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Introduction

Branching processes are prototypical models of systems where new
particles are generated at every time step.

Well studied in the context of evolution, epidemic spreads, nuclear
reactions amongst others.

Related to several models such as continuum limit of
branching-annihilating-random-walk (DP Universality), GREM.

Used in the modelling of disordered systems and spin-glasses
where energy levels are random variables.
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Branching Brownian Motion

At each time step [t, t +∆t] the particle can:

A) die with probability d∆t

B) split into two independent particles with probability b∆t

C) diffuse by a distance ∆x = η(t)∆t, with probability 1− (b+d)∆t.

〈η(t)〉 = 0, 〈η(t1)η(t2)〉 = 2Dδ(t1 − t2) (1)
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Branching Brownian Motion
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Figure: A realization of the dynamics of branching Brownian motion with death
(left) in the supercritical regime (b > d) and (right) in the critical regime (b = d).
The particles are numbered sequentially from right to left as shown in the inset.
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Extreme Value Statistics

Extreme value statistics has been growing in prominence.

In many real world examples the extreme value is not independent of
the rest of the set and there are strong correlations between
near-extreme values.

Examples include extreme temperatures as part of heat or cold
waves, earthquakes and financial crashes where extreme
fluctuations are accompanied by foreshocks and aftershocks.

Particularly important in disordered systems where energy levels near
the ground state become important at low but finite temperature.

Although EVS of independent identically distributed (i.i.d.) variables
are fully understood, very few analytical results for strongly
correlated random variables.
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The Backward Fokker-Planck Approach

We look at the contribution from the first time step [0,∆t] to the
final time step t +∆t

︸︷︷︸

d∆t b∆t 1− (b + d)∆t

t

x

0

∆t

∆x = η(0)∆t

A) B) C)

t +∆t

x = 0
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Number of Particles in the system

P(n, t) = Probability there are exactly n particles at time t.

Using the Backward Fokker-Planck approach

P(n, t +∆t) = [1− (b + d)∆t]P(n, t) +

b∆t

n∑

m=0

P(m, t)P(n −m, t) + d∆t δn,0 . (2)

In the ∆t → 0 we have

∂P(n, t)

∂t
= −(b + d)P(n, t) + b

n∑

m=0

P(m, t)P(n −m, t) + d δn,0 . (3)

We can solve this using standard generating functions.
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Number of Particles in the system

The solutions are

P(0, t) =
d(ebt − edt)

bebt − dedt
, P(n ≥ 1, t) = (b − d)2e(b+d)t b

n−1(ebt − edt)n−1

(bebt − dedt)n+1
.

(4)

In the critical regime (b = d) this reduces to

P(0, t) =
bt

1 + bt
, P(n ≥ 1, t) =

(bt)n−1

(1 + bt)n+1
. (5)

The average number of particles is

〈N(t)〉 = e(b−d)t . (6)
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The Rightmost Particle

C (n, x , t) = joint probability that there are n particles in the system
at time t with all the particles to the left of x .

Conditional Probability Q(x , t|n) = C(n,x ,t)
P(n,t)

PDF of the position of the rightmost particle

P(x , t|n) = ∂

∂x
Q(x , t|n). (7)

The initial condition is

Q(x , 0|n) = θ(x) for n > 1 (8)

The boundary conditions are

Q(x , t|n) =
{

1 for x → ∞
0 for x → −∞.

(9)
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The Rightmost Particle (Cont.)

We use the backward Fokker Planck approach.

We have

C (n, x , t +∆t) = (1− (b + d)∆t) 〈C (n, x − η(0)∆t, t)〉η(0)

+ b∆t

n∑

r=0

C (r , x , t)C (n − r , x , t) + d∆t δn,0 .(10)

In the ∆t → 0 we have

∂C (n, x , t)

∂t
= D

∂2C (n, x , t)

∂x2
− (b + d)C (n, x , t) +

2bP(0, t)C (n, x , t) + b

n−1∑

r=1

C (r , x , t)C (n − r , x , t) + d δn,0 . (11)

Linear equation which can be solved recursively.
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Relation to FKPP Equation

For unconditioned BBM: F (x , t) =
∑∞

n=0 C (n, x , t). One recovers

∂F (x , t)

∂t
= D

∂2F (x , t)

∂x2
− (b + d)F (x , t) + bF 2(x , t) + d , (12)

For b > d : Fisher-Kolmogorov-Petrovsky-Piscounov type of
non-linear equations which allow for a traveling front solution
with a well defined front velocity v .

For b = d : the solution is diffusive at late times (the non-linearities
give rise to only sub-leading corrections).

Unfortunately, for finite t, this is not exactly solvable.
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Late Time Behaviour

We can remove the linear term by making the transformation

C (n, x , t) = e
∫
f (t′)dt′C ◦(n, x , t) =

e(b+d)t

(bebt − dedt)2
C ◦(n, x , t) . (13)

with

f (t) = 2bP(0, t) − (b + d) = (d − b)
bebt + dedt

bebt − dedt
. (14)

We then have

∂C ◦(n, x , t)
∂t

= D
∂2C ◦(n, x , t)

∂x2

+
be(b+d)t

(bebt − dedt)2

n−1∑

r=1

C ◦(r , x , t)C ◦(n − r , x , t) .(15)
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Late Time Behaviour (Cont.)

For the conditional probability Q(x , t|n) we have

∂Q(x , t|n)
∂t

= D
∂2Q(x , t|n)

∂x2
+

(b − d)2e(b+d)t

(ebt − edt)(bebt − dedt)

n−1∑

r=1

[

Q(x , t|r)Q(x , t|n − r)− Q(x , t|n)
]

. (16)

By conditioning on n we obtain a set of linear diffusion equations
with source terms which can be solved recursively starting from
n = 1, for all t, b and d .
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Diffusion Equation with a Source

The general diffusion equation with a time-dependent source term

∂

∂t
G (x , t) = D

∂2

∂x2
G (x , t) + σ(x , t), (17)

With a given initial condition G (x , 0),

Has the exact solution

G (x , t) =

∫ ∞

−∞

dx ′√
4πDt

exp

(

−(x − x ′)2

4Dt

)

G (x ′, 0)

+

∫ t

0

dt ′
√

4πD(t − t ′)

∫ ∞

−∞
dx ′ exp

(

− (x − x ′)2

4D(t − t ′)

)

σ(x ′, t ′) . (18)
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Small n solutions

For n = 1 (no source term) we have the exact solution

Q(x , t|1) = 1

2
erfc

( −x√
4Dt

)

, (19)

where erfc(x) = 2√
π

∫∞
x

e−u2 du is the complementary error function.

The corresponding PDF of the position of the rightmost particle is

P(x , t|1) = ∂

∂x
Q(x , t|1) = 1√

4πDt
exp

(

− x2

4Dt

)

. (20)

This is purely diffusive at all times.

For n = 2 we have

Q(x , t|2) = (b − d)2
(
bebt − dedt

ebt − edt

)∫ t

0

dt ′
√

4πD(t − t ′)
×

e(b+d)t′

(bebt
′ − dedt

′

)2
exp

(

− (x − x ′)2

4D(t − t ′)

)
1

4
erfc

2

(

− x ′√
4Dt ′

)

.(21)
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Small n solutions (Cont.)

At late times:

Q(x , t|2) → 1

2
erfc

(

− x√
4Dt

)

. (22)

 0
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General n

The cumulative probability is bounded for all x and t

(0 < Q(x , t|n) < 1).

Therefore at large t, the source term tends to zero as ∼ e−|b−d|t

(for b 6= d), and ∼ 1/(bt2) (for b = d).

Thus, at large times Q(x , t|n) obeys the simple diffusion equation
for all n ≥ 1 and the solution behaves for large t as

Q(x , t|n) ∼ 1

2
erfc

( −x√
4Dt

)

, (23)

independently of n.

The PDF of the rightmost (and by symmetry leftmost) particle is
diffusive at large times.
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Interpretation

Conditioning slows down the motion of the rightmost particle
from ballistic to diffusive.

For b > d one picks up contributions only from atypical diffusive
trajectories. ntypical ≈ e(b−d)t .

For b ≤ d , this correctly describes the late time behavior of the
system. ntypical ≈ bt.

Although the individual behaviour of the particles is diffusive, they
are strongly correlated.

In order to understand these correlations, we study the gaps
between the succesive particles.
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Gap Statistics

Remarkably (as we show), the PDFs of these gaps become
stationary at large times.

We focus on the first gap g1(t) = x1(t)− x2(t).

We define P(n, x1, x2, t) = PDF that there are exactly n particles
(n ≥ 2) at time t, with the first particle at position x1 and the second
at position x2 < x1.

We start with the simplest case n = 2 which is already nontrivial.
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Two Particle Sector

0
∆t

t+∆t
x1x2 x1x2

+ +

(i) (ii)

Using the Backward Fokker-Planck approach

P(2, x1, x2, t +∆t) =

(1− (b + d)∆t) 〈P(2, x1 − η(0)∆t , x2 − η(0)∆t, t)〉η(0)
+2b∆tP(0, t)P(2, x1, x2, t) + 2b∆tP(1, x1, t)P(1, x2, t). (24)
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Two Particle Sector (Cont.)

Expanding and taking the limit ∆t → 0, we have

∂

∂t
P(2, x1, x2, t) = D

(
∂

∂x1
+

∂

∂x2

)2

P(2, x1, x2, t)

+f (t)P(2, x1, x2, t) + 2bP(1, x1, t)P(1, x2, t) , (25)
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Exact Solution

We remove the linear term by the customary transformation

P(2, x1, x2, t) =
e(b+d)t

(bebt − dedt)2
P◦(2, x1, x2, t). (26)

We then have:

∂

∂t
P◦(2, x1, x2, t) = D

(
∂

∂x1
+

∂

∂x2

)2

P◦(2, x1, x2, t)

+2b
(bebt − dedt)2

e(b+d)t
P(1, x1, t)P(1, x2, t) . (27)

Change of variables (to Centre of Mass and Gap)

s =
x1 + x2

2
g1 = x1 − x2 > 0 (28)
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Exact Solution (Cont.)

This yields

∂

∂t
P◦(2, s, g1, t) = D

(
∂

∂s

)2

P◦(2, s, g1, t)

+2b
e(b+d)t

(bebt − dedt)2
(b − d)4

1

4πDt
exp

(

−2s2 + 1
2g

2
1

4Dt

)

. (29)

Which is a diffusion equation with a source term!
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Exact Solution (Cont.)

Conditional PDF P(s, g1, t|2) = P(2,s,g1,t)
P(2,t) .

We have

P(s, g1, t|2) =
(

bebt − dedt

b(b − d)2(ebt − edt)

)

P◦(2, s, g1, t) . (30)

Integrating w.r.t. to s ′ we have the exact solution:

P(s, g1, t|2) =
(b − d)2

2πD

(
bebt − dedt

ebt − edt

)

×

∫ t

0
dt ′

e(b+d)t′

(bebt′ − dedt
′)2

e
− g21

8Dt′
− s2

2D(2t−t′)

√

t ′(2t − t ′)
. (31)
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Marginal Distribution of the Centre of Mass

Given the exact solution we can derive the marginal distributions of
s and g1 respectively.

Integrating over g1 gives us the marginal PDF of the centre of mass

P(s, t|2) = (b − d)2
(
bebt − dedt

ebt − edt

)

×

∫ t

0
dt ′

e(b+d)t′

(bebt
′ − dedt

′

)2

exp(− s2

2D(2t−t′))
√

2πD(2t − t ′)
. (32)

This is dominated by the region t ′ → 0, leading to

P(s, t|2) ∼ 1√
4πDt

exp
(

− s2

4Dt

)

for large t, consistent with diffusive

behaviour.
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Marginal Distribution of the Gap

Integrating over the centre of mass variable s marginal PDF of
the gap

P(g1, t|2) = (b−d)2
(
bebt − dedt

ebt − edt

)∫ t

0
dt ′

e(b+d)t′

(bebt′ − dedt
′)2

exp(− g2
1

8Dt′
)√

2πDt ′
.

(33)

This gap distribution becomes stationary at large times
P(g1, t → ∞|2) = p(g1|2)
We have

p(g1|2) = (b − d)2 max(b, d)

∫ ∞

0
dt ′

e(b+d)t′

(bebt
′ − dedt

′

)2
exp(− g2

1
8Dt′

)√
2πDt ′

.

(34)
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Stationary Behaviour

This stationary gap PDF has the following asymptotic behaviour for
g1 ≫ 1

p(g1|2) ∼







|b − d |3/2√
2D max(b, d)

exp

(

−
√

|b − d |
2D

g1

)

, for b 6= d ,

8

(
D

b

)

g−3
1 , for b = d .

Exponential decay in the off-critical phases.

Scale-free power law decay at the critical point.
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Higher n Sectors

For any n > 2, following the same procedure:

∂P(n, x1, x2, t)

∂t
= D

(
∂

∂x1
+

∂

∂x2

)2

P(n, x1, x2, t)

+f (t)P(n, x1, x2, t) + b S(n, x1, x2, t), (35)

The source term is:

S(n, x1, x2, t) =
∫ x2

−∞
dx3

[

2
∑

τ∈S3
P(1, xτ1 , t)P(n − 1, xτ2 , xτ3 , t)

+

n−2∑

r=2

∫ x3

−∞
dx4

∑

τ∈S4
P(r , xτ1 , xτ2 , t)P(n− r , xτ3 , xτ4 , t)

]

, (36)

Once again, the gap PDF becomes stationary at large times,
P(g1, t → ∞|n) → p(g1|n).
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Asymptotic Behaviour

Leading contribution to S for g1 = x1 − x2 ≫ 1 arises from the term

2b P(1, x1, t)

∫ x2

−∞
dx3P(n − 1, x2, x3, t) = 2b P(1, x1, t)P(n − 1, x2, t) , (37)

Rightmost particle is diffusive at large t: P(n − 1, x2, t) ∼ P(1, x2, t),

Therefore for large t

2b P(1, x1, t)

∫ x2

−∞
dx3P(n − 1, x2, x3, t) ∼ 2b P(1, x1, t)P(1, x2, t) ,(38)

This is precisely the source term for the two-particle case,
leading to p(g1|n) ∼ p(g1|2) independently of n ≥ 2.

All other terms in S involve a large gap between particles generated
by the same offspring and are suppressed.
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Asymptotic Behaviour (Cont.)

Similar arguments show p(gk = xk − xk+1|n) ∼ p(g1|2) for gk ≫ 1

t +∆t

∆t
0

︸︷︷︸

gk ≫ 1g1 ≫ 1 k

b) c)a)

︸︷︷︸︸︷︷︸ ︸︷︷︸

g1 ≫ 1

Figure: Dominant terms contributing to the large gap behaviour for a) the first
gap g1(t) and c) the k-th gap gk(t). Figure b) shows a realization where the
large gap is generated by the particles of the same offspring process and is hence
suppressed.
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Monte Carlo Simulations

Simulations in the off-critical regime
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Figure: Two and Three particle Sectors

Kabir Ramola Correlated Extreme Values in Branching Brownian Motion 32 / 38



Monte Carlo Simulations (Cont.)

Simulations in the critical regime
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Kabir Ramola Correlated Extreme Values in Branching Brownian Motion 33 / 38



Monte Carlo Simulations (Cont.)

Simulations in the critical regime
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Universality
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Conclusion

We obtained exact analytical results for the gap statistics of the
extreme particles of BBM.

This was possible by conditioning on the number of particles in
the system.

This allowed us to express these evolution equations as a system of
linear diffusion equations with source terms, which we could then
solve recursively.

We generalized this procedure for all particle sectors and showed that
the stationary gap distributions have universal tails.

It will be interesting to extend our analysis to the question of k-point
correlation functions of this process.
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