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Abstract
We find that in simulations of quasi-statically sheared frictional disks, the shear jamming transition can be characterized by 
an abrupt jump in the number of force bearing contacts between particles. This mechanical coordination number increases 
discontinuously from Z = 0 to Z ≳ d + 1 at a critical shear value �

c
 , as opposed to a smooth increase in the number of 

geometric contacts. This is accompanied by a diverging timescale �∗ that characterizes the time required by the system to 
attain force balance when subjected to a perturbation. As the global shear � approaches the critical value �

c
 from below, one 

observes the divergence of the time taken to relax to a state where all the inter-particle contacts have uniformly zero force. 
Above �

c
 , the system settles into a state characterized by finite forces between particles, with the timescale also increasing as 

� → �+
c

 . By using two different protocols to generate force balanced configurations, we show that this timescale divergence 
is a robust feature that accompanies the shear jamming transition.
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1  Introduction

Rigidity, the ability of solids to sustain finite stresses, arises 
in crystalline systems due to their broken translational sym-
metry [1]. However, a wide variety of disordered materials 
like glasses, granular packings, suspensions, colloids, and 
gels exhibit rigidity even when translational symmetry is 
not broken. Rigidity in amorphous packings can be induced 
by the rapid cooling of liquids [2], increasing the density 

of finite-sized particles [3] or by the application of a shear 
deformation [4, 5]. An interesting example is a packing of 
frictional athermal disks undergoing shear. As the shear is 
increased, contacts develop between the disks. When a criti-
cal number of contacts per particle Zc = d + 1 are created, 
the system is able to sustain external stresses, a phenomenon 
termed shear jamming [5]. Shear thus provides a different 
control parameter with which to explore the behavior of sys-
tems close to jamming, particularly in the context of dense 
suspensions [6].

The shear jamming transition of quasi-statically sheared 
disks has been the subject of several recent studies [5, 7–12]. 
Experiments with frictional photoelastic disks [13, 14], pio-
neered by Bob Behringer, show that such a shear induces jam-
ming for a range of densities �SJ below the random close pack-
ing density �RCP (where packings of frictionless disks become 
rigid) [5]. A theoretical model using solely the stresses near 
the shear jamming transition showed that a broken transla-
tion symmetry indeed emerges in ‘force-space’ [7, 15]. In 
other computational studies, the shear jamming transition has 
been sought to be understood in geometrical terms [8, 16–18]. 
Whereas indications of the jamming transition as a critical 
phenomenon have been extensively explored for packings 
of frictionless particles [3, 19–21], critical aspects of shear 
jamming, if present, are largely unexplored. In this paper we 
report a dynamical hallmark of critical behaviour, namely the 
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divergence of timescales of relaxation, as the shear jamming 
transition is approached, which we compute by studying the 
relaxation of forces in the system. We also describe a new pro-
cedure of identifying contacts between particles which can be 
used to precisely locate the shear jamming transition (Fig. 1). 
Although we present results specifically for a system of disks 
in two dimensions (d = 2), we have also performed the same 
analysis in d = 3, and find that similar observations hold for 
the higher dimensional case (d = 3) as well [22].

2 � Simulating shear jamming

We consider repulsive soft disks with frictional contact inter-
actions modelled by a Hookean potential (linear-spring dash-
pot model [23]). This model has been used to study the shear 
jamming transition in several recent studies [8, 17, 24, 25]. 
The normal and tangential components of the contact force 
F⃗
ij
c  between particles i and j are given by

Here �n and �t are elastic constants, while �n and �t are damp-
ing coefficients for the normal and the tangential velocities 
respectively. meff =

√
mimj

mi+mj

 is the effective mass of the two 

particles in contact. 𝛿n⃗ij is the overlap between the spheres 
in contact along the line joining the centers of the two par-
ticles (see Fig. 2). Δs⃗t is the tangential displacement vector 
between the two disks from the point of contact. vn and vt are 
the normal and the tangential components of the relative 
velocity v⃗i − v⃗j between the two particles. The maximum 
value of the tangential force Fij

t  is given by the Coulomb 
criterion Fij

t ≤ �F
ij
n , where Fij

n is the normal force, and � is 

(1)
F⃗ij
c
= (𝜅n𝛿n⃗ij − meff𝜁nvnn̂ij)
�������������������������

normal

− (𝜅tΔs⃗t + meff𝜁tvt t̂ij)
�����������������������

tangential

.
the friction coefficient. The equation of motion for each par-
ticle is given by

The summation is over all particles j that are in contact with 
particle i. Ii is the moment of inertia of particle i and F⃗ij

t  
is the tangential force acting on particle i due to particle 
j. Global damping is introduced through the viscous term 
−𝜂v⃗ , which may, e.g., be thought of arising from the friction 
between particles and the bottom plate in two dimensional 
granular experiments. As is clear from Eq. 2, m∕� sets the 
natural unit of time. This damping ensures that mechanical 
equilibrium is achieved within a reasonable computational 
time [23]. Similarly, we also damp the rotational motion 𝜃̇i 
and 𝜃̇j (see Fig. 2) of the particles with the same damping 
coefficient � . The magnitude of the force at each contact and 
the total force on each particle are given by

Here | … | represents the magnitude of the vector.
In our simulations we consider a fixed system size of 

Ntotal = 2000 disks, distributed as a 50:50 mixture with 
diameters � and 1.4� , with all particles having an equal 
mass mi = m . The simulation units we use are: length 
[L] = � , energy [E] = �n�

2
∕2 ≡ � , mass [M] = m, and time 

[T] = 3m∕� = �
√
m∕� . The input parameters in our simu-

lations are �n = �t = 2 , �n = 3
√
�∕m∕� , �t = �n∕2 , and the 

friction coefficient � = 1 . The isotropic jamming density for 

(2)

mi

dv⃗i

dt
=

∑

j

F⃗ij
c
− 𝜂v⃗,

Ii
d2𝜃i

dt2
=

∑

j

F⃗
ij

t

𝜎i

2
− 𝜂

d𝜃i

dt
.

(3)|Fc|ij =
√(

F
ij
n

)2

+

(
F
ij

t

)2

and |Ftot|i =
||||||

∑

j

F⃗ij
c

||||||
.

(a) (b)γ → γ−
c γ → γ+

c

Fig. 1   Quasi-statically sheared configurations of frictional disks a 
just below the shear jamming threshold �c and b just above �c . The 
blue bonds represent geometric contacts between particles and the 
red bonds represent contacts with finite forces (mechanical contacts). 
The geometric coordination number ZG increases smoothly across the 
transition whereas the mechanical coordination number ZM shows an 
abrupt jump from 0 to d + 1, allowing us to precisely locate the tran-
sition

F ij
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Fig. 2   A schematic of two particles in contact. The normal force Fij
n 

and tangential force Fij

t  are computed using a linear-spring model 
(Eq. 1)
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packings of frictionless soft harmonic discs is �RCP ≈ 0.843 
[3, 24].

In order to characterize which configurations reach force 
balance and which do not, we monitor the following system 
averaged quantities in our simulations

These are the average magnitude of the contact forces and 
the average magnitude of the force balance in the system 
respectively. Here Ncontacts is the total number of contacts 
between particles that are geometric neighbours, i.e. have a 
finite overlap or are just touching.

Finally, we use two different protocols to generate force 
balanced configurations of sheared frictional disks: a Dis-
crete Element Method (DEM) to simulate the relaxation of 
the system after an affine shear, and an athermal quasi-static 
shear followed by DEM relaxation (AQS + DEM).

2.1 � Discrete element method (DEM)

In the DEM protocol, the sequence of configurations are 
generated as follows (1) an affine deformation is applied to 
the particle coordinates in small increments of �� = 0.01 
and (2) the system is then relaxed using DEM dynamics. 
Lees-Edwards boundary conditions are used in this relaxa-
tion step. The DEM relaxation is similar to well-known 
molecular dynamics simulations [23]. First, we compute the 
forces acting on each particle using the force-displacement 
law given in Eq. (1) and then, we use these forces to update 
the positions and velocities of the particles. We terminate the 
dynamics of the system when a stopping criterion is reached, 
which in our case (as in [17]) is when the average total force 
falls below a threshold ⟨�Ftot�⟩ ≤ 5 × 10−12.

Our initial configurations are produced by starting from 
a hard disk fluid at a low density � = 0.5 . We then apply a 
fast initial compression using Monte Carlo simulations, i.e. 
by compressing the box uniformly such that the maximum 
number of overlaps do not exceed 0.1 × Ntotal . Overlaps are 
removed by running NVT Monte Carlo simulations for the 
hard-sphere potential, we continue the compression till the 
desired density is reached. Our data has been averaged over 
atleast 15 independent initial samples. These simulations 
have been performed using the LAMMPS software [26].

2.2 � Athermal quasi‑static (AQS) shear + DEM

In order to ensure that our results are independent of pro-
tocol we generate force balanced states using an alternate 
method. This involves two steps:

(4)

⟨�Fc�⟩ =
1

Ncontacts

�

ij

�Fc�ij,

⟨�Ftot�⟩ =
1

Ntotal

�

i

�Ftot�i.

(1)	 The application of a shear deformation (with 
�� = 5 × 10−5 ) and relaxation using a frictionless force 
law (AQS shear). This frictionless force law is given 
by only the normal component in Eq. (1). We then 
minimize the energy of the system using the conjugate 
gradient method. This generates a sequence of energy 
minimum configurations at different values of strain. 
Such a sequence of frictionless sheared configurations 
has been employed previously [8, 17, 27] to analyse 
geometric aspects of shear jamming.

(2)	 Using each of the energy minimized configura-
tions versus strain, we apply a uniform compression 
( �tol = 5 × 10−5 ) which leads overlaps between the 
geometric contacts of an order equal to �tol , which are 
unbalanced forces. This is one way to apply load on 
this system. The system is then allowed to relax using 
frictional DEM dynamics (which involves the full 
force law in Eq. (1)). We terminate the dynamics when 
the average total force falls below the threshold value 
⟨�Ftot�⟩ ≤ 5 × 10−12.

3 � Geometric contacts versus mechanical 
contacts

The shear jamming transition is intimately linked with the 
formation of shear-induced contacts between particles. 
Indeed, the process can be thought of as a bath of ‘rattler’ 
particles that contribute increasingly to the contact network 
as the shear is increased [4]. Conversely, the fraction of non-
rattlers serves as a reliable parameter with which to group 
various global properties of the system near the transition 
[5]. In our simulations however, the relaxation dynamics 
ensure that in the final state there is either a system spanning 
contact network of force-bearing contacts, or identically zero 
forces on all contacts. To better understand the structure of 
the contact network near the shear jamming transition we 
quantify the average coordination of the particles in three 
different ways, we define: 1. a geometric coordination num-
ber ZG that measures all contacts between particles (force-
bearing or otherwise), 2. a coordination number ZGB defined 
using a bootstrap procedure where we recursively remove 
particles that have only one contact from the network, and 
3. a mechanical coordination number ZM that only counts 
force-bearing contacts between particles. In cases 2 and 
3, we report the average coordination number for particles 
which are not rattlers, i.e., those that have more than one 
contact.

3.1 � Geometric coordination number (ZG)

Two particles are defined to be geometric neighbours if the 
distance rij between them obeys rij ≤ �ij , i.e. if they have a 
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finite overlap, or are just touching (here �ij =
1

2
�i + �j is the 

summation of their radii). The geometric coordination number 
ZG is then defined to be

Ngeometric contacts is the sum of the number of geometric con-
tacts of Ntotal particles. Geometric contacts can have pre-
cisely zero force (within numerical error in our simulations). 
This occurs because once two particles are separated by a 
distance rij = �ij , there is no force between them and there-
fore no relative evolution. Indeed, below the shear jamming 
transition even though there are a finite number of contacts 
in the system, we find that all contacts have either zero force, 
or forces comparable in magnitude to the total force on each 
particle. There is therefore no separation in scale between 
the force balance and the contact forces. The average con-
tact force computed for the geometric contact network is 
shown in the inset of Fig. 3a, showing a smooth increase 
with increasing ZG.

3.2 � Coordination using ‘geometric bootstrap’ ( Z
GB

)

Particles with less than two geometric contacts are defined 
to be ‘geometric rattlers’. The definition of rattlers in this 
case is motivated by the fact that particles with only a single 
contact can never be in force balance as long as there are 
finite forces in the system, whereas particles with two or 
more neighbors can. The definition of rattlers as particles 
with less than or equal to one contact is ambiguous for the 
following reason. Let us suppose a geometric rattler with a 
single contact is removed from the system. This then leads to 
a decrease in the number of contacts of its neighbour, which 
can in-turn become a geometric rattler itself. If one were to 
follow this procedure to completion, this would require a 
recursive removal of rattler contacts from the system until 
all particles have either 0 or ≥ 2 contacts. We term such a 
procedure ‘Geometric Bootstrap’ (GB), and the coordina-
tion of the system after such a recursion is denoted by the 
symbol ZGB . The geometric boostrap coordination number 
ZGB is then defined to be

Ngeometric contacts is the sum of the number of geometric con-
tacts of non-rattler particles, i.e.,Ntotal − Ngeometric rattlers . The 
average contact force computed for the contact network after 
the geometric bootstrap procedure is shown in the inset of 
Fig. 3a. This displays a smooth increase with ZGB , qualita-
tively similar to the increase with respect to ZG . However, 
crucially this increases the average coordination of the 

(5)ZG =

Ngeometric contacts

Ntotal

.

(6)ZGB =

Ngeometric contacts

Ntotal − Ngeometric rattlers

.

system (see Fig. 3b). The condition ZGB = d + 1 therefore 
occurs at a lower strain value as compared to ZG . By analyz-
ing the force balance of the system using force bearing con-
tacts, we find that ZGB predicts the shear jamming transition 
with surprising accuracy. The geometric bootstrap proce-
dure therefore represents a purely geometric way to precisely 

(a)

(b)

Fig. 3   a The average contact force ⟨�Fc�⟩ computed for the geomet-
ric and the mechanical contact network as a function of the global 
strain � . (Inset) Variation of ⟨�Fc�⟩ as a function of the three differ-
ent coordination numbers ZG,ZGB and ZM using the DEM protocol 
for two different densities � = 0.81 and � = 0.82 . The vertical line 
marks Z = 3 (= d + 1). b The three different coordination numbers 
ZG,ZGB and ZM as a function of strain for density � = 0.82 and (Inset) 
� = 0.81 . The horizontal line represents Z  =  3. We find that the 
mechanical coordination number ZM (green points) displays an abrupt 
jump from 0 to ≳ d + 1 allowing a precise determination of the transi-
tion point. The coordination using the geometric bootstrap procedure 
ZGB (blue points) is continuous below and closely follows the evolu-
tion of ZM above the transition (color figure online)
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locate the transition. We expect that the precision with which 
an isostatic value of ZGB identifies the shear jamming transi-
tion will get better at larger friction values and become exact 
in the infinite friction limit, based on earlier analyses [17].

3.3 � Mechanical coordination number ( Z
M

)

Finally, we define a mechanical coordination number ZM 
which only accounts for contacts that carry finite forces 
between particles which are in force balance. A contact on 
a particle is defined to be force bearing if the magnitude of 
the contact force is much larger than the total force on the 
particle. We choose this criterion to be |Fc|ij∕|Ftot|i > 102 , 
where |Ftot|i is the total force on particle i defined in Eq. (3). 
The value 102 is chosen so that in our simulations, numerical 
errors will not lead to a violation of Newton’s third law. Spe-
cifically, if particle j is counted as a mechanical contact of 
particle i, particle i should in turn be counted as a mechani-
cal contact of j. We find 102 to be the smallest threshold that 
guarantees this feature. Particles with less than two force-
bearing contacts are defined to be ‘mechanical rattlers’. The 
mechanical coordination number ZM is then defined to be

Nmechanical contacts is the sum of the number of mechanical 
contacts of force-bearing particles. In our simulations, we 
only compute ZM for force balanced configurations, which 
we define to be configurations with an average contact force 
⟨�Fc�⟩∕⟨�Ftot�⟩ > 103 . The average contact force ⟨�Fc�⟩ com-
puted using this mechanical contact network is shown in the 
inset of Fig. 3a. ⟨�Fc�⟩ displays a discontinuity at ZM = 3 , 
allowing us to precisely locate the shear jamming transition 
�c . Remarkably, this value of �c is very close to the value 
obtained from the condition ZGB = d + 1 (see Fig. 3b). Note 
that in Fig. 3 we have shown results for two different densi-
ties, with the transition occurring at a lower strain value �c 
as the packing fraction is increased. We find that the that 
precise value of the transition point depends on the start-
ing density, and that this dependence is the only significant 
influence of the density, consistent with previous studies [5, 
15, 17].

4 � Diverging timescale

We next study the relaxation dynamics of the system close to 
the shear jamming transition �c , as identified by the mechani-
cal coordination number in the previous section. After each 
strain step, we relax the system using the DEM method and 
we monitor the total force as a function of time. The DEM 
dynamics that we use ensures that the average total force 

(7)ZM =

Nmechanical contacts

Ntotal − Nmechanical rattlers

.

⟨�Ftot�⟩ on the particles tends to zero at late times. However, 
the configurations below and above the shear jamming tran-
sition display fundamentally different relaxation behaviour.

4.1 � Critical relaxation

Above shear jamming 𝛾 > 𝛾c , at late times a finite force 
bearing network of contacts emerges. The magnitude of 
the force on each contact is well separated from the mag-
nitude of the force balance on the corresponding particle 
|Fc|ij∕|Ftot|i ≫ 102 . Below shear jamming 𝛾 < 𝛾c , although 
the mechanical coordination remains precisely zero, an 
increasing number of geometric contacts develop as the 
shear is increased. These states are characterized by inad-
equate force balance on each grain |Fc|ij∕|Ftot|i < 102.

Starting with a single initial configuration we measure 
the evolution of ⟨�Fc�⟩ , ⟨�Ftot�⟩ (defined in Eq. 4), along 
with the ratio ⟨�Ftot�⟩∕⟨�Fc�⟩ . In Fig. 4a we plot this ratio 
⟨�Ftot�⟩∕⟨�Fc�⟩ for a single run using the AQS + DEM pro-
tocol with a starting density � = 0.82 . In the 𝛾 > 𝛾c regime, 
as the system relaxes, the average total force on each disk 
⟨�Ftot�⟩ evolves to zero, while ⟨�Fc�⟩ remains finite. The ratio 
therefore decays to zero at large times. In contrast, for 𝛾 < 𝛾c , 
as the system relaxes ⟨�Ftot�⟩ and ⟨�Fc�⟩ together decay to 
zero. We find that after an initial decay this ratio begins to 
increase. When both ⟨�Ftot�⟩ and ⟨�Fc�⟩ are within numerical 
error in our simulations, the ratio ⟨�Ftot�⟩∕⟨�Fc�⟩ saturates to 
a constant value of O(1) . At the critical point �c we find that 
the relaxation of ⟨�Ftot�⟩∕⟨�Fc�⟩ is well-fit with a power law 
t−� . These lines in Fig. 4a, b mark a separatrix between the 
two regimes of decay, above and below the shear jamming 
transition. We find from our simulations that � ≈ 1 for both 
densities and protocols that we have studied.

4.2 � Estimating a time scale ( �∗)

We next estimate a characteristic time scale �∗ for the relaxa-
tion of the forces in the system at each strain value. We 
extract this time scale from the relaxation of the average 
total force on particles ⟨�Ftot�⟩ as a function of time. Since we 
follow the evolution of a single initial configuration for this 
measure, this decay in our simulations has a large amount 
of noise. Therefore at each strain value, we average the data 
in log bins to obtain a smooth curve. In Fig. 4b, we plot 
the relaxation of ⟨�Ftot�⟩ as a function of time t at different 
strain values close to the shear jamming transition. We find 
that these decays are exponential both above and below the 
transition, which we identify using the discontinuity in the 
mechanical coordination number ZM (see Fig. 3b). We find 
that the decay of ⟨�Ftot�⟩ can be fit well with a decay law of 
the form ⟨�Ftot�⟩(t) ∝ exp(−t∕�∗)t−� with � ≈ 1.1 , which can 
be used to obtain an estimate for �∗ . In practice, we estimate 
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�∗ by first removing the power-law component of the decay 
and fitting the remaining data to a purely exponential decay.

In Fig. 5 we plot the extracted timescales �∗ for two cases 
(a) a single run using the AQS + DEM protocol at a den-
sity � = 0.82 and (b) a single run using the DEM protocol 
at a density � = 0.81 . As the shear jamming transition is 

approached from above and below, the time scale in both 
cases becomes larger and displays a divergence at the tran-
sition. At the critical point the relaxation is fit well with a 
power law t−� with � ≈ 1.1 . In the inset of Fig. 5 we plot the 
extracted timescales �∗ as a function of the distance to the 
transition Δ� . We find that the approach is well characterized 
by a power law �∗ ∝ Δ�−� , with � ≈ 3.4 for the DEM case 
and � ≈ 2.5 for AQS + DEM.

(a)

(b)

Fig. 4   a The evolution of the ratio ⟨�Ftot�⟩∕⟨�Fc�⟩ for different values 
of the global strain. The data represents a single run using an initial 
configuration at a starting density � = 0.82 and subsequently evolu-
tion using the AQS + DEM protocol. b The relaxation of the average 
total force on the particles ⟨�Ftot�⟩ as a function of time at different 
strain values using the AQS  +  DEM protocol from a starting den-
sity � = 0.82 . We estimate �∗ (which we plot in Fig. 5a by fitting the 
decay to a form ⟨�Ftot�⟩(t) ∝ exp(−t∕�∗)t−� . At the critical point the 
relaxation of ⟨Ftot⟩ is fit well with a power law t−� with � ≈ 1 . (Inset) 
The relaxation of the average total force ⟨�Ftot�⟩ using the DEM proto-
col from a starting density � = 0.81 . The critical relaxation is fit well 
with a power law t−� with � ≈ 1.1

(a)

(b)

Fig. 5   a Plot of �∗ , the extracted time scale as a function of the strain 
using the AQS  +  DEM protocol from a starting density � = 0.82 . 
(Inset) The same data plotted in log-log scale. b Plot of �∗ using the 
DEM protocol from a starting density � = 0.81 . As the shear jam-
ming transition is approached, this time scale becomes larger, dis-
playing a diverges at the critical strain value �c . (Inset) The same data 
plotted in log–log scale. The divergence can be reliably fit with a 
power law at large Δ�
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The large variation in the values of the exponents � and 
� arises from the difficulties associated with attaining force 
balance and consequently estimating timescales close to the 
transition. In this paper, we have established that the shear 
jamming transition displays dynamical hallmarks of criti-
cal behaviour. In order to ascertain the dependence of these 
exponents on protocol and density, a more detailed study 
over a larger range of densities near the shear jamming tran-
sition is required.

Finally, based on the data presented in Fig. 5, we con-
clude that for a given microscopic evolution rate of the 
system (which corresponds to the evolution dynamics we 
use in our simulations), as the global shear � approaches 
the critical value �c from below, the time taken to relax to 
a state where all the inter-particle contacts have uniformly 
zero force, diverges. Above 𝛾 > 𝛾c , the system settles into a 
state characterized by finite forces between particles, with 
the timescale also increasing as � → �+

c
.

5 � Discussion

In this paper we have simulated amorphous packings of fric-
tional disks subject to an external shear close to the shear 
jamming transition. We found that the transition can be char-
acterized by an abrupt jump in the number of force bearing 
contacts between particles, ZM . This transition is accompa-
nied by a diverging timescale �∗ that characterizes the time 
required by the system to attain force balance.

However, several open questions remain. The origin of 
this timescale divergence near the transition remains to be 
elucidated. Recent studies have found a viscosity divergence 
and dynamical slowing down at the density-driven friction-
less jamming transition [28, 29]. In that case an isolated low 
energy mode in the Hessian accompanies the slowdown. The 
divergence of timescales we find is driven by shear strain 
rather than density. We have analyzed the Hessians asso-
ciated with the contact networks that form in our system, 
however we have not been able to identify such a mode. It 
would be interesting to understand the origin of this dif-
ference between the two types of jamming transitions. A 
thorough investigation of the effect of density on the shear-
jamming strain, over a wider range of densities than consid-
ered here, will be carried out in the future, following work 
reported in [30].

Finally, in experiments of sheared frictional particles 
below �SJ , the stresses are mediated essentially along 
one-dimensional structures known as ‘force chains’. 
Such states are termed ‘fragile’ [5, 31], and are force bal-
anced configurations with ZG < d + 1 . We have not been 
able to capture the fragile states in our simulations since 
the forces in the system are then under-constrained, and 

finding a solution to particle-level force balance there-
fore necessitates the emergence of additional constraints 
involving the positions of the particles. This situation 
seems to be rare in our simulations. Thus, further investi-
gations along the lines reported here are needed to eluci-
date the properties of fragile states.
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