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We develop a statistical framework for the rheology of dense, non-Brownian suspensions, based on
correlations in a space representing forces, which is dual to position space. Working with the ensemble of
steady state configurations obtained from simulations of suspensions in two dimensions, we find that the
anisotropy of the pair correlation function in force space changes with confining shear stress (σxy) and
packing fraction (ϕ). Using these microscopic correlations, we build a statistical theory for the macroscopic
friction coefficient: the anisotropy of the stress tensor, μ ¼ σxy=P. We find that μ decreases (i) as ϕ is
increased and (ii) as σxy is increased. Using a new constitutive relation between μ and viscosity for dense
suspensions that generalizes the rate-independent one, we show that our theory predicts a discontinuous
shear thickening flow diagram that is in good agreement with numerical simulations, and the qualitative
features of μ that lead to the generic flow diagram of a discontinuous shear thickening fluid observed
in experiments.
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Dense suspensions of frictional grains in a fluid often
display an increase in viscosity η ¼ σxy=_γ (thickening) as
the confining shear stress (σxy) or strain rate (_γ) are
increased. At a critical density-dependent shear rate _γ,
the viscosity increases abruptly: a phenomenon termed
discontinuous shear thickening (DST). In stress-controlled
protocols, η ∼ σxy marks the DST boundary [1,2].
Experiments have also observed interesting features in
other components of the stress tensor such as the first
normal stress difference, N1 ¼ σxx − σyy close to the DST
regime [3]. A mean-field theory [4,5], based on an increase
in the fraction of close interactions becoming frictional
(rather than lubricated) with increasing shear stress, has
been extremely successful at predicting the flow curves and
the DST flow diagram in the space of packing fraction ϕ
and shear stress or strain rate [6,7]. The physical picture of
lubricated layers between grains giving way to frictional
contacts when the imposed σxy exceeds a critical value
set by a repulsive force [4] provides a consistent theory of
DST [7], shear-jamming fronts [8], and instabilities of the
shear-thickened state [9].
Although several features relating to the flow of dense

suspensions can be well explained within this mean-field
theory, the nature of the microscopic correlations under-
lying this transition remains far from clear [6].
Conventional measures such as the pair correlation function
do not exhibit pronounced changes accompanying DST.

An interesting, intrinsic feature of DST is that the macro-
scopic friction coefficient μ decreases as the fraction of
frictional contacts increases: the mean normal stress grows
more rapidly than the shear stress. This, and contact
network visualizations from simulations [6], indicate that
there are important changes in the network of frictional
contacts that are not captured by scalar variables such as the
fraction of frictional contacts. In this work, we focus on the
microscopic origin of the evolution of the components of
the stress tensor across DST and construct a statistical
theory for μ, the anisotropy of the stress tensor.
While the changes in real space near DST can be

incremental, and hence do not show any significant
changes in pair correlations, the contact forces change
dramatically and play a central role. The steady state flow
of noninertial suspensions is governed by microscopic
constraints of force and torque balance, and these con-
straints can lead to nontrivial correlations of contact forces.
Theories have focused, up to now, on the average proper-
ties of the interparticle forces [4]. However, fundamental
questions about how interactions at the microscopic,
contact level and the constraints of force balance give rise
to a macroscopic transition remain [10].
In two-dimensional systems, the crucial constraint of

force balance can be naturally accounted for by working in
a dual space, known as a force tiling. In this representation,
interparticle forces are represented by the difference of
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vector height fields fh⃗g defined on the voids. This
representation has been shown to be particularly useful
in characterizing shear-jamming transitions in frictional
granular materials [11]. Unlike shear jamming, where
configurations and stresses are static, flowing suspensions
provide an ensemble of nonequilibrium steady states
(NESS) that are ripe for a statistical description. We show
that the nonequilibrium steady states at a given σxy and ϕ
can be mapped to a statistical ensemble characterized by an
a priori probability distribution. This distribution is con-
structed from the measured pair correlation functions in
force space.
In the continuum, the height fields define the local

Cauchy stress tensor, by the relation σ
↔ ¼ ∇ × h⃗, and the

area integral of σ
↔
, or the force moment tensor Σ

↔
[12], in

terms of difference of the height fields across the system:

σ
↔ ¼

� ∂yhx ∂yhy
−∂xhx −∂xhy

�
; Σ

↔ ¼
�

LyΓyx LyΓyy

−LxΓxx −LxΓxy

�
;

ð1Þ

where Γ⃗xðyÞ represents the sum of forces along the xðyÞ
directions, and LxðyÞ represents the linear dimensions of the

system (σ
↔ ¼ Σ

↔
=LxLy). Additionally, global torque balance

implies Σxy ¼ Σyx. In our simulations Lx ¼ Ly ¼ L; hence,
Γyy ¼ −Γxx ¼ Lσxy ¼ σ. Working with the ensemble of
force tilings generated from the NESS created in simu-
lations, we observe changes in the anisotropy of the pair
correlation function of the vertices (PCFV) of the tilings as
ϕ and σxy are changed. Using these microscopic correla-

tions, we build a statistical theory for Σ
↔
. The reason

for using the components of Σ
↔

is their clear geometric
signatures in the force tilings, as shown in Fig. 1. The stress
anisotropy is defined as the ratio of the difference in

eigenvalues τ to the trace 2P ¼ σxx þ σyy of σ
↔
, which

can also be related to the components of Σ
↔
:

τ

2P
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ñ2

1 þ 4Σ2
xy

q
Σxx þ Σyy

; ð2Þ

where Ñ1 ¼ Σxx − Σyy. In the limit of Ñ1 → 0, τ=2P
is identical to the macroscopic friction coefficient
μ ¼ σxy=P. In this Letter, we show that the change in
the macroscopic friction coefficient μðϕ; σxyÞ across the
DST transition [13] can be obtained from a statistical theory
based on an effective pair potential between the vertices of
the force tilings. An extension of the quasi-Newtonian,
rate-independent, suspension rheology model [22,23] can
then be used to compute the viscosity ηðϕ; σxyÞ:

ηðϕ; σxyÞ ∝ μðϕ; σxyÞ½μðϕ; σxyÞ − μc�−2: ð3Þ

As we show [13], this constitutive relation is valid for
thickening suspensions in the limit of ϕ → ϕ−

m, where ϕm is
the frictional jamming point. We use our microscopic
theory of μ in conjunction with this constitutive relation
to predict the rheological properties characterizing DST.
Simulating dense suspensions.—We perform simula-

tions of simple shear under constant stress of a monolayer
of N ¼ 2000 bidisperse (radii a and 1.4a) spherical
particles by methods described in detail previously [6].
These follow an overdamped dynamics and are subject to
Stokes drag, pairwise lubrication, frictional contact, and
short-range repulsive forces (see Supplemental Material
[13]). Because of the repulsive force of maximum F0 at
contact, frictional contacts only form for stresses about or
larger than σ0 ≡ F0=a2, which induces DST at volume
fractions ϕ≳ 0.78 [6].
Force space representation.—For a force balanced

configuration of grains with pairwise forces, the “vector
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FIG. 1. (a) A snapshot of a sheared suspension of 2000 soft
frictional disks. The lines represent the pairwise (lubricated and
frictional contact) force vectors between the individual grains.
(b) The force tiling associated with this flowing dense suspension.
The bonds correspond to the pairwise forces, with larger polygons
representing grains with higher stress. The vertices of the tiling
represent height vectors h⃗ ¼ ðhx; hyÞ, whose difference provides
the pairwise force at each bond. Γ⃗x ¼ ðΓxx;ΓxyÞ and Γ⃗y ¼
ðΓyx;ΓyyÞ represent the sum of forces in the x and y directions,
respectively. The light blue regions represent periodic copies of the
system.

PHYSICAL REVIEW LETTERS 121, 128002 (2018)

128002-2



sum” of forces on every grain, i.e., the force vectors
arranged head to tail (with a cyclic convention), form a
closed polygon. Next, Newton’s third law imposes the
condition that every force vector in the system has an equal
and opposite counterpart that belongs to its neighboring
grain. This leads to the force polygons being exactly edge
matching. Extending this to all particles within the system
leads to a “force tiling” [11,24]. The adjacency of the faces
in the tiling is the adjacency of the grains, whereas the
adjacency of the vertices is the adjacency of the voids (the
heights are associated with the voids in the network). In
addition to the pairwise forces between grains, each particle
experiences a hydrodynamic drag, which can be repre-
sented as a body force. Imposing the constraints of vectorial
force balance in the presence of body forces leads to a
unique solution for modified height fields, given the
geometrical properties of the contact network [25]. This
allows us to construct the ensemble of force tilings
corresponding to the NESS of the suspension. The dis-
tribution of the hydrodynamic drag force to contacts
through the modified height vectors leads to some very
small contact forces that do not represent “real contacts.”
As we discuss below, we have a systematic way of
neglecting these in our statistical analysis.
Pair correlation functions.—Using the force tiling

representation, we compute the PCFV, defined to be

g2ðh⃗Þ ¼
�

A
NvðNv − 1Þ

XNv

i¼1

XNv

j≠i
δ(h⃗ − ðh⃗i − h⃗jÞ)

�
; ð4Þ

where Nv is the total number of voids in the system,
A ¼ jΓ⃗x × Γ⃗yj, and ρv ¼ Nv=A is the density of height
vertices in the force tiling. The PCFVare averaged over 200
configurations obtained from the simulated steady state of
dense suspensions at each ϕ and σxy [13]. We find a distinct

fourfold anisotropic structure in g2ðh⃗Þ, which quantitatively
captures the details of the changes in the organization of the
forces acting between particles as ϕ is increased (Fig. 2).
The anisotropy is sensitive, to a lesser extent, to increases in
σxy. The regions where g2ðh⃗Þ < 1 indicate regions of larger
contact forces, statistically, since this is where the height
vertices are farther apart than expected for an uncorrelated
distribution. As seen from Fig. 2, these regions lie along
the compressive direction for all values of ϕ and σxy.

Complementing these are the regions with g2ðh⃗Þ > 1,
which indicate regions of smaller forces. The angles
between these regions clearly increase as ϕ increases
[13]. These changes in g2ðh⃗Þ, especially its anisotropy,
have important consequences for the stress tensor, as we
show below.
Statistical ensemble.—Each force tiling is specified by a

set of vertices and a set of edges that connect these vertices.
The distances between the vertices quantify the internal

stress in the system, whereas the edges, which quantify the
specific contact forces in a configuration, can be thought of,
in a statistical sense, as fluctuating quantities, with con-
nections between pairs of vertices chosen with some
weights. We thus treat these vertices of the force tilings
as the points of an interacting system of particles. These
effective interactions arise from the constraints of mechani-
cal equilibrium, and from integrating out the edges. We
represent this effective interaction by a noncentral potential
computed from the measured pair correlation function,
similar to constructions used in colloidal and polymer
theory [26]:

V2ðh⃗Þ ¼ − log

 
g2ðh⃗Þ
g2ðjh⃗jÞ

!
: ð5Þ

The regularization through division by g2ðjh⃗jÞ is necessary
because there is strong clustering at very small distances in
height space [13], which reflects the behavior of very small
forces, much smaller than the repulsive force that needs to
be overcome to create frictional contacts [6,13]. In addition,
we add a short-ranged repulsive potential to V2ðh⃗Þ that
prevents clustering of vertices at the smallest force scales
[13]. The resulting potential Vϕ;σðh⃗Þ thus represents inter-
actions at intermediate and large scales in the force tilings.
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FIG. 2. (a) Observed pair correlation functions at σxy ¼ 2σ0, at
packing fractions ϕ ¼ 0.76, 0.78, and 0.8. ϕ ¼ 0.8 is above
ϕDST: the onset packing fraction for a regime of stress over which
the viscosity scales as σ, which defines DST (see Ref. [13]).
The forces (and consequently the heights) have been scaled by the
imposed shear stress. The change in symmetry of g2ðh⃗Þ is clearly
visible as the packing fraction is increased. (b) Potentials con-
structed using these pair correlation functions [Eq. (5)]. (c) A
comparison with pair correlations obtained from direct
Monte Carlo simulations of particles interacting via these
potentials.
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This potential encodes the full anisotropy of g2ðh⃗Þ, and as
we show below, this is crucial for understanding the
evolution of the anisotropy of the stress tensor. To check
whether such a potential is successfully able to reproduce
the original correlations, we perform Monte Carlo simu-
lations, as described in detail in Ref. [13]. The g2ðh⃗Þ
obtained from the Monte Carlo simulations are shown in
Fig. 2, and demonstrate that V2ðh⃗Þ captures the properties
at all but the smallest force scales.
The force tiles obtained from the simulations form an

ensemble with microstates defined by the set C≡ fh⃗ig. The
fundamental assumption we make is that this ensemble
of NESS is characterized by an a priori probability
pðCÞ ∝ exp½−VðCÞ�, where VðCÞ ¼Pi;j≠i Vϕ;σðh⃗i − h⃗jÞ
is the analog of the total energy of a configuration in
equilibrium statistical mechanics. We then characterize the
properties of the NESS by this generalized statistical
ensemble. The partition function of the system is then

Zϕ;σ ¼
1

Nv!

Z
∞

0

dA exp ð−Nvf�pAÞ

×
Z
A

YNv

i¼1

dh⃗i exp

�
−
X
i;j

Vϕ;σðh⃗i − h⃗jÞ
�
;

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ANv exp½−ϵϕ;σðA;NvÞ�

¼
Z

∞

0

dA expð−FA;ϕ;σÞ; ð6Þ

where the positions h⃗i are confined to be within the box
with area A, which is related to stresses since this is the
area of the force tiling. Here, f�p plays the role of a
pressure in the “NPT” ensemble in equilibrium statistical
mechanics of particles, and controls the fluctuations of A.
Since N1 is observed to be small in the simulations, we
assume that it vanishes, which leads to the relationship
A ¼ σ2ð1=μ2 − 1Þ [13].
We next construct a mean-field theory of μ by minimiz-

ing the effective “free-energy” function, FA;ϕ;σ, referred to
in the following as F . In order to compute F , we sample
ϵϕ;σðA;NvÞ [Eq. (6)]. Details of the sampling method are
provided in Ref. [13]. Transforming from A to μ, the free
energy per vertex is given by

fðμ;ϕ; σÞ≡ F=Nv

¼ f�pσ2
�
1

μ2
− 1

�
− log

�
σ2
�
1

μ2
− 1

�	

þ ϵϕ;σðμ; NvÞ
Nv

: ð7Þ

As an example, the functions fðμ;ϕ; σÞ obtained at
imposed stress σxy ¼ 100σ0 at different packing fractions
are shown in the inset of Fig. 3. We fix f�p ¼ 6.5 × 10−4 to

reproduce the observed value of μ at ϕ ¼ 0.8 and
σxy ¼ 100σ0.
Phase diagram for DST.—Finally, minimizing

fðμ;ϕ; σÞ, we compute μðϕ; σÞ≡ μðϕ; σxyÞ, and deduce
the viscosity and the DST phase diagram. The variation of μ
is provided in Fig. 4. We find that μ decreases as the
packing fraction ϕ and the confining shear stress σxy are
increased, in agreement with the variation observed directly
in the simulations [13]. Unfortunately, there are no exper-
imental measurements of μðϕ; σÞ in DST suspensions.
However, insight may be gained from three-dimensional
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simulations of nonthickening suspensions where the sec-
ond normal stress difference N2 is found to be roughly
linear with P [27], and thus the behavior of N2 gives a
reasonable approximation of that of P. In particular,
Cwalina and Wagner [28] provide N2 which is largely in
agreement with the present simulation method [29]. By the
present simulation method applied to three-dimensional
suspensions, N2=σxy increases (i.e., the “friction coeffi-
cient” of σxy=N2 decreases) at DST, as seen in Fig. 6 of
Ref. [6], and thus it appears reasonable that the exper-
imental ratio of σxy=P also decreases at this transition.
The DST boundary [13] is defined by the condition

ðd_γ=dσxyÞ ¼ 0. This relationship can be translated to one in
terms of μ using Eq. (3):

σxy
μ





 dμ
dσxy





 ¼ μ − μc
μþ μc

: ð8Þ

Using the values of μðϕ; σÞ obtained by minimizing
fðμ;ϕ; σÞ, we find that Eq. (8) is satisfied at two values
of the shear stress for 0.785 ≤ ϕ ≤ 0.8 if we choose μc to be
μð0.8; 100Þ (Fig. 4). This choice implies that the viscosity
diverges at ϕ ¼ 0.8 in the limit of large σ, where all
contacts are frictional. The inset of Fig. 4 demarcates the
DST region obtained from solving Eq. (8). This region is
not sensitive to the choice of μc as long as it is in the
vicinity of the smallest value observed at ϕ ≃ 0.8. The
precise numerical values are not crucial as Eq. (8) will have
two solutions as long as the generic features in g2ðh⃗Þ that
we obtain from the simulations are preserved. The results
for η as a function of ϕ and σxy are shown in Ref. [13].
Conclusion and outlook.—We have identified a corre-

lation function that exhibits significant changes in
anisotropy across the DST transition. The correlations
are in force space, and reflect the collective behavior
triggered by changes in the nature of the contact forces,
which often arise due to small changes in grain positions
that are difficult to identify in any positional correlations.
Remarkably, a theory based on pair potentials in force
space describes the macroscopic rheology. Our work also
highlights the changes in the macroscopic friction coef-
ficient, accompanying the DST transition. The decrease in
μ indicates that the pressure increase for an imposed
increase of shear stress is larger in the frictional branch
of DST than it is in the frictionless branch of DST [23].
There is, however, no singular change in μ across the DST
transition. A decrease in μðϕ; σÞ has also been associated
with the shear-jamming transition in dry grains [30]. In that
system, overlap order parameters of the force tile vertices,
evocative of spin glass order parameters, characterized
shear jamming [30]. In the DST steady states, these overlap
parameters correspond to autocorrelation functions of the
vertices of force tiles. In the future, we plan to use our
statistical ensemble to relate these autocorrelation functions
to changes in viscosity accompanying the DST transition.

Note that in equilibrium, stress autocorrelations are related
to the viscosity through the Green-Kubo relations.
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