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Amorphous Materials

Figure: Amorphous materials display characteristics that are both liquid and
solid-like.
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Amorphous Materials

Materials that do not form periodic spatial patterns.

Many properties displaying extreme deviations from equilibrium.

Display non-Debye behaviour in density of states.

Localised modes that makes the vibrational density of states
non-trivial.

Can be broadly classified as athermal.
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The Hessian

The Hessian matrix is defined to be

Hij
αβ(rij) =

∂2U
[
{ri}

]
∂r ijα∂r

ij
β

(1)

Here ~r ij := ~r i − ~r j is the inter-particle distance vector between
particles i and j .

When the total potential energy is the sum of two-particle, central
potentials:

U
[
{rij}

]
=
∑
ij

ψij(r ij) (2)

The Hessian for radially symmetric potentials is

Hij
αβ(rij) = −

(
ψij
rr

(r ij)2
− ψij

r

(r ij)3

)
r ijα r

ij
β − δαβ

ψij
r

r ij
(3)
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Amorphous Materials

Figure: An energy minimised structure of a 100-particle system of a glass forming
model. The rings indicate interaction radii.
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Hessian Matrix of Amorphous Systems

Figure: A typical Hessian matrix of a 100-particle system of a glass forming model.
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Amorphous versus Crystal Hessians

Amorphous Hessians contain a preponderance of small elements
V. V. Krishnan, S. Karmakar, K. Ramola, Phys. Rev. Research 2, 042025 (2020).

(a) Crystal

−250 −200 −150 −100 −50 0 50
H

(b) AmorphousP
(H

)

Figure: Comparison of energy minimised configurations in (a) a mono-disperse
crystal and (b) an amorphous glass consisting of two types of particles.
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Potentials and Smoothness

In simulations, interaction potentials are cut-off at a finite distance
for computational expediency, and are smoothed to relevant degrees.

The potential is smooth to ‘n’ derivatives at cut-off (rc):

dmψ

drm

∣∣∣∣
rc

= 0 ∀ m ∈ {0, . . . , n} (4)

For n=2:

ψ(r) ∼ r−10 + c + br2 + ar4 with (ψ(rc) = ψ′(rc) = ψ′′(rc) = 0)

For n=3:

ψ(r) ∼ r−10 + c + br2 + ar4 + dr6 with

(ψ(rc) = ψ′(rc) = ψ′′(rc) = ψ′′′(rc) = 0)
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Potentials and Iso-Hessian Contours
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Figure: The R10 potential ψ(r) ∼ r−10 + c + br2 + ar4 for A-B interactions,
smoothed to two derivatives (n = 2) at the cut-off.

ψ(r) ∼ r−10 + c + br2 + ar4 (ψ(rc) = ψ′(rc) = ψ′′(rc) = 0)
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Symmetry Considerations

Diagonal elements in 2D and 3D (α = β): By symmetry xx , yy and
zz Hessian elements are the same, and therefore we only consider one
of them.

Off-Diagonal elements in 2D and 3D (α 6= β): By symmetry the
xy , yz and zx Hessian elements are the same, and therefore we only
consider one of them.

In two dimensions the inter-particle distance vector is determined by
its magnitude r and angle (φ) with respect to the x-axis.

In three dimensions the inter-particle distance vector is determined
by its magnitude, the polar angle (θ) subtended on the z-axis, and
the azimuthal angle (φ) on the x − y plane.
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Isotropy
Radial and Angular distributions
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Figure: Numerically sampled radial distribution function of A-B particle pairs in
the R10 system in three dimensions.
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Probability transformations

Integrating over Iso-Hessian Contours

P (H) =

∫
dr dΩ P (r ,Ω) δ

(
H −Hij

αβ(rij)
)

(5)

Assuming isotropy (P(r ,Ω) = P(r)P(Ω)),

P (H) =

∫ rc

0
dr P(r)

P (Ω)∣∣∂H
∂Ω

∣∣ =

∫ rc

0
dr P(r) P(H, r) (6)

The distribution of angles is

P2D(φ) = P3D(φ) =
1

2π
and P3D(cos θ) =

1

2
(7)

The distribution of inter-particle distances is

P(r) ∼ g2(r)Θ(rc − r) (8)
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Partial Integrand — 2D, Diagonal

The diagonal Hessian element, in two dimensions is

H2D
xx = −

(
ψrr −

ψr

r

)
cos2 φ− ψr

r
(9)

Using the partial integrand

P(H, r) =

[∣∣∣∣∂H∂Ω

∣∣∣∣]−1

P (Ω) (10)

with Ω ≡ cosφ with the distribution P2D (Ω) = 1/
(
π
√

1− Ω2
)

yields

P2D
αα (H, r) =

∣∣∣∣4π2

(
H +

ψr

r

)
(H + ψrr )

∣∣∣∣−1/2

(11)
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Partial Integrand — 2D, Off-Diagonal

The off-diagonal Hessian element, in two dimensions is

H2D
xy = −

(
ψij
rr −

ψij
r

r

)
cosφ sinφ. (12)

Using the partial integrand

P(H, r) =

[∣∣∣∣∂H∂Ω

∣∣∣∣]−1

P (Ω)

with Ω ≡ cosφ with the distribution P2D (Ω) = 1/
(
π
√

1− Ω2
)

yields

P2D
αβ (H, r) =


√√√√∣∣∣∣∣
(
ψrr −

ψr

r

)2

− 4H2

∣∣∣∣∣
−1

, (13)
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Partial Integrand — 3D, Diagonal

The diagonal Hessian element, in three dimensions is

Hij
zz

(
r ij , θ

)
= −

(
ψij
rr −

ψij
r

r

)
cos2 θ − ψij

r

r
. (14)

Using Ω ≡ cos θ, with the distribution P3D (cos θ) = 1
2

The partial integrand then becomes P3D
zz =

[
2
∣∣ ∂H
∂ cos θ

∣∣]−1
.

This can be simplified to yield

P3D
αα (H, r) =

[
2

√∣∣∣∣(H +
ψr

r

)(
ψrr −

ψr

r

)∣∣∣∣
]−1

, (15)
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Partial Integrand — 3D, Off-Diagonal

The off-diagonal Hessian element, in three dimensions is

Hij
xz (r , θ, φ) = −

(
ψij
rr −

ψij
r

r

)
cos θ sin θ cosφ. (16)

Choosing Ω ≡ cosφ, and given that P (φ) = 1
2

We arrive at the exact integral form

P3D
xz =

∫
πd(cos θ)

[∣∣∣ ∂H
∂ cosφ

∣∣∣√1− cos2 φ
]−1

.

This can be simplified to yield

P3D
αβ =

∫ 1

−1
d(cos θ)


√√√√∣∣∣∣∣
(
ψrr −

ψr

r

)2

sin2 θ cos2 θ − H2

∣∣∣∣∣
−1

. (17)
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Partial Integrands — All

P2D
αα (H, r) =

∣∣∣∣4π2

(
H +

ψr

r

)
(H + ψrr )

∣∣∣∣−1/2

(18)

P2D
αβ (H, r) =

∣∣∣∣∣π2

{(
ψrr −

ψr

r

)2

− 4H2

}∣∣∣∣∣
−1/2

(19)

P3D
αα (H, r) =

∣∣∣∣4(H +
ψr

r

)(
ψrr −

ψr

r

)∣∣∣∣−1/2

(20)

P3D
αβ (H, r) =

κ

H

∫ 1

−1
dx
[
x2(1− x2)− κ2

]−1/2
(21)

where

κ = H

(
ψrr −

ψr

r

)−1
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P(H) using an exact radial distribution function
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Figure: Distribution of diagonal Hessian elements (α = β) corresponding to A-B
interactions in the R10 model, using an exact form for the radial distribution
function g2(r).

We use an exact form for the radial distribution function

g2(r) = e−(r−1)Θ(r − 1), (22)

where Θ(r) is the Heaviside theta function.
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Singular Distributions
Asymptotic limit

In the limit of r → rc , the interaction potential can be approximated
as

ψ (r) = (rc − r)n+1f (r) ,

ψr/r ≈ C1(rc − r)n,

ψrr ≈ C2(rc − r)n−1 (23)

Therefore the partial integrand is singular when

(rc − r)n = − H

C1
, (rc − r)n−1 = − H

C2
(24)

So, given a value of ‘H’, the singularity occurs at a shifted value:

r∗ = rc − s(H) (25)
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Poles and Shifts

The shift is determined by the closest pole on the real axis.

Signs of
(ψδ, H)

n = 3 n = 2

H1/n

H1/n−1(+ , +) Re

Im

(a)

Re

Im

(b)

(+ , -) Re

Im

(c)

Re

Im

(d)

Signs of Shift
(ψδ,H) s(H)

(+,+) (H/C1)1/n

(+,−) (H/C2)1/n−1

(−,+) (H/C2)1/n−1

(−,−) (H/C1)1/n

Table: The various
possible shifts s(H) for
the diagonal elements
(α = β) in two
dimensions.
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Singular Distributions
Asymptotics

Define a distance to the singular point:

ε = r∗ − r = (rc − s)− r (26)

The derivatives of the interaction potential simplify to

ψr/r ≈ C1(ε+ s)n, ψrr ≈ C2(ε+ s)n−1 (27)

and the partial integrand is

P2D
αα (H, ε) ∼

[
(H + C1(ε+ s)n)

(
H + C2(ε+ s)n−1

)]−1/2
(28)
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Singular Distributions
Asymptotics (n = 2)
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Singular Distributions
Asymptotic integral

In the case of n = 2, we have two regimes: ε ∈ [
√
H,∞) and

ε ∈ [0,
√
H):

I1 (H) ∼
∫ ∞
√
H

[
(ε2)(ε)

]− 1
2 =

∫ ∞
√
H
ε−

3
2 = ε−

1
2

∣∣∣∞√
H
∼ H−

1
4 (29)

I2 (H) ∼
∫ √H

0
[(H)(ε)]−

1
2 = H−

1
2

∫ √H
0

ε−
1
2 = H−

1
2 ε

1
2

∣∣∣√H
0

= H−
1
4

(30)
For a general n, when H × ψδ > 0, there are two intervals: [0,H1/n),
and [H1/n,∞), and

I1 (H) ∼
∫ ∞
H

1
n

[
(εn)(εn−1)

]− 1
2 =

∫ ∞
H

1
n

ε−n+ 1
2 = H−1+ 3

2n . (31)

I2 (H) ∼
∫ H

1
n

0

[
(εH

n−1
n )(H

n−1
n )
]− 1

2
= H−1+ 1

2n

∫ H
1
n

0
ε−1/2 ∼ H−1+ 3

2n .

(32)
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Summary of Exponents

Element (H) Smoothness (n) lim
H→0

P(H)

Diagonal [2,∞)∗ |H|−1+ 3
2n

(α = β) {2}† |H|−1+ 3
2n

{3}† |H|−
1
2 log

(
|H|−1

)
(3,∞)† |H|−1+ 1

n−1

Off-Diagonal {2} log
(
|H|−1

)
(α 6= β) (2,∞) |H|−1+ 1

n−1

Table: Asymptotic behaviour of Hessian element distributions in the limit H → 0.
Relative signs: ψδ ≡ ψ(rc − δ). The case (∗) corresponds to H × ψδ > 0, while
(†) corresponds to H × ψδ < 0. The results are identical for both two and three
dimensions.
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Diagonal Element Distributions: 2D
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Off-Diagonal Element Distributions: 2D
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Diagonal Element Distributions: 3D
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Off-Diagonal Element Distributions: 3D
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Minimum eigenvalue distributions
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Figure: The distributions of the minimum eigenvalue of systems of size
N = 10, 000 in 2D, along with the Inverse Participation Ratios for systems with
interaction potentials smooth to (Left) 2 and (Right) 3 derivatives at cut-off.
The grey line corresponds to the universal ω4 regime observed in the vibrational
density of states of amorphous systems.
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Minimum eigenvectors
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Figure: Minimum eigenvectors of 2D systems of 10,000 particles, corresponding to
potentials with smoothness (Left) n = 2, and (Right) n = 3. These eigenmodes
were picked from the low-end of the distribution of minimum eigenvalues, and
belong to different regimes of P(λmin).
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Conclusions

We have presented analytic results for the distribution of Hessian
elements in disordered amorphous media in 2D and 3D.

Our treatment is quite general, relying only on the isotropy of the
underlying amorphous medium.

We have shown that the Hessian matrices of amorphous materials
display a singularity that depends on the smoothness of the
interaction potential at the cut-off distance.

Remarkably, the results for the cusp singularities are exactly the
same in both 2D and 3D.

We have shown numerically that such singularities affect the
low-lying eigenvalues of the Hessian matrix that govern the stability
or fragility of amorphous solids.
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Outlook

Such singularities are an important ingredient to be taken into
account in Random Matrix treatments of Hessian matrices of
amorphous materials.

It would be interesting to extend our analytic results to construct
bounds on the vibrational density of states of amorphous systems.

It would be interesting to extend our results to jamming transitions,
that are characterized by diverging pair correlation functions at the
cut-off distance.
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Thank You.
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