
Microscopic Origin of Frictional Rheology
in Dense Suspensions

Kabir Ramola

Martin Fisher School of Physics,
Brandeis University

In collaboration with

Jetin Thomas, Abhinendra Singh, Romain Mari,

Jeffrey Morris and Bulbul Chakraborty

December 4, 2018

Kabir Ramola Microscopic Origin of Frictional Rheology in Dense Suspensions 1 / 29



Outline

1 Discontinuous Shear Thickening

2 Constitutive Laws

3 Mean Field Theory

4 Simulations of Dense Suspensions

5 Microscopic Theory

Kabir Ramola Microscopic Origin of Frictional Rheology in Dense Suspensions 2 / 29



Some Definitions

Shear Rate: γ̇

Stress Tensor:

σ̂ =

(
σxx σxy
σyx σyy

)
(1)

Shear Stress: σ ≡ σxy
Pressure: 2P = Tr(σ̂) = σxx + σyy

Stress Anisotropy: µ = λ+−λ−
λ++λ−

≡ τ
2P ≈

σxy
P

Viscosity: η =
dσxy
d γ̇
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Discontinuous Shear Thickening

γ̇

Figure: (Left) A snapshot of a suspension of 2000 soft frictional disks sheared at
a variable rate γ̇, with the shear stress σ ≡ σxy held fixed. (Right) Viscosity vs
Shear rate for 500nm calcium carbonate + polymer brush in PEG 200 R. G. Egres and

Norman J. Wagner Journal of Rheology 49, 719 (2005).
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Constitutive Laws: µ(I ) Rheology

Figure: Observed Stress Anisotropy µ = τ/2P from several experiments of
dense suspensions. F. Boyer, E. Guazzelli, and O. Pouliquen, Physical Review Letters 107, 188301 (2011).

µ depends on the viscous number Iv ≡ ηγ̇
P

Iv depends on the packing fraction φ: Iv (φ) ∝ (φJ − φ)2.

In the limit of small Iv is: µ− µc ' I
1/2
v , (µc depends weakly on the

properties of the grains J. Dong and M. Trulsson, Physical Review Fluids 2, 081301 (2017).).
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DST Boundary

We can therefore infer/postulate

η(φ, σxy ) ∝ µ(φ, σxy )

(µ(φ, σxy )− µc)2
. (2)

The DST boundary is given by the equation

d γ̇

dσxy
= 0. (3)

Which translates to the following equation in terms of the stress
anisotropy:

σxy
µ

∣∣∣ dµ

dσxy

∣∣∣ =
µ− µc
µ+ µc

. (4)
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Mean Field Theory M. Wyart and M. Cates, Physical Review Letters 112, 098302 (2014).

Figure: Two branches of viscosity: lower (lubricated, friction coefficient µ = 0)
and upper (frictional, µ = 1).

Use constitutive laws for the two branches (Smooth/Rough):

φ = Φs(Iv ) ; σ/P = µs(Iv ), (5)

φ = Φr (Iv ) ; σ/P = µr (Iv ). (6)
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Mean Field Theory (Cont.)

Figure: Predictions of the Wyart and Cates model for increasing solid fraction.
Interpolate with a p-dependent jamming density φJ(p):

P = λγ̇(φJ(p)− φ)−2 (7)

φJ(p) = φmf + φ0(1− f ) (8)
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Phase Diagram

Figure: Phase diagram in the shear stress–packing fraction (σxy , φ) plane. The

left (red) curve locates the points where d γ̇
dσxy

= 0. The right (blue) curve shows

packing fraction dependent maximal stress above which the suspension is
shear-jammed, i.e., above which no flowing states exist.
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Simulating Dense Suspensions

We perform simulations of simple shear under constant stress of a
monolayer of N = 2000 bidisperse (radii a and 1.4a) spherical
particles following R. Mari, R. Seto, J. F. Morris, and M. M. Denn, Journal of Rheology 58, 1693 (2014).

These follow an overdamped dynamics and are subject to Stokes
drag, pairwise lubrication, frictional contact, and short-range
repulsive forces.

Because of the repulsive force of maximum F0 at contact, frictional
contacts only form for stresses about or larger than σ0 ≡ F0/a

2,
which induces DST at volume fractions φ & 0.78 .
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Observed Stress Anisotropy
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Figure: Observed µ = τ/2P from simulations of suspensions J. E. Thomas, K. Ramola, A.

Singh, R. Mari, J. Morris, B. Chakraborty, Phys. Rev. Lett. 121, 128002 (2018).
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Testing the Constitutive Relation
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Figure: Plot of the viscosity, η(φ, σxy ) vs µ(φ, σxy ) for different packing fractions,
obtained from the simulations (symbols) compared to the constitutive relation
η = µ/(µ− µc)2. Here µc = 0.285, is chosen to be the lowest value of the stress
anisotropy observed in the simulations. The viscosity η is measured in units of η0,
the viscosity of the underlying Newtonian fluid, and in our simulations we set
η0 = 1.
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Ingredients for a Microscopic Theory

Figure: Instantaneous particle configurations and frictional contact force networks
from simulation (Seto et al. 2013) for the low viscosity (left) and high viscosity
states (right) highlighted in color in the inset. R. Seto, R. Mari, J. F. Morris, M. M. Denn, Phys.

Rev. Lett. 111, 218301 (2013)
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Height Space Representation
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Macroscopic Stress Tensor

In the continuum, the local stress tensor is σ̂ = ∇× ~h:

σ̂ =

(
∂yhx ∂yhy
−∂xhx −∂xhy

)
; Σ̂ =

(
LyΓyx LyΓyy

−LxΓxx −LxΓxy

)
, (9)

where Σ̂ is the virial or the global force moment tensor.

The shear stress is held fixed with

Γyy = −Γxx = σ (10)

The pressure and the normal stress are

2P = λ+ + λ− = Γyx − Γxy; N1 = Σxx − Σyy = Γyx + Γxy. (11)

The stress anisotropy µ is

µ =
τ

2P
=

√
(N1)2 + 4σ2

2P
≈ σ

P
. (12)
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Pair Correlation Functions

Using the force tiling representation, we compute the Pair
Correlation Function of Vertices, defined to be

g2(~h) =

〈
A

Nv (Nv − 1)

Nv∑

i=1

Nv∑

j 6=i

δ
(
~h − (~hi − ~hj)

)〉
, (13)

where Nv is the total number of voids in the system, A = |~Γx × ~Γy |,
and ρv = Nv/A is the density of height vertices in the force tiling.

These are averaged over 200 configurations obtained from the
simulated steady state of dense suspensions at each φ and σxy .
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Observed Pair Correlations
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Figure: Observed pair correlation functions at σxy = 2, at packing fractions
φ = 0.76, 0.78 and 0.8. The forces (and consequently the heights) have been

scaled by the imposed shear stress σ. The change in symmetry of g2(~h) is clearly
visible as the packing fraction is increased.
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Constructing a Thermal Ensemble

Using the pair correlations we can construct a potential

V2(~h) = − log

(
g2(~h)

g2(|~h|)

)
, (14)

that induces an anisotropy in the interactions based on the
observed correlation functions.

The ensemble of configurations that are sampled in the
non-equilibrium dynamics are assumed to obey a statistical
mechanical description, with each configuration C occurring with a
probability p(C) ∝ exp(−V (C)). J. E. Thomas, K. Ramola, A. Singh, R. Mari, J. Morris, B.

Chakraborty, Phys. Rev. Lett. 121, 128002 (2018).
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Statistical Mechanics

Shear stress sets the pressure scale (and Area): we control this by a
Lagrange multiplier f ∗p (σ).

The partition function of the system is given by

Zφ,σ =
1

Nv !

∫ ∞

0
dA exp

(
−Nv f

∗
p A
)
×

∫

A

Nv∏

i=1

d~hi exp


−

∑

i ,j

Vφ,σ(~hi − ~hj)




︸ ︷︷ ︸
ANv exp(−εφ,σ(A,Nv ))

,

=

∫ ∞

0
dA exp(−FA;φ,σ). (15)

where the positions ~hi are confined to be within the box defined by
A ≡ (~Γx ,~Γy ).
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Testing the Potentials
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Figure: a) Observed pair correlation functions at σxy = 2, at packing fractions
φ = 0.76, 0.78 and 0.8. b) Potentials constructed using these pair correlation
functions. c) A comparison with pair correlations obtained from direct Monte
Carlo simulations of particles interacting via these potentials.
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Sampling the Energy Function

We perform a Monte Carlo sampling of the energy function

f (µ;φ, σ) ≡ F/Nv = f ∗p σ
2

(
1

µ2
−1

)
−log

[
σ2
(

1

µ2
−1

)]
+
εφ,σ (µ,Nv )

Nv
. (16)
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Figure: Sampled values of εφ,σ(µ,Nv ) for Nv = 1024 and σxy/σ0 = 100, with V2

derived from simulations at different packing fractions φ. (Inset) f (µ;φ, σ) for
Nv = 3000, and f ∗p = 6.5× 10−4.
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Predictions
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Figure: Variation of the macroscopic friction coefficient µ, corresponding to the
minimum of the free energy function. We find that µ decreases as packing
fraction φ and the confining shear stress σxy are increased. (Inset) Plot showing
the appearance of two solutions at φ = 0.79, and the second solution moving out
to σxy →∞ at φ = 0.8.
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Summary and Conclusions

We have identified a correlation function that exhibits significant
changes in anisotropy across the DST transition.

The correlations are in force space, and reflect the collective
behavior triggered by changes in the nature of the contact forces.

Remarkably, a theory based on pair potentials in force space
describes the macroscopic rheology.

The decrease in µ indicates that the pressure increase for an imposed
increase of shear stress is larger in the frictional branch of DST
than it is in the frictionless branch of DST.
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Thank You.

Kabir Ramola Microscopic Origin of Frictional Rheology in Dense Suspensions 29 / 29


	Discontinuous Shear Thickening
	Constitutive Laws
	Mean Field Theory
	Simulations of Dense Suspensions
	Microscopic Theory

