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States of Matter

Solid

Liquid

Gas

Plasma

No others?
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States of Matter: Properties

Characteristics of a Solid

Permanent Density Modulations

For crystals: Long Range Correlations

Global Rigidity

Characteristics of a Liquid

Short Range Correlations

Zero Shear Modulus

Characteristics of a Gas

Short Range Correlations

Zero Shear Modulus

Large Bulk Compressibility

Kabir Ramola Disordered Hyperuniformity: Liquid-like Behaviour in Structural Solids 3 / 34



Preliminaries from Statistical Mechanics

Reference: J.-P. Hansen and I. R. McDonald, Theory of Simple Liquids, Academic Press, New York, (1986).

Consider a system of N particles in a volume V (for an average
number density ρ = N/V ) and at a temperature T (β = 1

kT ). The
particle coordinates are ri , with i = 1, . . . , N. The potential energy
due to the interaction between particles is UN(r1 . . . , rN).

The ensemble averages are taken in the canonical ensemble
(N,V ,T ), with

ZN =

∫
· · ·
∫

e−βUNdr1 · · · drN (1)

taken over all possible combinations of particle positions. The
probability of an elementary configuration, namely finding particle 1
in dr1, particle 2 in dr2, etc. is given by

P(N)(r1, . . . , rN) dr1 · · · drN =
e−βUN

ZN
dr1 · · · drN . (2)
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Correlation Functions

The probability of a reduced configuration, where the positions of
only n < N particles are fixed, in r1 . . . , rn, with no constraints on
the remaining N − n particles:

P(n)(r1, . . . , rn) =
1

ZN

∫
· · ·
∫

e−βUN drn+1 · · · drN (3)

For identical particles, consider the n-particle density

ρ(n)(r1, . . . , rn) =
N!

(N − n)!
P(n)(r1, . . . , rn) (4)

These can be written as

ρ(1)(r) = 〈
∑
i

δ(r − ri)〉

ρ(2)(r, r′) = 〈
∑
j 6=i

∑
i

δ(r − ri)δ(r′ − rj)〉

... (5)
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Correlation Functions

We then have

1

V

∫
ρ(1)(r)dr =

N

V
= ρ,

∫ ∫
ρ(2)(r, r′) drdr′ = N(N − 1) (6)

We introduce a correlation function g(n) by

g(n)(r1 . . . , rn) =
1

ρn
ρ(n)(r1 . . . , rn), (7)

g(n) is called a correlation function, since if the particles are
independent from each other ρ(n) would simply equal ρn and therefore
g(n) corrects for the correlation between particles.

It then follows that

g(n)(r1 . . . , rn) =
V nN!

Nn(N − n)!
· 1

ZN

∫
· · ·
∫

e−βUN drn+1 · · · drN (8)
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Grand Canonical Ensemble

“The fact that in the canonical ensemble the pair distribution
function behaves asymptotically as (1− 1/N) rather than tending
strictly to unity is often irrelevant since the term of order N − 1
vanishes in the thermodynamic limit. On the other hand, if a term of
that order is integrated over the volume of the system, a result of
order V /N is obtained, which usually cannot be ignored. The
difficulties that this situation sometimes creates can be avoided by
working in the grand canonical ensemble.”

- J.-P. Hansen and I. R. McDonald, Theory of Simple Liquids, Academic
Press, New York, (1986).
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Grand Canonical Ensemble

We now allow for the fluctuations of the number of particles (z = eµ).

Ξ =
∑
N

zNZN with p(N) =
zN

N!

ZN

Ξ
(9)

The n-particle densities can then be defined as

ρ(n)(r1, ..., rN) =
∞∑

N≥n
p(N)ρN(n)(r1, ...rN) (10)

The normalization then becomes∫
..

∫
ρ(n)(r1, ..., rN)dr1..drN =

〈
N!

(N − n)!

〉
∫
ρ(1)(r1)dr1 = 〈N〉∫ ∫

ρ(2)(r1, r2)dr1dr2 = 〈N2〉 − 〈N〉 (11)
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Correlations in the Grand Canonical Ensemble

Using these normalizations we have∫ ∫ [
ρ(2)(r1, r2)− ρ(1)(r1)ρ(1)(r2)

]
dr1dr2 = 〈N2〉 − 〈N〉 − 〈N〉2

(12)

We then have precisely

g(n)(r1, .., rN)→ 1 as all ri − rj →∞ (13)

We next define a pair correlation function

h(2)(r1, r2) = g(2)(r1, r2)− 1 (14)

We then have

h(2)(r1, r2)→ 0 as r1 − r2 →∞ (15)

Kabir Ramola Disordered Hyperuniformity: Liquid-like Behaviour in Structural Solids 9 / 34



Number Fluctuations in the Grand Canonical Ensemble

In the grand canonical ensemble the average particle number is

〈N〉 =
∑

Np(N) =
1

Ξ

∑
N
zN

N!
ZN =

∂ ln Ξ

∂ ln z
(16)

Similarly

∂〈N〉
∂ ln z

= z
∂

∂z

(
1

Ξ

∑
N
zN

N!
ZN

)
= 〈N2〉 − 〈N〉2 (17)

Kabir Ramola Disordered Hyperuniformity: Liquid-like Behaviour in Structural Solids 10 / 34



Number Fluctuations and Compressibility

In the thermodynamic limit, i.e. the limit 〈N〉 → ∞, V →∞ with
ρ = 〈N〉/V held constant, the number of particles in the system of
interest (the thermodynamic variable N) may be identified with the
grand canonical average, 〈N〉. In the same limit thermodynamic
properties calculated in different ensembles become identical.
The isothermal compressibility of the system is defined as

χT = − 1

V

(
∂V

∂P

)
T

in the Canonical ensemble (18)

We also have

ln z = µ =

(
∂F

∂N

)
T ,V

in the Grand Canonical Ensemble (19)

Using ensemble equivalence, we have (skipping steps)

〈N2〉 − 〈N〉2

〈N〉
= ρkBTχT (20)
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Correlations and Compressibility

For homogeneous systems

1 + ρ

∫ [
g(2)(r)− 1

]
dr =

〈N2〉 − 〈N〉2

〈N〉
(21)

Therefore the compressibility of the system is

ρkTχT = 1 + ρ

∫
V
dr [g(2)(r)− 1]. (22)

Alternatively

ρkTχT = 1 + ρ

∫
V
dr h(2)(r). (23)
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Fourier Transforms

The Fourier transform is defined as

f (k) =

∫
f (r)e−ik · r dr ≡ 1√

N

∑
f (r)e−ik · r, (24)

and the associated inverse operation is defined by

f (r) =
1

(2π)d

∫
f (k)eik · r dk ≡ 1√

N

∑
f (k)eik · r, (25)

where k is the wave vector.

The structure factor is proportional to the scattered intensity of
radiation from a system of points and thus is obtainable from a
scattering experiment.

An important property of the structure factor is that it must be
nonnegative for all k, i.e.,

S(k) ≥ 0 ∀k. (26)
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Structure Factor

We have

S(k) :=
1

N
〈
∑
i

∑
j

e−ik(ri−rj )〉

= 1 +
1

N
〈
∑
i

∑
j 6=i

e−ik(ri−rj )〉

= 1 +
1

N

〈∫
V
dr e−ikr

∑
i

∑
j 6=i

δ [r − (ri − rj)]

〉

= 1 +
1

N

∫
V
dr e−ikr

〈∑
i

∑
j 6=i

δ[r − (ri − rj)]

〉
︸ ︷︷ ︸

Vρ2g(2)(r)

(27)

Therefore

S(k) = 1 + ρ

∫
V
dr e−ikrg(2)(r) (28)
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Structure Factor and Correlations

This is only valid for distributions, since g(2)(r) is not normalized:

lim
r→∞

g(2)(r) = 1, lim
k→0

S(k) = ρδ(k) (29)

Experimentally the term corresponds to radiation that passes through
the sample unscattered. We subtract it and redefine the structure
factor as a regular function:

S(k) ≡ S(k)− ρδ(k) = 1 + ρ

∫
V
dr e−ikr[g(2)(r)− 1]. (30)

The structure factor S(k) is related to the Fourier transform of h2(r),
denoted by h2(k), via the expression

S(k) = 1 + ρh2(k). (31)
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Structure Factor and Compressibility

If the system is isotropic (usually for liquids)

S(k) = 1 + 4πρ
1

q

∫
dr r sin(qr)[g(2)(r)− 1] (32)

We can then derive the isothermal compressibility from the structure
factor

S(k → 0) = 1 + ρ

∫
V
dr[g(2)(r)− 1] = ρkTχT (33)

If the system is incompressible then

S(k → 0)→ 0

g(2)(r →∞)→ 1. (34)
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Disordered Hyperuniform Materials

Figure: Spatial distribution of the five types of light-sensitive cells known as cones
in the chicken retina. The unusual arrangement display “disordered
hyperuniformity”. These states have a “hidden order” that allows them to behave
like crystal and liquid states of matter. They exhibit order over large distances
and disorder over small distances.(Figure Courtesy: Joseph Corbo and Timothy
Lau, Washington University in St. Louis).
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Definition of Hyperuniformity S. Torquato, F. H. Stillinger, Phys. Rev. E 68, 041113 (2003).

Ω

x
o

Ω

x
o

Figure: Schematics indicating a regular domain or window Ω and its centroid x0

for two different point patterns. Left panel: A periodic point pattern. Right
panel: An irregular point pattern. The statistics of the points contained within Ω
for these two types of patterns are fundamentally different from one another.
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Definition of Hyperuniformity

The number variance for a point pattern is given by

〈N2
Ω〉 − 〈NΩ〉2 = 〈∆N2

Ω〉, (35)

where angular brackets denote an ensemble average.

For a large class of irregular point patterns (including Poisson):

〈N2
Ω〉 − 〈NΩ〉2 ∝ Rd . (36)

Mathematical Proof: For any statistically homogeneous and isotropic
point pattern, the variance cannot grow more slowly than the
surface area of a strictly convex domain. J. Beck, Acta Mathematica 159, 1 (1987).

What about as the surface area?

〈N2
Ω〉 − 〈NΩ〉2 ∼ Rd−1. (37)

These are defined as “hyperuniform” systems because such
systems do not possess infinite-wavelength fluctuations.
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Hyperuniformity on the Square Lattice

What about points arranged on a regular (periodic) lattice? Consider
the square lattice for simplicity. How many points in a circular
window of radius R with the center at (a1, a2) in the unit square?

This amounts to finding all of the integer solutions of

(n1 − a1)2 + (n2 − a2)2 ≤ R2, (38)

a problem of interest in number theory.

This problem is directly related to the determination of the number
of energy levels less than some fixed energy in integrable quantum
systems. It is clear that N(R) asymptotically approaches the window
area πR2 and unit density, for large R.
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Hyperuniformity on the Square Lattice

0 50 100 150

R

−100

−50

0

50

100

N
(R

)−
π
R

2

Figure: The function N(R)− πR2 versus R for the unit-spacing square lattice,
using a circular window of radius R centered on a lattice point. This illustrates
the apparent “random” nature of N(R) which grows with R. Source: S.
Torquato, F. H. Stillinger, Phys. Rev. E 68, 041113 (2003).
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Non-Periodic Point Patterns

It is considerably more challenging to identify non-periodic point
patterns, such as disordered and quasiperiodic ones, that are
hyperuniform.

These must obey the counterintuitive property of a long-ranged
“direct” correlation function, are determined from a general
formula for the number variance of such systems.

This is reminiscent of the behavior of the pair correlation function of
a thermal system near its critical point.

It can be shown that the hyperuniform state is at a “critical-point” of
a type with appropriate scaling laws and critical exponents.
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Ensembles and Point Patterns

The ensemble analysis can easily be generalized to ensembles of point
patterns, and also to single realizations.

For arbitrary convex shaped windows we can generalize

〈N2(R)〉 − 〈N(R)〉2 = 〈N(R)〉

[
1 + ρ

∫
<d

h(r)α(r; R)dr

]
, (39)

α(r; R) corrects for the intersection volume between the window and
the point pattern. For infinite sized windows R →∞ as α(r; R)→ 1.

The variance formula for large R is given by

〈N2(R)〉 − 〈N(R)〉2 = 2dφ

[
A

(
R

D

)d

+ B

(
R

D

)d−1

+ `

(
R

D

)d−1
]
,

(40)
where D is a characteristic microscopic length scale and A and B are
the asymptotic constants and φ is a dimensionless density.
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Direct Correlation Function

The direct correlation function c(r) of a hyperuniform system behaves
in an unconventional manner.

In real space, this function is defined by the Ornstein-Zernike equation

h(r) = c(r) + ρ

∫
<d

h(r − r′)c(r)dr′. (41)

This is a convolution integral and therefore Fourier transforming leads
to

c(k) =
h(k)

1 + ρh(k)
, (42)

We can express the number variance for a window of arbitrary shape:

〈N2(R)〉 − 〈N(R)〉2 = 〈N(R)〉

[
1

(2π)d

∫
α(k; R)

1− ρc(k)
dk

]
. (43)
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Inverted Critical Phenomenon?

For a hyperuniform system, h(0) = −1/ρ by definition. Therefore
h(r) is a short-ranged function that decays to zero faster than |r|−d .

Interestingly, this means that the denominator on the right side of
(42) vanishes at k = 0 and therefore c(k = 0) diverges to −∞.

Therefore the direct correlation function c(r) is long-ranged, i.e.,
decays slower than |r|−d .

c(r) thus behaves similarly to the total correlation function h(r) for
an equilibrium system near its critical point.

One expects the following asymptotic behavior for large r ≡ |r| and
sufficiently large d :

c(r) ∼ − 1

rd−2+η
(r →∞), (44)

where (2− d) < η ≤ 2 is a new “critical” exponent associated with
c(r) for hyperuniform systems.
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Critical Exponents

For noninteger values of η, h(k) is a nonanalytic function of k ≡ |k|.

The fourier transform of the direct correlation function behaves as

c(k) ∼ − 1

k2−η (k → 0), (45)

This implies
S(k) ∼ k2−η (k → 0). (46)

The specific asymptotic form of S(k) for small k contributes to
determining the “universality” class of the hyperuniform system.
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Critical Exponents (cont.)

“Let us now consider a point pattern with a reduced density φ that is
nearly hyperuniform and which can be made hyperuniform by
increasing and/or decreasing the density. We denote by φc the
reduced density at the hyperuniform state. The reduced densities φ
and φc play the same role as temperature T and critical temperature
Tc , respectively, in the analogous thermal problem in the vicinity of a
critical point.” - S. Torquato, F. H. Stillinger, Phys. Rev. E 68, 041113
(2003).
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Critical Exponents (cont.)

Table: Definitions of the critical exponents in the vicinity of or at
the hyperuniform state. Here S−1(0) is the inverse of the structure
factor at k = 0, ξ is the correlation length, and c(r) is the direct
correlation function.

Exponent Asymptotic behavior

γ S−1(0) ∼ (1− φ
φc

)−γ (φ→ φ−c )

γ ′ S−1(0) ∼ ( φφc − 1)−γ
′

(φ→ φ+
c )

ν ξ ∼ (1− φ
φc

)−ν (φ→ φ−c )

ν ′ ξ ∼ ( φφc − 1)−ν
′

(φ→ φ+
c )

η c(r) ∼ r2−d−η (φ = φc)
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Example: Hard Sphere Packings
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Figure: The variance σ2 as a function of the window radius for a 106-particle
packing. The uncertainty in the variance, as shown with error bars, is estimated
to be of the order of σ2/

√
M, where M = 104 is the number of windows used for

a given window. Also shown is the theoretically predicted dependence of the form
AX 3 + CX 2 lnX + B0X

2, along with just the surface term B0X
2, which

dominates the density fluctuations. Source: A. Donev, S. Torquato and F. H.
Stillinger, Phys. Rev. Lett. 95, 090604 (2005).
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Example: Hard Sphere Packings

0 4 8 12 16 20 24

kD
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40,000−particle random

φ=0.632

jammed packing

Figure: The structure factor for a random packing of three-dimensional identical
hard spheres of diameter D near the MRJ state. as computed from a single
realization consisting of 40,000 particles in a cubical box with periodic boundary
conditions. φ is 0.632. Source: S. Torquato, F. H. Stillinger, Phys. Rev. E 68,
041113 (2003).
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Example: Hard Sphere Packings
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Figure: Structure factor for a 106-particle packing (φ = 0.642) and for a
hard-sphere liquid near the freezing point (φ = 0.49), as obtained via two
alternative numerical methods and also from the Percus-Yevick (PY) theory for
the liquid. DFT results are also shown over a larger range of K for a 105-particle
packing (φ = 0.643). Source: A. Donev, S. Torquato and F. H. Stillinger, Phys.
Rev. Lett. 95, 090604 (2005).
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Is this Hyperuniform?

Figure: Portion of a pinwheel tiling.
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Conclusions

Number fluctuations calculated for variable window geometries offer
a powerful tool to characterize and to classify point-particle
media.

This allows for characterization of both spatially periodic (crystalline)
particle patterns, as well as those that are globally disordered
(amorphous).

“Hyperuniform” point patterns are those for which volume
fluctuations vanish identically; equivalently these are systems for
which the structure factor S(k) vanishes at k = 0.

All infinitely extended perfectly periodic structures are hyperuniform.

Geometrically less regular cases of hyperuniformity also exist,
including those that are spatially uniform and isotropic.
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Thank You.
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