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CLASSICAL ELECTROMAGNETISM

• Classical Electromagnetism is described by Maxwell’s Equations

• Governed by the Lagrangian

• Theory has charge conservation

• What are the analogous equations for Tensor fields?

L =
∫
d2xdt(− 1

4FµνFµν + 1
c jµA

µ)

Fµν = ∂µAν − ∂νAµ

H = 1
2 (E

2 +B2)



TENSOR ELECTROMAGNETISM

∂i∂jEij = ρ

∂i∂jEij = qδ(3)(r)

Eij = q

(
α δij

r + β rirj

r3

)

∂iEij = q(β − α) r
j

r3

∂i∂jEij = 4πq(β − α)δ(3)(r)

•Consider a general Gauss’s law

•For a point charge

•Generalized Coulomb potential (from dimensional analysis)

•This solves Gauss’s law

•If: β − α = 1/4π



TENSOR ELECTROMAGNETISM (continued)
•We therefore have

Eij = q

(
α δij

r +

(
α+ 1

4π

)
rirj

r3

)

•Unlike conventional electromagnetism, the static point 

charge solution is NOT uniquely specified by Gauss's law 

and rotational symmetry.   

•Therefore, in order to further constrain the electric field, we 

must resort to another of the generalized Maxwell 

equations.



ADDITIONAL CONSTRAINTS
•The magnetic field tensor is

Bij = εiab∂aA
j

b

•The equation governing the evolution of the magnetic field is

∂tBij = εiab∂a∂tA
j

b = εiab∂aE
j

b

•Therefore, for magnetostatics we require

εiab∂aE
j

b = q(α+ β) ε
ijara
r3 = 0

•Leading to 
β = α+ 1/4π
β = −α

•Along with } α = − 1
8π



TWO DIMENSIONAL ELASTICITY

S =
∫
d2xdt 12

(
(∂tui)2 − Cijk!uijuk!

)

•Each atom can oscillate only a small distance from its equilibrium 

position: ui

•The most general low-energy action

•Another fundamental quantity is the bond angle

θb =
1
2ε

ij∂iuj

∮
d!i ∂iθb =

2π
n s

•For an n-fold symmetric crystal



DISCLINATIONS AND DISLOCATIONS



TWO DIMENSIONAL ELASTICITY (continued)

•The disinclinations in terms of the symmetric strain tensor

2π
n s =

∮
d!i ∂iθb

= −
∫
d2x εi"εjk∂"∂kuij − 1

2

∫
d2x εi"∂"(εkj∂k∂jui),

•Define a disclination density

ρs = εi!εjk∂!∂kuij

•Total disclination number as:

− 2π
n s =

∫
d2x

(
ρs − εi"∂i( 12ε

kj∂k∂jui)

)



TWO DIMENSIONAL ELASTICITY (continued)
•The Burger’s vector is given by

∮
d!i ∂iuj = bj .

bn = εmn

∫
d2x (ρxm) =

∮
d#ixmεmnεjk∂k∂iuj +

∫
d2x ρb,n

=
∮
d!iεinεjk∂kuj +

∮
d!i∂iun =

∮
d!i∂iun

•Once again this can be expressed in terms of the strain tensor

•Once again this can be expressed in terms of the strain 

tensor. Define the dislocation density 

ρnb = εik∂k∂iun

•Total disclination charge:

− 2π
n s =

∫
d2x (ρs − εi"∂iρ"b)



FRACTON TENSOR GAUGE THEORY

∂i∂jEij = ρ

Aij → Aij + ∂i∂jα

q =
∫
V d2x ρ =

∫
V d2x ∂i∂jEij =

∫
∂V dni ∂jEij

P i =
∫
V d2x (ρxi) =

∫
V d2xxi∂j∂kEjk

=
∫
∂V dnj (xi∂kEjk − Eij).

• Governed by the Gauss's law

• Governed by the gauge transformation

• Governed by the conservation of charge

• Additionally, there is a conservation of dipole moment



FRACTON TENSOR GAUGE THEORY (continued)
•This extra conservation law has dramatic consequences for the particles of the 

theory: an isolated charge is strictly locked in place.  Only neutral bound states, 

such as dipoles, can move around the system.   

•The dipolar conservation law implies that the dipoles of the theory are 

topologically stable excitations, despite being charge-neutral.

• Write down the most general gauge-invariant Hamiltonian for the charge-free sector

H =
∫
d2x

(
1
2 C̃

ijk!EijEk! +
1
2B

iBi

)

S =
∫
d2xdt

(
1
2 C̃

−1
ijk!E

ij
σ Ek!

σ − 1
2B

iBi

)

C̃−1
ijk!C̃

k!mn = δijδmn

•Performing a canonical transformation

Eij
σ = −∂tAij − ∂i∂jφ,



FRACTON TENSOR GAUGE THEORY (continued)
•This new variable is actually related by a tensor

Eij = − ∂L
∂Ȧij = C̃−1

ijk"E
k"
σ .

•These are invariant under time-dependent gauge transformations

Aij → Aij + ∂i∂jα, φ → φ+ ∂tα

•Generalized Faraday's equation of the theory

∂tBi + εjk∂jEki
σ = 0,

•In the presence of fracton charges coupled to the gauge field

S =
∫
d2xdt

(
1
2 C̃

−1
ijk!E

ij
σ Ek!

σ − 1
2B

iBi − ρφ− J ijAij

)



DERIVATION OF DUALITY
•The two-dimensional elasticity theory action:

S =
∫
d2xdt 1

2

[
(∂tui)2 − Cijk!uijuk!

]

•How the strain responds to the presence of disclinations:

εikεj!∂i∂juk! = ρ.

•A dislocation can be regarded as a bound state of two disclinations

•Separate the displacement field into its singular and smooth phonon 

pieces

εikεj!∂i∂j ũk! = 0

uij = u(s)
ij + 1

2 (∂iũj + ∂j ũi)

•Fields obey

εikεj!∂i∂ju
(s)
k! = ρs



HUBBARD-STRATANOVICH TRANSFORMATION

•Introduce two Hubbard-Stratonovich fields, the lattice 

momentum       and the stress tensorπi σij

•Rewrite the action as:

S =
∫
d2xdt

[
1
2C

−1
ijk!σ

ijσk! − 1
2π

iπi − σij(∂iũj + u(s)
ij ) + πi∂t(ũi + u(s)

i )

]

•The smooth displacement field can be integrated out to enforce 

the constraint:

∂tπi − ∂jσij = 0



ROTATED FIELDS
•Introduce rotated fields

Bi = εijπj

Eij
σ = εikεj"σk"

•The constraint equation becomes a generalized Faraday’s law

∂tBi + εjk∂jEki
σ = 0.

•This is precisely the form in the Tensor Gauge Theory with

Bi = εjk∂jAki , Eij
σ = −∂tAij − ∂i∂jφ .



FINAL ACTION
•Additional gauge transformation introduced

Aij → Aij + ∂i∂jα , φ → φ+ ∂tα,

•Utilizing these potentials, the action can be written as:

S =
∫
d2xdt

(
1
2 C̃

−1
ijk!E

ij
σ Ek!

σ − 1
2B

iBi

+ εikεj!∂t(Ak! + ∂k∂!φ)u
(s)
ij − εijεk!∂kA!j∂tu

(s)
i

)

with C̃ijk! = εiaεjbεkcε!dCabcd

•Integrating the last two terms by parts, we finally obtain

S =
∫
d2xdt

(
1
2 C̃

−1
ijk!E

ij
σ Ek!

σ − 1
2B

iBi + ρφ− J ijAij

)



DICTIONARY



MOTION OF DEFECTS



PINCH-POINT SINGULARITIES

At left is a schematic plot of                                in the                    plane, 
displaying the characteristic two-fold pinch-point singularity of 
conventional gauge theories.  At right is an analogous plot of                     
displaying the four-fold pinch-point singularity of a rank-2 tensor 
gauge theory.

〈Ex(q)Ey(−q)〉 qx − qy

〈Exx(q)Eyy(−q)〉
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Thank You.


