticommutes with 22 for a # b. Consequently, for
integer S, all the invariants W, commute, but for half-odd-
integer S, W, anticommutes with its neighboring invariants,
W,+, and commutes with W,, m#n, n®1. We will now
show that this implies that all the eigenstates of the chain
with half-odd-integer S are 2V2-fold degenerate.

The invariants for half-odd-integer S can be combined in
the following way to form a set of mutually commuting an-
gular momentum operators, one per every two bonds,

po=Wap =W, 11 Wopor, i =ipip. (9)

m<n
It can be verified that
[ ] =28, 1, (10)
{uoupy=28%. (11)

The w;, commute with the Hamiltonian as they are made by
multiplying conserved operators. Hence Eq. (10) shows that
the Hamiltonian has a [SU(2)]V? symmetry, where N is the
number of sites. Eq. (11) shows that each of these SU(2)
factors are realized in the spin-1/2 representation. Thus each
eigenstate is 2"2-fold degenerate. There is no reason for such
a degeneracy for integer S and indeed, as we will see later,
the ground state for S=1 is nondegenerate.

We note that the spin-S Kitaev model in two dimensions
also has a Z,-valued invariant associated with every hexagon
of the honeycomb lattice.>® When they are restricted to a
single chain, the invariants take the form
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Vi=220030, (12)

which involves three neighboring sites. The invariants given
in Eq. (7) are simpler because they only involve two sites.
For any spin S, we find that 3’32 =] and (2¢)*=(-1)%;
hence the invariants in Egs. (7) and (12) are related to each
other as

Vn= (_ 1)2SWan+l' (13)

Open chains have some extra symmetries at the edges. If
the site labels of the open chain are 1,...,N, then S} and S},
also commute with the Hamiltonian. Thus at the first and last
sites, we have a U(1) symmetry group generated by these
operators. Note that a 7, subgroup of this group, consisting
of the operators 2] and 2}, also commutes with all the in-
variants. If we combine the operators S} and S}, with the W,
invariants on the first and last bonds, we have a larger sym-
metry group made of W, S} and their products at the first
bond, and the group made of Wy, S} at the last bond. As we
will show in Sec. III, for the S=1 case the group formed is
SU(2) X U(1) at each end.

B. Counting of states for integer S

We will now develop a formalism to count the number of
states in a given sector for integer S. In this case, the 3
matrices commute and hence can be simultaneously diago-

nalized. If |S,m) denote the eigenstates of S%, then
38, m) = (- 1)5]S,— m), (14)
3IS,m) = (= 1)**"S,— m), (15)
338, m) = (= 1)"|S,m). (16)

We can construct the eigenstates of the 2 matrices in the
m# 0 subspace,

S,mi)E\%( S,m) *|S,—m)), (17)
where m=1,...,S. The eigenvalues of the matrices are
SHS,m*)y= = (= 1)S|S,m=), (18)
DS,m=y= = (= 1)5™|S,m=), (19)
S, mEYy=(-1)"S,m=). (20)

The states of a chain can be classified by the eigenvalues
of 37 and 3 as

(yaxn) =+ (12x2) (y1xy) (21)

where x,,,y,= * 1 are the eigenvalues of X and %)

n’
tively. The invariants are then W,=x,,,1,-

We now calculate the number of states in a given sector
W using a standard transfer-matrix technique. Consider the
allowed states of r sites, when the values of r—1 constants
Wi, with j=1 to r—1 have been specified. We denote this set
of values by W. Let Z,(y|W) denote the number of allowed

respec-
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states of this set of sites with %)=y, where y takes values
*1. We now add a site r+1 to the chain and also specify W,.
Let the new set of {W} be denoted by W'.

Consider first the case W,=+1. Clearly, we can have two
possibilities: 37, =3"=+1 or 3, =%7=-1. Let v(p,p’) de-
note the number of states of a single site with 2Y=p and
3*=p’. Then, we clearly have the recursion equation

Zr+1(y|W,) = V(}’»"‘ I)Zr(+ I,W) + V(}’»— I)Zr(_ I,W)

(22)
This equation can be written as a matrix equation
Z.(+ 1) Z(+1|W)
|: +1 | ’ ] _ T+[ | i (23)
Zp(=1IW) Z(-1|lwW)
where T, is a 2 X2 matrix given by
[+ L4+1) v+ 1,-1
T,= ( ) A ) } . (24)
_V(_17+ 1) V(_17_ 1)
It then follows from Egs. (18)—(20) that
1[s-1 s+1
T,== for S odd (25)
218+1 S+1
1|S+2 S
=— for S even. (26)
2§ S

Similarly, when W,=-1, the corresponding recursion
equation is

{zﬁm 1w ] . lz,<+ 1w) ]

, (27)
Zp(=1IW) Z(-1|lwW)
where the matrix T_ is given by
01
T_=T,r with 7= [ 1 0 } . (28)

It is then clear that for a given set of invariants W, the
number of states can be written in terms of a product of the
matrices T, and T_.

For example, for an open chain of N sites and

W={Wn_1,..., W3, Wy, W;}={+1,...,+1,—-1,-1}, we have
Zy(+ 1]+ —— Z(+1
{M | )}=T+--~T+T_T_{ i |¢)]
ZN(—1|"'+——) Zl(—1|¢)

(29)

where ¢ denotes the null string and Z,(y|¢) denotes the
number of states of the spin at site 1 with 2}=y. Thus
Z,(+1|p)=S+1, Z,(-=1]|$)=S, when S is an even integer,
and Z,(+1|#)=S, Z,(~1| $)=S+1 when S is an odd integer.
The total number of states in this sector is then given by

TOW) =Zy(+ 1IW) + Zy(- 1[W). (30)

For a closed chain, there is an additional invariant
Wxy=yyx; and the number of states in the sector becomes
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N
row) = Tr(H TW”), (1)

n=1

where TWn =T. for W,= =1 and IT"_, is an ordered product
of T. matrices, from site 1 to N with the index increasing
from right to left.

We now calculate the dimensions of some sectors for a
closed chain of length N. It is easy to get an explicit answer
for the two extreme limits when W,= %1 for all n. In these
cases, the number of states, I'™, is

T = (@) + (@)Y, (32)

where d; (S) and d; (S) are the larger and smaller eigenval-
ues of T, respectively. The eigenvalues can be computed to
give

1
o= 5(5 = \§?+25+2) for S odd (33)
1 —
:E(S+1 +VS?+1) for S even, (34)
1 —
d](2)=5(S+l +\$?-1) for S odd (35)
1 Y,
=5(S *+ VS +2S) for S even. (36)

For S=1, d is equal to the golden ratio, y=(1+ v‘g)/ 2 and
d;:—l/ v. As N— oo, the dimension of the Hilbert space in
the sector with all W,=1 grows as 9". On the other hand,
d,=d,=1. The dimension of the sector with all W,=-1 is
therefore equal to 2.

With the exception of S=1, the larger of the two eigen-
values afli is always greater than 1, and in the N—c° limit,
we have

() =[dy (9HI". (37)

d,i(S) is referred to as the quantum dimension of the sector.
As can be seen it is, in general, fractional for any S. In the
limit §— oe, the quantum dimension tends to S+ 1/2 for both
the sectors. It is interesting to note that it is a half odd integer
in this limit.

C. Expectation values of the % operators in different sectors

In this section we find the expectation values of the X
operators in various sectors. We will assume periodic bound-
ary conditions. Our calculation will average over all the
states of a given sector considered with equal weight; this
can be considered as a calculation in the limit that the tem-
perature T— o0, so that it does not depend on the Hamil-
tonian.

We evaluate the expectation values of X by inserting
projection operators at site n in the product of transfer ma-
trices in Eq. (31). This yields the following expression for
the expectation value of the %% operator in a general sector
with a W-configuration W,

PHYSICAL REVIEW B 82, 195435 (2010)

N n—1
<EZ+1>W=Tr[< H TWJ->T€V”(H TWi>]/F({W})»
i=1

Jj=n+1
where

Ty =W, Ty 7,

y — Z
Ty =7Ty

Ty, =W, 7Ty, 7, (38)

and 7 and 7° are the well-known Pauli matrices.

We now compute the expectation values of 2 in two
sectors: the sector W, with all W,=+1 and the sector W, in
which one of the W,=—1 and all the other W,=+1 (without
loss of generality we pick Wy=-1). The expressions for
(Zw, , =(Zo. can be evaluated in terms of the eigenvec-
tors and eigenvalues of T,. The T, matrix is a linear combi-
nation of the Pauli matrices, 7 and 7*. Its eigenvectors are
spinors polarized parallel and antiparallel to a direction in the
Z, plane, forming an angle 6¢ with the z axis, where 6y is
defined by

1
Ccos 0 = - fOr S Odd
T+ (s+1)?
1
=——= for § even, (39)
VI+S§
. S+1
Sin 0SE ’—,—2 for S Odd
VI+(S+1)
S
=— for S even. (40)
V1+82

For the sector with all W,=+1 it is easy to see that (X7),
=(2)o. For large N, we obtain

<Eﬁ(y))0 = cos 6, (41)

d+
(229 = cos® O+ d—isin2 0s. (42)
I
In the sector where Wy=—1 and the rest are equal to +1,
we get, for large N,

d+ n—1
<22>1=<22>o{1—<d—i) } (43)
1
dy\"

o =<2ﬁ>0{1 - <E) ] (44)
1

2 cos Oy <d;’)”"'] 43)

d} cos§+d} sin” 65\ df

Note that in the limit n— *oo, (37) in Eqs. (43)—(45)
approach the values given in Egs. (41) and (42) exponen-
tially quickly.

Eon= <2i>0{ 1+
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FIG. 2. (Color online) Plot of <S;2> (dotted line), <S}V12> (dashed
line), and (Sf‘lz) (full line) as a function of n for S=1, on a ring with
16 sites in the sector ++++ +——++—+—, with periodic bound-
ary conditions (site 17=site 1).

While in general 2 are complicated multispin operators,
for S=1 we have 29=1-2(5%)% Thus, for S=1 we are es-
sentially computing the expectation values of (5%)%. To see
what the spin textures are like in a typical sector, we have
plotted in Fig. 2 the expectation values of $*2, $*%, and S for
S=1, as a function of the spatial coordinate n for a ring of
size 16, in the sector where the sequence of W’s is
. This sequence was chosen as it is a
de Bruijn sequence®® of length 16, in which each of the 16
possible binary sequences of length 4 occur exactly once,
taking the periodic boundary conditions into account.

III. S=1 MODEL

We will now focus on the Kitaev chain with spin-1’s at
each site. We will work with the natural spin-1 representation
in which

(Sa)bc = ieabc' (46)

In this representation, the matrices % are diagonal and are
given by

1 0 0
sv=l0 -1 0 |,
0 0 -1
~10 0
=0 1 0 |,
0 0 -1
-1 0 0
si=l 0 -1 0. (47)
0 0 1

We note that these matrices satisfy 2*272?=1. We denote the
basis vectors by |x), |y), and |z) defined as

PHYSICAL REVIEW B 82, 195435 (2010)

1 0 0
y={0[ m={1] [2=[0]. (48)
0 0 1

We then see that the nine possible states at sites
(n,n+1) are given by

lzz) with W,=1,
(49)

|xy), |xz), |yx), |zy) and

and
lxx), |yy), |vz) and |zx) with W,=-1. (50)
From Eq. (46) we have

SNxy=0, Sx)y=ilz), SYx)=—ily),
Sy ==-ilz), $y)=0, Syy=ilx),
Sy =ily), Sly=-ilx), Sz)=0. (51)

Equations (47) and (51) imply that (59)?=(1-3¢)/2.
For the 5 states in Eq. (49) satisfying W, =1, we have the
following actions of the relevant term in the Hamiltonian:

S1S3lxy) =0,

S1S3|xz) =0,

Si83lzy) =0,
§183lz2) = [yx),

SiSylyx) = z2). (52)

For the four states in Eq. (50) satisfying W,=—1, the actions
of the relevant term in the Hamiltonian are given by

S1S3)xx) =0,
S1Slyy) =0,
SiSlyz) = —|zx),

S183lzx) = = |yz). (53)

As mentioned earlier, for an open chain with site numbers
going from 1 to N, we find that ST and S}, commute with H.
We define the operators,

T=iws, 7=S§], (54)

r=-S\Ws], P= %[1 —-(sD?]. (55)

It can be verified that these operators obey a SU(2) X U(1)
algebra. Exactly the same construction on the last bond, with
S1— Sy and W;— Wy, yields the same algebra on that bond.

Numerical studies

We have carried out exact-diagonalization studies of small
systems with periodic boundary conditions in order to find
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TABLE I. Ground-state energy per site versus N.

N Ey/N
2 ~0.707106770
3 -0.577350259
4 ~0.612372458
5 ~0.600000024
6 ~0.605046094
7 ~0.602888465
8 ~0.603869855
9 ~0.603412688
10 -0.603632331
11 ~0.603525102
12 ~0.603578389
13 -0.603551567
14 ~0.603565216
15 ~0.603558183
16 -0.603561819
17 ~0.603559971
18 ~0.603560924
19 ~0.603560388

the energies of the ground state and the lowest excited state
of the spin-1 Kitaev chain. We find that the ground state lies
in the sector with all W,=1 and has zero momentum (mo-
mentum is a good quantum number in this sector since the
values of the W,’s are translation invariant). The ground-
state energy per site as a function of the system size N is
presented in Table I. We see that E,/N shows odd-even os-
cillations as a function of N but seems to converge quite fast.
The fast convergence indicates that the ground state must
have a fairly short correlation length. The N dependence of

Eyn=E,y/N can be fitted to the form
Ey=E.+B(-a)". (56)

A simple plot of log|Ey—E.,| versus N (Fig. 3), gives a good
straight line for E,,=-0.60356058, which we take to be the

0.07 (0.51N ——

[E/N - E.|
3
e
&

FIG. 3. (Color online) Graph of |E,/N—-E.,| with N, where E,,
=-0.60356058, showing an exponential convergence to the value of
the ground-state energy with N.
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TABLE II. Energy gap between ground state and first excited
state versus N.

N AE

3 0.1141
4 0.2025
5 0.1671
6 0.1802

best estimate of E... The corresponding values of B and « are
0.07 and 0.51. The estimated errors of extrapolation are
about 1 in the last significant digit.

In the sector with all W,=1, the first excited state has
momentum equal to 7 if N is even. We find that the gap
separating it from the ground state is given by 1.0353 for
N=4 and 0.9845 for N=6. These values also seem to be
converging rapidly and the large value is consistent with a
short correlation length. However, this is not the lowest ex-
cited state of the system. Rather, we find that the state nearest
in energy to the ground state is the ground state of the sector
with exactly one W,=—1 and all the other W,=1. (We cannot
use momentum to classify the states in this sector since it is
not translation invariant.) The energy gap AE between the
lowest energy state in this sector and the ground state of the
sector with all W, =1 is shown in Table II. We see that these
also oscillate between even and odd values of N but seem to
converge quite fast to a small but nonzero value. This is
evidence that the spin-1 Kitaev chain has a finite gap in the
thermodynamic limit N — .

IV. MAPPING THE SPIN-1 CHAIN TO A SPIN-1/2 CHAIN

For a given value of the state of the spin at site n, and a
given value of W,, there are at most two choices for the spin
state at site n+ 1. Hence it is clear that the Hilbert space of a
given sector can be mapped into the Hilbert space of a spin-
1/2 chain with some states excluded which correspond to
infinite energy. However, in general, the corresponding
Hamiltonian would have a rather complicated form, with
long-ranged interactions. The mapping is easy to construct
explicitly in the sector with all W,=+1 and the correspond-
ing Hamiltonian has only local interactions. This is what we
now proceed to show.

Consider the state zzzz:-- that belongs to the sector with
all W,=+1. The only allowed process in this sector is zz=yx
[Eq. (52)]. We may think of this process as a quantum dimer
deposition-evaporation model. The z spins are treated as
empty sites; two empty sites can be changed to being occu-
pied by a dimer yx by a “deposition” process, and con-
versely, yx can “evaporate” and become zz again. The dimers
have a hard-core constraint and a site cannot be shared by
two dimers. The dimers are oriented: the “head” x being to
the right of the “tail” y.

This dimer deposition-evaporation model can also be de-
scribed as a deposition evaporation of a nearest-neighbor ex-
clusion lattice gas. We just think of the heads as particles,
and do not distinguish between the tails and empty sites,

195435-6



SPIN-1 KITAEV MODEL IN ONE DIMENSION

except for ensuring that we deposit a particle at a site only if
it is empty and both its nearest neighbors are also empty.
Then this model is described by the Hamiltonian

1
Hy== 72 (1=, )01 = ). (57)

We note that this model is different from the dimer
deposition-evaporation models studied earlier,’ in that the
two ends of the dimer are distinct, and there is no reconsti-
tution. Also, this Hamiltonian does not have an interpretation
as the evolution operator of a classical Markov process, as
there are no diagonal terms corresponding to probability con-
servation.

We have introduced a minus sign in the Hamiltonian for
later convenience. This does not change the eigenvalue spec-
trum as the eigenvalues of H, occur in pairs *e;.

V. VARIATIONAL STUDY OF SECTOR WITH ALL W,=1

We will now use a variational approach to study the
ground state of the Hamiltonian H,; with periodic boundary
conditions. We use the z basis, and denote the T state at the
site i by an occupied site (r7;=1), and the | state by an empty
state (n;=0). Since two adjacent sites cannot be simulta-
neously occupied, the state space is that of hard-core par-
ticles with nearest-neighbor exclusion on a line. A configu-
ration C is specified by an N-bit binary string
0010010101- -+, which gives the values of all the N occupa-
tion numbers n;. We note that in the basis where all the n; are
diagonal, the Hamiltonian H,; has all matrix elements non-
positive. This implies that the (real) eigenvector correspond-
ing to the lowest energy will have all components of the
same sign in this basis.

For the ground state of H,;, we consider a variational wave
function of the form

|y = > \Prob(C)|C), (58)
C

where Prob(C) is chosen as the probability of the lattice gas
configuration C in some classical equilibrium ensemble cor-
responding to a suitably chosen lattice gas Hamiltonian.
Clearly, this trial vector is normalized, with

() =1. (59)

With this choice, Prob(C) is also the probability of the con-
figuration C in the quantum-mechanical variational state |¢).

The simplest choice of the lattice-gas Hamiltonian is that
of a classical lattice gas with nearest-neighbor exclusion, and
a chemical potential u, with a Hamiltonian given by

Hy=+%°2 njy — p2 nj, (60)

where we use the convention that 0-o0=0; hence the first
term in Eq. (60) allows states with n;n;,;=0 but disallows
states with n;n;, =1. Let us denote z=exp(Bw). It is straight-
forward to determine various correlation functions in the
thermal equilibrium state corresponding to H,. The probabil-
ity of a configuration C is given by
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Prob(C) = exp[— BH,,(C) [/ Q(2), (61)

where Q,(z) is the grand partition function for a ring of N
sites.

The grand partition function (z) can be determined us-
ing the standard transfer-matrix technique. We find the larg-
est eigenvalue of the 2 X2 matrix T, given by

11
w1

We now calculate (/|H,|#). The matrix element of the ith
term is clearly zero, unless n;_;=n;,;=0. Then the only non-
zero matrix element is

- -2
(H /N = - 27Prob(000) = —=Prob(010). (63)
vz

Here Prob(000) denotes the probability that randomly se-
lected three consecutive sites in the ring will be empty in the
classical ensemble and similar definition for Prob(010). This
is easily calculated for the Hamiltonian H in the limit of
large N. We get

Prob(010) = Prob(1) = p. (64)
The largest eigenvalue A of T, is given by
A=(1+V1+472)/2 (65)

and p is the density per site given by p=zd log(A)/dz. Ex-
tremizing (H,) with respect to z, we find that the minimizing
value occurs for z=0.405, yielding (H,;=-0.60057. This
gives us the variational bound variational bound on the
ground-state energy per site E,

Ey=-0.60057. (66)

This energy is somewhat higher than the energy obtained in
the previous section (see Fig. 3), indicating that the correla-
tions in the classical Hamiltonian H. do not exactly repro-
duce the correlations in the quantum ground state of H,,.
We can make a better variational calculation by consider-
ing a classical lattice gas with an additional next-nearest-
neighbor interaction. The Hamiltonian of this lattice gas is

Hy=+ 0, Ny — K> iy — ME n;. (67)

Let us denote z=exp(Bu) and u=exp(BK). In this case, the
transfer matrix is a 3 X 3 matrix given by

1 0 1
T;=|z 0 zu|. (68)
01 0

The probability of the configuration C in the equilibrium
ensemble is given by

Prob(C) = exp[— BH.(C)1/Qu(z,u), (69)

where Qy(z,u) is the grand partition function for a ring of N
sites. We then get
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— (H_)/N =2 Prob(00000)1z + 4 Prob(10000)\zu
+2 Prob(10001)vzu2. (70)

Here Prob(00000) is the probability of finding a randomly
selected set of five consecutive sites all unoccupied in the
equilibrium ensemble corresponding to the Hamiltonian H,.
These probabilities are also easily calculated. Treating z and
u as variational parameters, we find that (H,) is minimized
for z=0.35198 and u=1.3752. For these values one finds
that the density is p=0.1952, Prob(00000)=0.28066,
Prob(10000)=0.082804, and Prob(10001)=0.02443. These
give

E,=-0.60333, (71)

which is an improvement over Eq. (66) and quite close to the
extrapolated value of —0.60356 obtained from Table I. This
may be further improved by taking third-neighbor interac-
tions in the classical Hamiltonian but this will not attempted
here.

VI. STUDY OF GROUND STATES IN OTHER SECTORS

We define a more general Hamiltonian

HO\) =Hg; + N2 W, (72)

n

Since the W,’s commute with Hy;, all the eigenvectors of
Hy;, can be chosen to be simultaneous eigenvectors of H(\),
for all A. However, if we vary A\, we can get different eigen-
vectors to have the lowest energy.

Clearly, if \ is large and positive, the ground state will lie
in the sector with all W, =—1. Conversely, if \ is large and
negative, the ground state is the lowest energy eigenvector in
the sector with all W,=+1. In both these regions, the gap in
the excitation spectrum is of order |\|. As we vary \ from —
to +, initially the gap decreases and becomes zero at some
value \{. We then expect a gap to open up again when X is
greater than a second critical point A5 > \{.

A. Sectors with most W,’s positive

Since the ground state for A=0 lies in the sector with all
W,=+1, we have \{>0. In fact, if the lowest excitation en-
ergy in the Hamiltonian Hy;, is AE, we have N{=AE/2. At
this point, the energy required to change a single W, from +1
to —1 becomes zero. We now study this sector using the
variational techniques of Sec. V and try to estimate the dif-
ference between the ground-state energy of this sector and
the sector with all W,=1.

Without loss of generality, we may assume that in this
sector, Wy=-1, and the rest of the W’s are +1. The basis
vectors in this sector are of type |xU) or |Vy), where U and V
are all possible strings of length N—1 obtainable from the
string zzz---z of length N—1, using the substitution rule
zz— yx. Let |¢)) be the eigenvector corresponding to the low-
est eigenvalue of H in this sector. It is easy to verify that
(xU|H|xU') and (Vy|H|V'y) are negative, for all U and U’,
and V and V'. But, (Vy|H|xU) are positive. This implies that
(xU| ) and {xU'| ) have the same sign for all U and U’.
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Similarly (Vy|#) and (V'y|#) have the same sign for all V
and V'. This suggests a variational wave function of the form

|y = LE > \Prob(U)|xU) = >, VProb(V)|Vy)|. (73)
AY U Vv

Here Prob(U) and Prob(V) are arbitrary functions, satis-
fying the constraint

> Prob(U) = >, Prob(V) = 1. (74)
U \%4

Each configuration U is in one-to-one correspondence
with the configurations of a nearest-neighbor-exclusion lat-
tice gas on a linear chain of length (N-2). Define a chain
configuration as C={n;}. We put n;=1 if and only if there is
ay in U in the position i+ 1, otherwise n;=0. Note that the
last element of U cannot be a y. We specify C by a binary
string of length (N-2). To go from C to U, we first add a
single O to the binary string of C at the right end, and then
use the substitution rule 10— yx. The remaining zeros in C
are replaced by z’s. Similarly, we specify V also by a binary
string of length (N-2), with x— 1, y,z—0, and as the left-
most element of the resulting string is always a zero, it may
be deleted.

As in the previous calculation, we construct a classical
Hamiltonian to variationally estimate the parameters
Prob(C). In this case, there is no translational symmetry, and
in general, the lattice gas will have a nontrivial density pro-
file. This is taken into account by making the activities of the
lattice gas in the classical Hamiltonian site dependent. We
write

N-3 N-2

HS = +00 D My — D ;. (75)
i=1 i=1

The probability of each configuration C of the lattice gas is
then given by

Prob(C) = exp[- BHG(C)VQyo({z}) (76)

with z;=exp(Bu;) and Qun_»({z;}) is the grand partition func-
tion of the open chain of N-2 sites.

We note that the matrix H is unchanged under the space
reflection i <= N+ 1—i, and at the same time exchanging x and
y. This can be built into our eigenvector by assuming that if
V are strings corresponding to lattice gas configurations C,
we set

Prob(V) =Prob(U), (77)

where U is the string corresponding the lattice gas configu-
ration C7, the transpose of C.

The rest of the calculation is done as before. By construc-
tion, we have

<l/’var| l/lvar> =1 (78)

It is straightforward to express (|H|) in terms of the mar-
ginal probabilities of the different local configurations of the
lattice gas, remembering that there is no translational invari-
ance. For example, we get

(YSNS}|¥) = — Probe(n, = 0). (79)
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TABLE III. Estimate of the energy gap with the number of
parameters used.

Number of parameters A

0.18751
0.16419
0.15845
0.15642
0.15578
10 0.15556

o AN~ N~

In the simplest case, we work with only two parameters,
and set z;=z’, and z;=z for i # 1. We would like to estimate
the difference of the ground-state energy in this sector and
the ground state over all sectors. These energies are of order
N, and to cancel the leading linear N dependence, we have to
set z equal to the optimal value z*=0.4045 to get the best
energy value of Eq. (66). We assume that N is large so that
only the term in the partition function corresponding to the
largest eigenvalue is kept. Extremizing over z’ we obtain
z'=0.2537, and for this value

(ol H|thyar) = — 0.6005N + 0.1875. (80)

This implies the following bound on the lowest eigenvalue in
this sector:

E{=NEy+A (81)

with A=0.1875 providing an estimate of the energy gap be-
tween the ground state and the first excited state of the
Hamiltonian. This estimate can be improved by adding more
parameters in the variational wave function or equivalently
in the classical lattice gas Hamiltonian. A two parameter
wave function would have 7" and z” at the two opposite ends.
Extremizing with respect to these parameters we find the
energy gap to be 0.1642 with z'=0.2537 and 7"=0.6670. A
four parameter wave function would have fugacities z;, 2,
Zy_3, and zy_, adjustable, and the rest of the z,’s set equal to
z*. Table III shows the improvement in the value of the en-
ergy gap with the number of parameters used.

We thus obtain a variational estimate of the energy gap of
the first excited state from the ground-state energy. This
matches quite well with the numerical estimates obtained in
the previous section.

It is straightforward to extend this treatment to sectors
with two or more W,’s negative. There is an energy A re-
quired to create a single negative W,. Thus A{=A/2. If two
defects are spaced far apart, the energy required to create two
defects will be nearly 2A, with the correction term decreas-
ing exponentially with the distance between the defects. For
n defects, the energy would be minimized if the defects are
equally spaced. Thus the distance between the defects is
N/n, and the energy cost of creating n defects AE(n) in
H(\), for small n, is well approximated by
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AE(n) = —2n\ + nA + nA exp(— BN/n), (82)

where A and B are some constants. This then implies that for
A=\{+e¢, the density of defects in the true ground state of
H(\) will vary as 1/[log €.

B. Sectors with most W,’s negative

We now discuss the behavior of the ground-state energy
near the critical point \5. This depends on the behavior of the
ground-state energy in sectors in which only a few of the
W,’s are +1.

For a ring of N sites, the sector with all W,,=—1 contains
only two states, xxxxx--- and yyyyyy---. The two are degen-
erate with eigenvalue equal to —AN.

Now consider the sector with only one W,=+1, say,
Wy=+1. Consider the state i =|zxxxx---) in this sector.
From Eq. (53), under Hg;,, we have zx=yz and this state can
make a transition only to the state ¢,=|yzxxx---). And ¢, can
return to #; or go to ¢3=|yyzxx:--). Thus, the dynamics may
be considered as the dynamics of a particle z, which can hop
to a nearest neighbor under the action of the Hamiltonian.
There is a string of y’s connecting the current position of the
particle to the leftmost allowed position which is n=1. This
string can become longer, or shorter, as the particle moves,
with no energy cost. When the z spin is at the site N, it
cannot move further to the right. The ground-state energy
E§_ e if this sector is seen to be the same as that of a
particle with nearest-neighbor hopping, confined to move in
the space 1 =x=N. It is thus given by

a
N+1>' ®3)

Thus, we see that for large N, the state with all W,,’s equal to
+1 is no longer the ground state for A <J.

We now consider a sector with exactly two of the W,’s
equal to +1 and the rest negative. Let us start with the state
|zxxx- - -zxxx---), where the spins at two sites i=1 and
i=m+1=N are in the state z (these states will be
referred to as z spins in the following). This corresponds to
Wy=W,,=+1. Then, under the action of H(\), this state
mixes with other states where the positions of the z spins can
change; the general state in this sector may be labeled by the
positions of the z spins, r; and r,. We will write the vector as
|r1,72), where 1=r;=m<r,<N. Then, for 1 <r;<m and
m+1<r,<N, we get

Eél)—sector == (N_ 2))\ -2J COS(

Hyglri,ro) == |ri,ra+ 1) = [r + 1,rp)
=|ri,r=1)=|r;=1,ry). (84)

If the first z spin is at m and the second is not at m+1, the
first spin cannot move to m+ 1, as that site would be in spin
state y, and the state zy cannot change [Eq. (52)]. Similarly,
if r,=N and r| # 1, then the second spin cannot move to the
right. However, if the two z spins are adjacent, then they can
change to a state zz=yx [Eq. (52)]. But from the state yx the
state can only return to zz.

If we disallow the transitions to state yx, the z spins act as
independent particles moving in two disjoint regions of
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space, | =r;=m and m+1=r,=N. In this case, the mini-
mum energy of this system is just the sum of the energies of
two particles. This energy is an upper bound on the true
ground-state energy of this system. Thus, we find that the
ground-state energy in this sector, E5_, .. has the upper
bound,

2—sector —

T T
)—2]cos<—)
+1 N-m+1

“AN-4). (85)

E% =-2J cos(
m

Next, suppose that the state with the mth site in the y state
and the (m+1)th in the x state is called the state ry=m+1,
r,=1, and a similar definition for the other end. Then the
range of r; is at most m+1 and the range of r, is at most
I[-m+1. By excluding some states (here ri=m+1, r, #r;),
the kinetic energy can only increase, and hence we have

ES ... 2—2]cos< u )—ZJCOS(L)
Tsector m+?2 N-m+2

-\NN-4). (86)

For N,m>1, these bounds can be expanded in powers of
1/m, and have the same leading order correction. Also, the
minimum energy corresponds to equally spaced defects with
m=N/2.

We can easily extend the discussion to sectors with three,
four or more W,’s equal to +1. In case the lengths of the

intervals between the positive W,’s are my,m,,ms, ... ,m,,
L <

the bounds on the lowest energy in this sector E__, , = be-

come

r—sector

—ZJE cos< Ll
m;+2

i=1 i

)—)\(N—Zr)SEg

= —2]2 cos( T
+1

) —NN=-2r). (87)
i=1 m;

Thus, we see that for A >J, the ground state belongs to
the sector with all W,’s equal to —1. If A\=J(1 —€), the ground
state will be in the sector with n equispaced bonds with
W,=+1, where the spacing ¢ between them ~N/n is given
by €2, The minimum energy per site of H(\) for
N=J(1-e¢) varies as €’? for small €. Equivalently, if we re-
strict ourselves to sectors with only a fraction € of W,’s
having the value +1, the minimum energy per site varies as
—€¥2. This is equivalent to the statement that for Hy;, corre-
sponding to A=0, in the sector with the fractional number of
positive W,’s being equal to A, the minimum energy per site
varies as A¥2,

VII. DISCUSSION

In this paper, we first analyzed the symmetries of a spin-S
Kitaev chain. We found a 7, invariant, W,, associated with
every link (n,n+1), namely, N invariants for the model de-
fined on a ring with N sites. For integer S, these invariants
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commute with each other and the Hamiltonian. The Hilbert
space can therefore be split into 2" sectors, where the Hamil-
tonian is block diagonal. For half-odd-integer S, W, anticom-
mutes with W,., and commutes with the rest. We showed
that this implies that all the eigenstates of the half-odd-
integer spin models are 2V2-fold degenerate, thus showing a
qualitative difference between the integer and half-odd-
integer models. We have developed a formalism to compute
the dimensions of the invariant sectors. We showed that the
dimension of most of the sectors can be calculated in terms
of products of 2 X2 matrices T, and T_. For S=1 the quan-
tum dimension of the sector with all W,=1 is the golden
ratio, (1+5)/2. For §— o, the quantum dimension tends to
S+1/2 in both the W,=1 and the W,=-1 sectors.

We have then studied the spin-1 case in detail. We have
found that the ground state lies in a sector which can be
mapped to a quantum lattice gas model with nearest-
neighbor exclusion. We developed a variational wave func-
tion that relates the quantum-mechanical averages to the cor-
relation functions of a classical lattice gas with nearest-
neighbor exclusion. We considered a more general
Hamiltonian with a term proportional to the sum of the con-
served quantities, and showed that as a function of the cou-
pling constant \, this would show gapless excitations in the
range \{ =\ =\5. We extended our variational calculation to
study how the ground-state energy and the defect density
would vary near the two critical points A and A5. At A=A,
Eq. (82) implies that the energy of the lowest excited state in
a system of length L goes as E~exp(—BL), corresponding to
a state in which one W,=-1 while all the other W,=1. By
the usual scaling arguments, the gap to the first excited state
goes as 1/L%, where z is the dynamical critical exponent. We
therefore conclude that z=%. At A=\j, the low-energy exci-
tations form a low-density gas of hard-core particles. In one
dimension, this can be mapped to a system of noninteracting
spinless fermions with a nonrelativistic spectrum E~ k2.
Hence in a system of size L, the gap to the lowest energy
states goes as 1/L* corresponding to k~1/L; thus z=2. It
would be interesting to find the value of z in the critical
region Nj <A <AS.

Finally, we note that there is another interesting one-
dimensional spin model called the golden or Fibonacci
chain, 3% for which the number of states on a ring of size N
is the same as that of the spin-1 Kitaev chain in the sector
with all W,=1. The Hamiltonian for this model is

Hece= 2 [(yy + 1 = 1)
= ni—l”i+1(’)’_3/20'f+ Yo+ 1+ Y], (88)

where n;=(1-0%)/2. It has been shown?*-*° that this model is
critical. Its long-range correlations are described by a SU(2)
level 3 Wess-Zumino-Witten model, which is a conformally
invariant field theory with central charge equal to 7/10. The
Hamiltonian in Eq. (88) differs from the spin-1 Kitaev chain
in the W, =1 sector by terms which are products of the n;
operators. We have shown that the spin-1 Kitaev chain is
gapped. Thus these terms correspond to some relevant opera-
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tors which take the golden chain Hamiltonian away from
criticality.

We can show that it is possible to add multispin terms to
the minimal Kitaev chain which reduce to the extra terms in
the W,=1 sector. We need to add products of the n; operators
to the minimal Kitaev chain to obtain the golden chain in the
sector with all W, =1. The basis states | 1), | | } that we use in
Sec. IV are eigenstates of the n; operators with eigenvalues 1
and 0, respectively. The | 1) state represents a state with the
head, namely, |x). The ||) state represents either an
empty site, |z), or a tail, |y). It is clear from Eqs. (47) and
(48) that the operator P*=(1+23*)/2 has eigenvalues 1 for
|x) and O for |y) and |z). Since all the 3 matrices commute
for integer S, they commute with the invariants and are
block diagonal within the invariant sectors. Thus, the
Hamiltonian
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Hyge= v "Hgc

(89)

when restricted to the W,=1 sector, is exactly the golden
chain Hamiltonian discussed by Feiguin et al. and others.3%3
We have thus constructed a realization of the golden chain
model as a spin-1 chain.
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