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Some concepts behind the methods we will use
tomorrow during the hands-on session

® Empirical additivity-based models

® Quantum chemistry

® Machine learning

For students, ORCA quantum chemistry software can be
installed on laptop after the talk.
Don’t Leave!



(From synthesis to) Structure elucidation workflow

Extract and isolate a compound

High resolutionlmass spectrosco ¢ Molecular formula
J P Py " * Degree of unsaturation (DBE)
. l . . ¢ Functional groups (CO, OH, etc.)
Initial spectroscopic analysis . . .
. R > & H environments, population, coupling
¢ C environments, CH/CH3/CH,/Cqg
e 1TH NMR

e 13C NMR + DEPT

l—> Empirical models (sanity check)
2D NMR

e COSY, HSQC, HMBC . ¢ Structural details: H-H connectivity (rings,
| chains), H-C attachment, long range C-H links

Propose candidate structures

+ ¢ Conformational search, geometry
Quantum chemistry / ML models > optimization, NMR shielding, solvent effects
Final validation of the structure < & Statistical and probabilistic error analysis

l

Assign stereochemistry (ECD, VCD) » Confirm with quantum chemistry 3




Empirical models: power and ambiguity
Extract and isolate a compound

High resolutionlmass spectrosco ¢ Molecular formula
J X PY > ¢ Degree of unsaturation (DBE)
. l . . ¢ Functional groups (CO, OH, etc.)
Initial spectroscopic analysis . . .
. R > & H environments, population, coupling
¢ C environments, CH/CH3/CH,/Cqg
e 1TH NMR

e 13C NMR + DEPT

l—> Empirical models (sanity check)



Empirical models: power and ambiguity

Extract and isolate a compound

High resolutionlmass spectrosco ¢ Molecular formula
S P PY > ¢ Degree of unsaturation (DBE)
. l ' . ¢ Functional groups (CO, OH, etc.)
Initial spectroscopic analysis . . .
. IR > & H environments, population, coupling
¢ C environments, CH/CH3/CH,/Cqg
e 1TH NMR

® 13C NMR + DEPT

l—> Empirical models (sanity check)
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Empirical additivity models for '"H chemical shifts

methyl 8y, =09+3@ +y) CH;-C-C-
By

methylene 8CH,=12+ J(@+p+y)

-CH,-C-C-
a By
methine 8CH=15+3@+p+y)

H-C-C-C-
a By

N

a b ¢

Actual & (ppm) 40 35 1.2
Calculated 6 (ppm) 1.2 1.2 0.9
C=C- 0.8 0.2 01

R-O- 21 21 0.3

Total 41 35 1.3

P.S. Beauchamp, R. Marquez, J. Chem. Educ., 74, 1483 (1997).

X a p Y

R— 0.0 0.0 0.0
R,C=CR- 0.8 0.2 0.1
RC=C- 0.9 0.3 0.1
Ar— 1.4 0.4 0.1
F— 3.2 0.5 0.2
Cl- 2.2 0.5 0.2
Br— 2.1 0.7 0.2
- 2.0 0.9 0.1
HO- 2.3 0.3 0.1
RO- 2.1 0.3 0.1
R,C=CRO- 2.5 0.4 0.2

nQ

Nn e
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Empirical additivity models for 13C chemical shifts

A Short Set of 3C-NMR Correlation Tables

D. W. Brown
University of Bath, Bath, BA2 7AY, Avon, England

-
HOCH; N 6=-23+(2a' +2a%+ 20"+ 2+ (3 + 591 + v?)
A% 80 4 4P > 2° 47 530440 5 19)
= = —2.3(18.2 +98.0 + 18.4 + 10.1 + 11.3 — 12.5 — 6.2)
OH + (—15.0 — 8.4 — 8.4 — 1.5) = 101.7 (observed 97.6)

D. W. Brown, J. Chem. Educ., 62, 209 (1985).



Empirical additivity model for 13C chemical shifts on MolDis-Lab
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Empirical additivity model for 13C chemical shifts on MolDis-Lab

MoILDIS (¢
4 i acs amalytion plaiiowm foe meciouton o2 \- tifr

The MolDis big data analytics platform developed at the Tata Institute of Fundamental Research's
(TIFR's) Centre for Interdisciplinary Sciences aims to provide free access to computed datasets of
molecular properties. Presently the datasets are classified according to their domains of application.

This project is funded by TIFR which is a National Centre of the Government of India, under the
umbrella of the Department of Atomic Energy.

Load a random molecule from MolDis

> 0:00/3:48

CgH1oN40>
194.19 g/mol

CN1C=NC2=C1C(=0)N(C(=0)N2C)C




Empirical additivity model for 13C chemical shifts on MolDis-Lab

MOILDIS (¢
A big data analytics platiorm {or molecalar discovery K\ tlfr

Cy

Cy .
HO HH < 13C NMR Spectra of Small Organic Molecules
H*?rCfof?f?rH
" " This educational tool allows you to explore predicted 3C NMR spectra based on
basic NMR rules such as chemical shift trends, local bonding environments, and Access
G common functional groupsThe predictions are designed to help students
. understand how molecular structure influences carbon NMR signals. More
CDCl4 . . g
| | complex effects (aromatic or heteroaromatic splitting patterns, etc.) are not yet
20 a0 10 160 o 120 10 @ & 4 2 0 D

PPM (5)
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Empirical additivity model for 13C chemical shifts on MolDis-Lab

SMILES representation

C methane
CC ethane
ccccee pentane
cc(cycc isopentane

MoILDIIS

, (. ®
A lig data analiytics platforn CC(C)(C)C  neopentane \ tifr

ClCCl1 cyclopropane

SMILES — 13C Shifts 3 g Structure Viewer + Output C 1 C C C C C 1 C Yc l OhexaneDownload SVG Download XYZ

SMILES: CC(=0)Oc1 1C(=0)0
Paste SMILES, render 2D structure, compute 13@shifts. (F0)0ct cocce1C(=0)

clccccecel benzene

SMILES
CC(=0)Oc1ccececc1C(=0)0

Try: clcccccl (benzene), CCO (ethanol), CC(=0) 0 (acetic acid)

Render + 13C shifts Load Example Clear

Show atom numbers

Rendered + computed 13C shifts.

Notes: 13C shifts predicted with a minimal additivity model

« This tool is intended for educational use. Predicted values are
approximate and should be interpreted with caution in
production or applied settings.

« The ML-based '3C predictor is trained on the QMONMR dataset
(C, H, N, O, F atoms only) and will not work for molecules

Model scope: This prediction uses a minimal empirical additivity model. It is intended for small to medium organic molecules and typical
functional groups. Results may be unreliable for large, highly branched, strained, hydrogen-bonded, substituted aromatic or strongly
conjugated systems.

1: 22.1 ppm: +sp3+nA+nB+nB+Me

containing other elements. 2: 169.9 ppm: +C=0+nA+nA+Asp30R+nB+Bsp2C

« ML prediction may take a few seconds to compute the aBoB- 5: 128.5 ppm: Ar(6): 128.5

RBF(4) descriptor. After clicking Predict from 3D / XYZ, please 6: 128.5 ppm: Ar(6): 128.5

wait and do not refresh the page. 7: 128.5 ppm: Ar(6): 128.5
8: 128.5 ppm: Ar(6): 128.5
9: 128.5 ppm: Ar(6): 128.5
10: 128.5 ppm: Ar(6): 128.5
11: 170.9 ppm: +C=0+nA+Asp2C+nB+Bsp2C+nB+Bsp2C+nA+Asp30H

m~ ot a1 A L Y RN M A AAA e e | S T
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Empirical additivity model for 13C chemical shifts on MolDis-Lab

MOILDIS . .
;l@mmmﬁwmmmmmm (&tlfl"

SMILES — 13C Shifts Structure Viewer + Output

Download SVG Download XYZ
MILES: N2 2)1 1
Paste SMILES, render 2D structure, compute 13C shifts. S S: C(O)(CN2CCOCE2)1C(0)C(0)C(C0)0

SMILES
C(0)(CN2CCOCC2)1C(0)C(0)C(CO)O1 °o®

/

Try: clcccccl (benzene), CCO (ethanol), CC(=0) 0 (acetic acid)

Render + 13C shifts Load Example Clear

Show atom numbers

13¢ shifts predicted with a minimal additivity model
« This tool is intended for educational use. Predicted values are ) o o » o o ) ) )
approximate and should be interpreted with caution in Model scope: This prediction uses a minimal empirical additivity model. It is intended for small to medium organic molecules and typical

production or applied settings functional groups. Results may be unreliable for large, highly branched, strained, hydrogen-bonded, substituted aromatic or strongly

13 : . . conjugated systems.
« The ML-based '°C predictor is trained on the QM9NMR dataset

(C, H, N, O, F atoms only) and will not work for molecules . 110.
containing other elements. 74.

1 ppm: +sp3+R5+nA+A0+nA+nB+Q+nA+nB+Q+nB+Q+CO+nA+AO0+nB+Q
3:
« ML prediction may take a few seconds to compute the aBoB- 5. 57.
6
8
9

ppm: +sp3+nA+nB+3rdM+nB+CO+nB+nA+AN+nB+nB
ppm: +sp3+R6+nA+AN+nB+nB+nA+nB
RBF(4) descriptor. After clicking Predict from 3D / XYZ, please 65.3 ppm: +sp3+R6+nA+nB+nA+AO+nB
wait and do not refresh the page. 65.3 ppm: +sp3+R6+nA+AO+nB+nA+nB
: 57.8 ppm: +sp3+R6+nA+nB+nA+AN+nB+nB
10: 83.3 ppm: +sp3+R5+nA+nB+T+nB+T+nB+T+nA+AO+nA+nB+T+nB+T+CO
12: 70.9 ppm: +sp3+R5+nA+nB+T+CO+CO+nB+T+nA+AO+nA+nB+T+CO+nB+T
14: 74.1 ppm: +sp3+R5+nA+nB+T+CO+nB+T+nA+nB+T+nA+AO+nB+T+CO
15: 64.3 ppm: +sp3+nA+nB+CO+nB+nA+AO

0w W W oo w -J

Predicted '3C spectrum (5 / ppm) Lock 0-220 ppm Download spectrum image

12



Empirical additivity model for 13C chemical shifts on MolDis-Lab

D. W. Brown, J. Chem. Educ., 62, 209 (1985).
= =23+ (2a! + 2a2 + 28! + §2 + B3 + 5yl + v?)
+(4° —>3°+4°—+2°4+4°—>2° 4 4° —» 19)
= —2.3(18.2+98.0+ 184+ 10.1 +11.3 —12.5 —6.2)
+(—15.0 — 8.4 — 8.4 — 1.5) 5,101.7 (observed 97.6)

functional groups. Results may Dg Jinre %ble for large, highly branched, strained, hydrogen-bonded,

conjugated systems. _ ee

ppm:  +Sp3+R5+nA+A0+nA+nB+Q+nA+nB+Q+nB+Q+CO+nA+AO+nB+Q

1: 110.7

3: 74.3 ppm: +sp3+nA+nB+3rdM+nB+CO+nB+n2 """ T T

>: 97.8 ppm: #spIiReinArANininBnAinl A Yery Brief, Rapid, Simple, and Unified Method for
6 65.3 ppm: +sp3+R6+nA+nB+nA+AO+nB . _ o .

8: 65.3 ppm: +sp3+re+natnoinsinains  EStiMating Garbon-13 NMR Chemical Shifts

9: 57.8

ppm:  +Sp3*RO+DAINBINAtANINBINE 1 Bg Method! J. Chem. Educ., 64, 915 (1987).
10: 83.3 ppm: +sp3+R5+nA+nB+T+nB+T+nB+T+

12: 70.9 ppm: +sp3+R5+nA+nB+T+CO+CO+nB+7 Ben Shoulders

The University of Texas, Austin, TX 78712
14: 74.1 ppm: +sp3+R5+nA+nB+T+CO+nB+T+nA? Steven C. Welch?
15: 64.3 ppm: +sp3+nA+nB+CO+nB+nA+AO University of Houston, Houston, TX 77004

Empirical models offer instantaneous predictions for sanity checking
13



11:
12:
13:
14:

Empirical degeneracy

Cl2(0CC02)C2(0CCO2)Ccccecel

3%.4 pp ;“

21.4 ppﬁ:
21.4 ppm:
36.4 ppm:

Qo 0\

)

1
+sp3+R6+nA+nB+CO+CO+nB+nB+nA+nB 11:
+sp3+R6+nA+nB+CO+CO+nA+nB 12:
+sp3+R6+nA+nB+nA+nB+CO+CO 13:
+sp3+R6+nA+nB+nA+nB+nB+nB+CO+CO 14 -

C123C(0CCO2) (0CCO3)CCcCcCl

$6.4 pp;f +sp3+R6+nA+nB+CO+CO+nB+nB+nA+nB
21.4 pph: +sp3+R6+nA+nB+CO+CO+nA+nB
21.4 ppm: +sp3+R6+nA+nB+nA+nB+CO+CO
36.4 ppm: +sp3+R6+nA+nB+nA+nB+C0O+CO+nB+nB

Identical empirical chemical shifts for different structures

(lack of long-range effects and 3D interactions)

Perhaps both structures have same 'H (sub) spectrum?

L. J. Tilley et al., J. Chem. Educ. 79, 593 (2002)

14



Can the proposed structure go wrong?

Extract and isolate a compound

High resolutionlmass spectrosco ¢ Molecular formula
J X PY > ¢ Degree of unsaturation (DBE)
. l . . ¢ Functional groups (CO, OH, etc.)
Initial spectroscopic analysis > . ot I
o IR ¢ H environments, population, coupling
¢ C environments, CH/CH3/CH,/Cqg
e 1TH NMR

e 13C NMR + DEPT

l—> Empirical models (sanity check)
2D NMR

e COSY, HSQC, HMBC . ¢ Structural details: H-H connectivity (rings,
| chains), H-C attachment, long range C-H links

Propose candidate structures

v

15



Structure assignment going wrong for hexacyclinol

cen.acs.org/articles/84/i31/Hexacyclinol-Debate-Heats.html YA ¢
Vs Topics Newsletter Podcasts ‘ &en
CHEMICAL & ENGINEERING NEWS

I Trending: Europe's Industrial Crisis Environmental Deregulation PFAS

(Analytical Chemistry>

Hexacyclinol Debate Heats
Up

Second of two total syntheses casts doubt on earlier structure,
synthesis

"Occasionally, blatantly wrong science is published, and to the credit of synthetic

chemistry, the corrections usually come quickly and cleanly," comments Harvard

University chemistry professor E. J. Corey.

16



Initial structure assignment of hexacyclinol extracted (in 2002)

" strained endoperoxide

Structure elucidation of 1 (Fig. la) was done using
optical spectroscopy, mass spectrometry, 1D and 2D NMR
spectroscopy spectroscopy (‘H, °C, DEPT, COSY, HMQC,
HMBC, NOESY). Absorbances at 1625, 1698, 1700 and

B. Schlegel et al., J. Antibiot, 55, 814 (2002).

17



Initial structure assignment of hexacyclinol synthesized (in 2006)

() This article has been retracted on Nov 14, 2012

Antimalarial Drugs

DOI: 10.1002/anie.200504033

Total Syntheses of Hexacyclinol,

S-epi-Hexacyclinol, and Desoxohexacyclinol
Unveil an Antimalarial Prodrug Motif**

Hexacyclinol (1) was isolated by Grife and co-workers from
the basidiospores collected from Panus rudis growing on dead
betula woods in Siberia.'! In 1999, our exploration into
German fungal cultures provided a strain of P. rudis 99-329
that was not only capable of the biosynthesis of 1 but also
provided trace amounts of epi-5-hexacyclinol (2) and desoxo-
hexacyclinol (3).”! Further study indicated that the retrocy-
cloaddition of 1 and 2 released oxygen to afford a mixture of
trienes 3 (Scheme 1). Subsequent [2+2+2] cycloaddition of 3

Scheme 1. Hexacyclinol interconversions: a) in vacuo, neat, 95 %;
b) O,, rose bengal, MeOH, hv, 0°C, 89%.

Scheme 2. Synthetic plan depicting the strategic intermediates A-).
Completed bonds are shown in black, and the skeleton is depicted in

gray.

of the C17-C18 bond, and ending with installation of the C14—
C15 epoxide.

Intermediate A was developed from bis(acetate) 4.0
Protection with TBS, deacetylation, and nosylation of the
primary alcohol afforded 5§ (Scheme 3). Under these condi-
tions, nosylate 5 was obtained along with a bis(nosylate)
derivative (3-5% yield), which was removed after treatment
of the mixture with sodium cyanide in DMSO to convert §

18



NMR data

Position 1
d¢c Ou COSY
1 18.6 (@) 1.77 s -
2 142.2 (s) - -
3 26.1 (q) 1.72 s -
4 120.7 (d) 4.82d, 10.1 H-5
5 75.8 (d) 5.46d, 10.1 H-4
6 60.5 (s) - -
7 202.9 (s) - -
8 53.1(d) 3.23 4, br, 3.5 H-9, H-10
9 54.5 (d) 3.64 m H-8, H-10, H-13
10 47.8 (d) 2.74dd, 5.2, 7.8 H-9, H-11
11 71.5 (d) 499 dd, 5.2 br H-10, H-12
12 40.4 (d) 3.55m H-11, H-13
13 72.7 (d) 3.80 dd, 9.5, 1.5; 2.54 br H-12, H-9
(OH)
14 61.0 (d) 3.51dd, 2.9, 0.5 H-12, H-15
15 53.2 (d) 3.29d,3.2 H-14
16 192.8 (s) - -
17 132.5 (s) - -
18 139.6 (d) 6.73 dd 5.3, 2.4 (allyl) H-19
19 40.9 (d) 3.59d, 5.3 H-18
20 77.3 (s) - -
21 26.6 (q) 1.26 s -
22 24.7 (q) 1.15s -
23 49.1 (q) 3.02s -
2002

POSITION 1

oH COSY
1 1.77 S
2
3 1.73 S
4 5.46 d, 10.1 H-5
5 4.81 d, 10.1 H-4
6
7
8 3.24 db, 3.6 H-9, H-18
9 3.64 m H-8, H-10, H-13
10 2.75 dd, 5.2,7.9 H-9, H-11
11 4.99 dd, 5.2, br H-10, H-12
12 3.55 m H-11, H-13
13 3.81 dd, 9.5, 1.6 H-12, H-9
14 3.51 dd, 2.8, 0.5 H-12, H-15
15 3.29 d, 3.0 H-14
16
17
18 6.73 dd, 5.3, 2.4 H-19, H-8
19 3.59 d, 5.3 H-18
20
21 1.27 S
22 1.15 S
23 3.03 S

2006

19




Reassignment of the structure of hexacyclinol with DFT-based NMR

synthetic route DFT-exp. 13C chemical shifts
)\ 25.0 : | d
H&?/S ﬁ’/ 00 Previously reported structure
H* RN

~ N 10.0
— H.| 0.0
0. /H\ L} g 5.0
T fH 80.0
;.h"y-’-'

OH _5]0

=10.0

panepophenanthrin (2) 3 4 -15.0
(x-ray structure)

10 11 12 13 18 19 20

an abs. error = 6.8 ppm

DFT modeling:
Geometry: HF/3-21G

-20.0

H* MeOH
pRm— 13C NMR: mPW1PW91/6-31G(d,p)
| Methanol solvent
° 5 Proposed stucture 6) 11@S @n error of 1-2 ppm for similar compounds
for hexacyclinol .
6.0
Structure 7
4.0 !
2.0
§0.0
2.0
-4.0 |
Conformer of 6 Mean abs. error = 1.8 ppm
-6.0 J

S. D. Rychnovsky, Org. Lett. 8, 2895 (2006). 20



ORGANIC

LETTERS

Can Two Molecules Have the Same 2L
. . ol. 11, No. 6
NMR Spectrum? Hexacyclinol Revisited 1409—1412

Giacomo Saielli' and Alessandro Bagno**

DFT modeling:
Geometry: B3LYP/6-31G(d,p)
"H NMR: B97-2/cc-pVTZ

averaged over two

conformers

8('H),.,/ ppm

Mean abs. error = 0.4 ppm Mean abs. error = 0.2 ppm

21



Probabilistic error metrics for high confidence structure assignment

® DP4 score: Penalizes a structure with outliers in computed chemical shifts

Bayesian probability that a candidate

N
structure i (with N centers) p (i|5 S S ) _ 11—, [1 -7, (t)]
is correctly assigned bre W ZJ"; I, [1 - T, (t)]
to the experimental data

T, (t): Cumulative probabilities for Student’s t-distribution with v degrees of freedom
t: standard score of scaled prediction error

| < slcaled,k - exp,k> — u|

O

[ =

6gca1ed . Linearly corrected calculated values against experimental values

U, o, v: Free parameters (unlike in hypothesis testing)

For partially or unassigned peaks, permute computed values to maximize accuracy

S. G. Smith, J. M. Goodman, J. Am. Chem. Soc. 132, 12946 (2010).

22



DP4 probability vs. statistical metrics

Error metrics for comparing
computed chemical shifts of two
structures A and B against
experimental values

13C NMR
Mean absolute error

Standard deviation of the error

DP4 probability
TH NMR

Mean absolute error

Standard deviation of the error

DP4 probability

1.50

1.59

79.5%

0.11
0.13

100%

1.62
1.83

20.5%

0.18

0.22
0%

S. G. Smith, J. M. Goodman, J. Am. Chem. Soc. 132, 12946 (2010).

23



Example structure assignment of a natural product

0 O O
M Me
b/Me ) | iil\[
HO OH
OH
1b 1c

- 1d
COSY Proposed candidate structures for a natural product
y DFT spectrum of the lowest energy contformer tfor each candidate
:}p 0 o c6 7 s cs
¥ % > DP4 probability: 99.8% | | H |
H Me
N7 £ 4 C6 y 57
H OH C3
p : TP
HMBC ¢ cs €6 g
i I
|
) . 1d C6 Cs, _C7 C4
DFT modeling: o l o ]” L
Geometry: B3LYP/6-311+G(2d,p) ot o
NMR: M06-2X/6-31+G(d,p) ~ Fxperimenia c3 T 7
Methanol solvent ' | 1
180 160 140 120 100 80 60 40 20
ppm

B. N. S. Pinto et al., Asian J. Org. Chem., 11, 202200182 (2022).



High-confidence structure assignment of laurefurenyne (32 diastereomers)

DFT modeling: Geometry: wB97XD/6-31G(d), Shielding: mPW1PW91/6-311G(d,p)
Boltzmann weighing of conformers sampled with Monte Carlo search (and MMFF)

Diastereomer 5 has the highest DP4 probability

sc MUE0.9-3.1ppm " ~/ 10

Al n..l. ;nnmnmm

0.4r 4. I\/IUEO15 6ppm

e

0.1
1234567 8 91011121314151617 18192021 2223 24 2526 27 28 29 30 31 32

e
w

MUE (ppm)

D. J. Shepherd, Chem. Eur. J.19, 12644 (2013).

HO 1
12 —|-1—05 = 2’§1
Me 5w OH & 7 OH

14
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Quantum chemistry of NMR parameters

Extract and isolate a compound

High resolutionlmass spectrosco ¢ Molecular formula
J X PY > ¢ Degree of unsaturation (DBE)
. l . . ¢ Functional groups (CO, OH, etc.)
Initial spectroscopic analysis . . .
. R > & H environments, population, coupling
¢ C environments, CH/CH3/CH,/Cqg
e 1TH NMR

e 13C NMR + DEPT

l—> Empirical models (sanity check)
2D NMR

e COSY, HSQC, HMBC . ¢ Structural details: H-H connectivity (rings,
| chains), H-C attachment, long range C-H links

Propose candidate structures

v

Quantum chemistry / ML models

» ® Conformational search

20



Ensemble averaging of chemical shifts: conformational / vibrational effects

® Quantum mechanical (huclear QM) ensemble

(0)r = |ar Z

® Classical-/ab initio-MD ensemble (classical nuclei)

(o) = JdeP e PHuR.P) 5 (R)

® Discrete conformer approximation (common practice)

e_ﬂEi
—BE,
%,

® | ocal vibrational correction for anharmonic effects (within each conformer)

do 1 0%c
G(R)~00+Zk<an>Qk <0Qk>Qk

Needed for high-level benchmarking of computer NMR against precise experimental data

(o)1 = 2 W;0;; Wi =
i

27



Boltzmann weighing of conformers

energy
A
} 2 kcal/mol
(T = 298.15K)
weights = exp(—E/RT) w; = 1.0 w, = 0.034 Z=w; +w,=1.034
+0.07 H +0.13 +0.16 Me

P10; + D20,
Boltzmann-weighted

Toq-lae chemical shifts
d(comp) Proton d(comp) d(comp) 8(exp)25
1.29 H1 1.84 130 - 134
1.63 H2, 1.54 163 - 1.65
0.88 H2, 1.49 090 - 0.88
1.26 H3, 1.36 127 - 1.23
1.67 H3, 1.54 167 - 168
1.63 H4, 1.22 162 - 162
1.15 H4, 1.64 116 - 1.14
0.86 Me 1.03 087 - 0.86

MAE 0.02 0.32 0.02

P. H. Willoughby et al., Nature Protocols, 9, 644 (2022).



NMR parameters

Extract and isolate a compound

High resolutionlmass spectrosco ¢ Molecular formula
J X PY > ¢ Degree of unsaturation (DBE)
. l . . ¢ Functional groups (CO, OH, etc.)
Initial spectroscopic analysis . . .
. R > & H environments, population, coupling
¢ C environments, CH/CH3/CH,/Cqg
e 1TH NMR

e 13C NMR + DEPT

l—> Empirical models (sanity check)
2D NMR

e COSY, HSQC, HMBC . ¢ Structural details: H-H connectivity (rings,
| chains), H-C attachment, long range C-H links

Propose candidate structures

v

Quantum chemistry / ML models

» ® NMR shielding (and scalar coupling)
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Molecular properties as derivatives of electronic total energy

® |n quantum chemistry, the total energy is the central observable.
® Molecular properties emerge as a response (of the electron density and nuclei) to an

external perturbation (¢) can be represented as a Taylor expansion of the energy
around the unperturbed value

E(e) = E( 0)+dE i 4 24
e)=L(e = — €+ —— E°+ ...
de 2! de?
=0 =0
Ee.. &) = E(e, = 0 O)+dE L 9E L d°E ), ! d°E L d°E ),
£,8)=E(e =0,¢& = — &+ — —_ £ EE +— —— £
b= : 2 de, P de, 2721 de? U721 dede, 2721 de? 2
&= &= 8120 6'1:0,82:0 8220
® \When the external perturbation (g) is the electric field
dipole moment (u) = - ‘fi—f o (first derivative)
polarizability () = - % , (second derivative)
E=
first hyperpolarizability (3) = — % , (third derivative)
=

J. Gauss, in http://www.fz-juelich.de/nic-series/ (2000)
A. Hinchcliffe, Ab initio determination of Molecular Properties (1987)
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Availability of response equations (analytic second derivatives) for NMR

Z—E dipole moment; in a similar manner also multipole d’E bili
Ei ' . dB.dB; magnetazibility
moments, electric field gradients, etc. 2E
2B dmsc.dBa nuclear magnetic shielding tensor; relative NMR shifts
Tede polarizability d2JE :
dc;Eﬁ dlx.dlz, indirect spin-spin coupling constant
e de nde s (first) hyperpolarizability i2E
@ rotational g-tensor; rotational spectra 1n magnetic ne
€alEpaep iBadl; tational g-t tational spectra i tic field
Zlif forces on nuclei; stationary points on potential energy d2E ! L rotation ¢ fine structure in rotational
7 I InD nucliear spin-rotation tensor; mnne structure i rotationa.
surfaces, equilibrium and transition state structures dl g idBa
P2E spectra
harmonic force constants; harmonic vibrational frequencies dE . : . :
dz;dz; r— spin density; hyperfine interaction constants
J
d3E . . . : . 2
dz;dz,dzr, cubic force constants; vibrational corrections to distances y g@ d% - electronic g-tensor
and rotational constants
d*E : : :
dz:dz; dzdz; quartic force constants; anharmonic corrections to
vibrational frequencies
2
d:(cidEe dipole derivatives; infrared intensities within the harmonic
(2 «
approximation
3
% polarizability derivative; Raman intensities
- Second derivatives
HF Pople et al. (1979)
/DFT Handy et al. (1993), Johnson, Frisch (1994)
- MCSCF Schaefer, Handy et al. (1984)
Gau55|an, NWCHEM’ GAMESS’ Orca, MOlprO’ /MP2 Handy et al. (1985), Bartlett et al. (1986)
Qchem, and other programs for molecules MP3, MP4 Gauss and Stanton (1997)
_ CISD Schaefer et al. (1983)
CASTEP, VASP, Quantum Espresso for solids CCSD Koch, Jgrgensen, Schaefer et al. (1990)
- — CCSD(T) Gauss and Stanton (1997)
CFOUR for molecules CCSDT -n Gauss and Stanton (2000)

J. Gauss, in http://www.fz-juelich.de/nic-series/ (2000)
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Calculation of NMR shielding

" O’E E : total electronic energy
[0} —
: C ap .
Nuclear magnetic shielding tensor 0B, 0my; @, : components X, y, Z
of nucleus A Gia . _para B: external magnetic field vector
Oop = %ﬂ + o . :
/ & m, : magnetic moment of nucleus A
d1a | para <lP() | Ppara | \P ><‘P | Qpara | lIJ()) +ao ﬁ
= (Y| 0% | ) o =—2Z
1a af E —E
-3. _
OZﬁ = Z <ri " Tig Ogp — ’”ia’”iAﬂ> rs Tw=ri—Ry .
i€electrons P gara — Z Lia; Li =TI; XP,
iEelectrons
para Z LlAa zA ; LiA — (ri _ RA) X P;
i€electrons
2
L Z 0°hy, s Z oD,, oh,
aﬂ
u,veA0s aBaamA’ﬂ uveAOs 0Ba amA’ﬁ

Linear response form used in calculations

32
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Electronic Hamiltonian of a molecule in magnetic field

® Sum of one- and two-electron terms

0= Z h(i) + Z (i, j) ° g(i,j) = l/r;: two-electron operator, Coulomb
i i<j O lAz(i): one-electron operator contains magnetic field
A 1 A 2 I ZA ]
h(i)=— (p;+ A(r)) — —m, - B(r;
(1) 9) (p, (»‘;\“PR\M 4+ B(r)
magnetic vector potential, B(r) = V X A(r)
l(f)+A)2=f)—2+ l(fy-A+A-f)) + 1y
2 2 2 2

pa‘ramagnetic term diamagnetic term

® Pure gauge transformation (uniform field) A’(r) = A(r) + Vy(r), B = B unchanged

oB'=VA'=VX(A+Vy)=VXA+VXxVy=VXxA+0=B
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Gauge-origin dependence in finite basis set
® Gauge independence of exact wavefunction
A 1
Olet HY = 5 (15 + A)z‘P + V(r)¥

A 1
°Ar) = A(D) + V() — AN =~ (p+A+V 2) W+ V()w
OVXA'=VXA— V() =e"P(r) = (V|H|Y)=(V|H T

® Shifting the global origin of the vector potential
1 1 1

1 1
A'(r) = A (1) = =By X (Rg — Ry) = Vy(r); where y(r) = — [BO x (Ry — R(’))] T

o MOs expanded on a finite basis of AOs: y(r) = Z c,$,(r)

o Finite AO basis cannot represent e’k(r)qbﬂ(l’), .. cannot be expanded as Z d,g,(r)

u
o For magnetic properties, gauge-including AOs (GIAOs) are used

¢GIAO(r) = exp [5 (BO X R ] qb (r)

GIAO removes dependence on R, by attaching the correct phase to each AO.
34



Linear response and coupled-perturbed equations

® For Hartree-Fock formalism

H
. Ly oD on,,
: u,vEAQOs oB amAlB urveAQOs aBa amA’ﬂ
implicit dependence on B
D, = Z ey charge-density bond-order matrix
l//l.MO(r) = 2 cﬂigb/}l’am(r) e.g. LCGTO (Gaussian-type orbitals)
U

HF
D - i‘i Cc© 9Cy; ﬂc@
OB -\ #|oB,| 0B, “

a i

solution of coupled-perturbed
Hartree-Fock (CPHF) equations

oC, OF 0
(F—eS) — = — g ) co
0B, 0B, 0B, )

In Kohn-Sham DFT, coupled-perturbed Kohn-Sham equations are solved




Post-Hartree-Fock corrections (follow energy corrections)

® MP2 correlation correction to HF energy

¢ i, j: occupied MOs from HF

E® — ! Z | (il 1ab) | * a, b: virtual MOs from HF
4 jab i T 6~ €€ * ¢, energies of MOs from HF

¢ (ij| | ab): antisymmetrized two-electron integrals

® Using double-excitation amplitudes

jab _ {@jllaby  Via o 1 Z ab
ab — :
€ +€—€,— ¢ Ag}b iiab
® MP2 correlation correction to HF shielding tensor
212 2
o OEP 1 J ab
aﬁ — 1 tij Vijab
0Ba0mA,ﬁ 4 ijab aBaamA,ﬂ
i 2.ab ab ab 2 ]
oL 0% o1 IV, X OV, 0L 0*V,iu -

Vijab + + i
l]ab 6BadmA,ﬁ 0B, om, s 0B, dmyp  0B,0my g

Requires CP-MP2 equations.

E. C. Vauthier, Can. J. Chem. 66, 1781 (1988)
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Coupled-cluster theory for high-precision quantum chemistry

. N A A 1 -~
| D) = e | P,) C is the cluster operator, and e® =1+ C + ECz + ;Cﬁ + ...

The effect of the cluster operator is defined as the sum
ClP) =C,|¥)+Co |+ ... + Cy| Pp)
with
AL DEDWALAREAL NERDIRAAL I

b
a,r a,b,r,s

where the excitation amplitudes, ¢, are determined by a non-linear iterative optimization
Truncating the sum gives rise to CCSD, CCSDT, etc., approximations. One of the most
popular approximations is CCSD(T), where the triples energy correction is estimated

using the perturbation theory. CCSD(T) with a large LCAO expansion is commonly used
for accurate modelling of spectroscopic properties (very) small molecules.
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CCSD(T) settles the disputes based on approximate modeling

CCSD(T) calculation of NMR chemical shifts:
consistency of calculated and measured ""C chemical shifts
in the 1-cyclopropylcyclopropylidenemethyl cation

John F. Stanton ?, Jirgen Gauss *“', Hans-Ullrich Siehl **

Table |
'*C NMR chemical shifts (in ppm) * for 1 with the tzp/dz basis
% described in Ref. [19] with various treatments of electron correla-
O\ tion. Also included are experimental results from Ref. [3]
VAV, SCF  MBPT(2) CCSD CCSD(T)  Expt.
! ) 9
® An earlier MP2 calculation C., 2769 2111 244.4 234.1 234.2
Suggested geometric Cb 50] D36 517 519 517
. C,. 12.0 22.6 20.5 22.3 21.2
reorganization in the solventto B
, N C, 333 490 432 454 43.9
influence the *°C shift of C, C., 34.5 423 39.8 410 389

* Relative to TMS. For the conversion of absolute shieldings to
relative shifts see footnote 8.

J. F. Stanton et al.,, Chem. Phys. Lett. 262, 183 (1996) 3



5(thcmy) - 8(cxpcrimcnt)
-.- . . —_— [ 2 ] N e e
o= N S N S A < N < N

‘
W

Ahpprepe)

CH,

CH,

X ’l
L‘ 5
. -

Some quantum chemistry benchmarks

MAE

B GIAO-HF 88
B GIAO-MP2 1.5
= GIAO-CCSIXT)

llﬂ mlﬂl l1‘h b

/
w T X 0 0 zZ 0 g 00 zz 2 Fu
:O‘z_\::q‘uauﬁzquuguud
Ja:::‘-’.’:::: U A T = O 9
O = = O -2 O % =
o o C R A

F. A. A. Mulder, Chem. Soc. Rev., 39, 528 (2010)

OMm
OMm

Oom
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Jacob’s ladder in DFT approximations

" Double Hybrid Functionals
- (m)GGA+HF+{PT2,RPA}
SUSE RF

workhorse for molecules \’/

: | kl- ;'-'t—h—{l | l_lH‘ ”

. ;. L : /[Il __S f\'(‘, 3 ik
workhorse for solids '1'30 4/ \'37/ & .

l(\l _—..l Wr tlU‘ll l{ l L/ \T-;_;;)‘{(C\\ s \”

\ f’ O/
Local Density Approximation

/) *O
I

J. M. L. Martin, G. Santra, Israel J. Chem. 60, 787 (2020)

Accuracy earth

J. P. Perdew, K. Schmidt, AIP Conf. Proc. 577, 1 (2001)
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Deviations [ppm]

HF, MP2 and DFT benchmarks with CCSD(T) reference

CH4 H3C‘CH3 H,C=CH,
HiaC—F H;C-OH HaC—NH,
Q @
HC=CH C=0 0=C=0
S G
H H HaC™ 'H H3CJLCH3
HsC-C=N F
HC=N F-C-F
|
H,C=C=CH, F
H
0.35
MSD
MAD m—
030 4 STD m— ~ w
= N
(-
0.25 -
0.20 -
0.15 +
0.10 =
0.05 -
0.00 -

& I
=

PBEO

mPW1PW

B97-2

s & F £ 8 8
- X o o
2 o 2 =
o™
® &
Methods

Deviations [ppm]

H3C-SH H3C-ClI H;C—-PH;
£ 8w
H” >NH, H” “OH o:\
CHs % N
HyC-Si-CH3  cl—C-Cl ./~
! [ HN_ -
CHj Cl

13C
10
™ MSD
ot MAD m—
8 = STD
- - N NT e N
© oo OO © oo o
6 = ! - ot™N v
N o . A
o <Y ¢ <
4 i m(“’)m
©2ai
N -
0 -
_2 -
©
_4 -l (?j
1 | | | | | | 1 | 1 | |
N [T o g N o by ; N w (e}
T * B § f z 2§ & & §
o < @ @ S S
€ @ &
Methods
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(From synthesis to) Structure elucidation workflow

Extract and isolate a compound

High resolutionlmass spectrosco ¢ Molecular formula
J X PY > ¢ Degree of unsaturation (DBE)
. l . . ¢ Functional groups (CO, OH, etc.)
Initial spectroscopic analysis . . .
. R > & H environments, population, coupling
¢ C environments, CH/CH3/CH,/Cqg
e 1TH NMR

e 13C NMR + DEPT

l—> Empirical models (sanity check)
2D NMR

e COSY, HSQC, HMBC . ¢ Structural details: H-H connectivity (rings,

| chains), H-C attachment, long range C-H links

Propose candidate structures

v . Machine learning models as surrogates

Quantum chemistry / ML models .
of quantum chemistry

Quantum chemistry calculations are time-consuming

The goal is to develop ML models trained on large datasets that offer quantum chemistry

accuracy at empirical speed
42



Example web-app for electronic excitation energy of BODIPY dyes

https:/ /moldis.titrh.res.in/db/ bOdiPy Machine predicted SO -> S1 excitation energy (in eV)

M HHE HH S Machine for S, = S, excitation energy of BODIPYs 3.328787 B

2.944635

—CH, —NH, . —OH —F —C=CH
00 01 02 S, S 03 04 05
—CH=CH, —C=N —CH=NH —CHO —CHCH, —CHNH,
06 07 8 S N\ 08 10 11
—CHF —NHCH, —CHOH ° \ NN ' —OCH, ~—CHC=CH —C=CCH,
12 13 14 5 15 16 17
/\
—CH=CHCH, —CH,CH=CH, —CH,C=N S, F o s, —CH,CHO —COCH, —NHCH=NH
18 fo 20 21 22 23
\H, ¢H,
—C=NH —N=CHNH, —NHCHO —CONH, —OCHO —COOH —CH,CH,CH, —CHCH, —CH,CH,NH,
24 25 26 27 28 29 30 31 32
" e A, ;
—CHCH, —NHCH,CH, —CHCH,OH —CHF  —CHCH, —OCH,CH, —CH,NHCH, —NCH —N*=0 o M I_ d | d TD D FT d
3 2 3 3 2 3 2 3 3
33 34 3 ° 36 37 38 39 40 41 ode tralne on ata
CH H H H
onoom ch—on ot as oo with 5-10% error
—v, 3 —Lh—uH, == TV, T -
42 43 44 45 46 o

® Enables rapid screening of
I 253 Billion possible combinations

siw T D s (empirical speed)
S ‘/B\' S,
30 v/ 4:(0 V|
| Query |

Write indices of substituents as
<grpl> <grp2> <grp3> <grp4> <grp5> <grp6> <grp7>

with one entry per line in the same order of their
positions as shown above. Example:

0010001

1234567

| Query |

A. Gupta, J. Chem. Phys. 155, 244102 (2021) 43


https://moldis.tifrh.res.in/db/bodipy

ML workflow

® feature: structural descriptor of an atom
Training data o handcrafted:
{feature, label} simple NN models, Kernel-based models
2 Y o Learned during training:
= message-passing NN
= Learning ® |abel: molecular properties (energy),
algorithm properties of atoms-in-molecules (atomic

forces, partial charges, NMR shielding)

Y

Query feature > Trained model (> Label of query

Prediction
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Taxonomy of ML models used in chemistry problems

Architecture

Neural network Kernel Linear

Scalar-only Training and prediction on scalar observables
o Properties independent of PES modeling, properties (e.g. energies) across compositions

* BPNN * MGCN * KRR
* ANI * GAP (SOAP)
Energy/Force Training and prediction on atomic or total energies and corresponding forces
(with joint-loss) o Forces are conservative by design
S * DeePMD * PaiNN * KRR * MTP
2 *x HIPNN * ENINet *x GAP (SOAP) *x SNAP
= * CENT * SpookyNet * ACE
o * SchNet * NequlP
o * DimeNet * MACE
(o)) * MGNN * Allegro
= * PhysNet *x SO3krates
% * GemNet * ViSNet
(e}
S Gradient-domain Training and prediction on forces (conservative)

o Forces are derived as gradients of a learned energy

* NewtonNet * GD-KRR
*» GDML/sGDML

Vector-only Training and prediction on vector observables
o Direct prediction of forces (non-conservative); no underlying energy model

* ForceNet * KRR (local-PCA)
Figure 6. A logical classification of machine-learned potentials (MLPs) organized by modeling paradigm (rows) and architectural

class (columns) that distinguishes conservative, force-only, and scalar models while grouping them under neural, kernel, or linear
frameworks. All acronyms used here are defined in the main text.

(Topical review) J..Phys.: Condens. Matter 38, 013002 (2026) 45



QM9NMR dataset

0.286 ~0.019

A ( (1208486 ) ® Contains isotropic shielding of
{0 asseen — CHONF atoms in 134,000 QM9
“F (3036) —

0.012 \13C (831925) j mO|eCU|eS (With Upto 9 CONF

Q

MMNNRSS

atoms).

o

o

o

o
==

\ o MPWIPW91/6-311+G(2d,0)@B3LYP/
6-31G(2df,p) level DFT modelling in
vacuum and with continuum models

Normalized KDE

1 ' >0 [ppm]

-400 -200 0 200 400

A of five commonly used polar and

b)

non-polar organic solvents: acetone,
CCl4, DMSO, methanol, and THF

0.035 1 |[SP

0.025 A

® The dataset contains 0.8 Million 13C
e shielding and 1.2 Million ™H

1 H . . . .
0 %= /'H shielding in each phase
0.005 A =
' : \u . : > 6 °C [ppm]

300 200 100 0

Normalized KDE

R. Ramakrishnan, et al. Scientific Data (2014).
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AML modeling of 13C isotropic shielding

E
A baseline
target
10.0j
E
o
- }
Rt VRb )R g 5-0'
=
Q
4.: =
o /|9 2o
g v/ |8 -
1.5+
109.7 !
1.0
A 102
exp.128.5- Y
132_7_y.., .....................................

§ °C (ppm)

® AML modeling is done with PM7 geometries for generating structural descriptors (FCHL,

SOAP, CM)

.

—eo— ML FCHL
—4- A-ML FCHL
—o— ML SOAP
- A-ML SOAP
—e— ML CM

G

® B3LYP/STO3G level shielding is the baseline
® The targetline is mPW1PW91/6-311+G(2d,p)@B3LYP/6-31G(2df,p)

T

Training size (N)

A. Gupta, et al. Mach. Learn.: Sci. Technol. (2021).

"ot
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Transferability to large drug molecules unknown to the model

127.9 171.
(-5.8)137.7 O 0 9

138.3
(0.5)
(0.4)
138.
(0.8) 37.
(0.4) 128.1(-3.4) \WN(p.1) 2.5 34.6
0 4.2) (-5.0)(-0.5) O (-5.1) (-0.2)
H (5.7) (2.5 (-3.0) (-2.3) (-1.0)
(2.9) (2.8)
Rizatriptan Thalidomide
ML (2.4, 0.97) ML (2.3, 0.91)

A-ML (2.0, 0.97) A-ML (1.5, 0.93)

standard deviation
of the error

mean absolute error
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Neighborhood-informed features for 13C chemical shifts

Scaling term: o (like dipole-induced dipole)

Pairwise functions:

Z17;
d(A,B)(r) — Z gIJ(r) . R . S(RIJ)
J£IIEA,JEB 1J

C,C
I )

d(0) = dc, Query atom'’s descriptor vector

/\ oes d(1) = dg, dH4F/rst neighbour’s descriptor is padded
/\/\ d2)=d¢, dyy dOISeCOI‘)d neighbour

O1

‘/‘ query atom

C2 Neighboring atoms are indexed
as per distance from the query atom

OH4

H,C

CO d3)=dcy dpy do dClThlrd neighbour

Fourth neighbour
I d4)=dcy, dys do; dc; dyg J

d5)=der dyy do; dep  dy dH2Fifth neighbour

. J

Concatenated pairwise functions:

d(r) = [d<H,H>(,,), dCO), ... dHO . oo dCN() @(CO)py, ]

aBoB-RBF(4): Out-of-sample mean prediction error 1.69 ppm

S. Das, et al. J. Chem. Phys. (2026).
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MLQM9NMR Python module (XYZ to 13C shifts)

from mlgmOnmr import calc_nmr
from mlgmOnmr import plot_nmr

filename
descriptor

‘drugl2_07.xyz'
'abob_rbf_4'

I

c¢s = calc_nmr(filename,descriptor,di_path="'bz2")
plot_nmr(cs)

Python
c1 74.23 ppm (<p25)
C2 144.94 ppm (<p5)
C3 130.43 ppm (<p5)
C4 132.22 ppm (<p5)
c5 129.61 ppm (<p5)
C6 132.44 ppm (<p5)
7 135.34 ppm (<p5)

c8 146.21 ppm (<p5)
c9 128.06 ppm (<p5)

c10 130.75 ppm (<p5)
C11 133.35 ppm (<p5)
C12 134.16 ppm (<p5)
c13 131.44 ppm (<p5)
C14 172.51 ppm (<p5)
C15 156.95 ppm (<p5)

200 175 150 125 100 75 50 25 O
ppm

S. Das, et al. J. Chem. Phys. (2026).



Comparison with target-level data for larger drug molecules

2-6, 8-12

| DFT
c b 17 a
o
&
ML
200 175 150 125 100 75 50 25
ppm
243 1 a
DFT
243 1 a
ML
200 175 150 125 100 75 50 25 O
ppm

S. Das, et al. J. Chem. Phys. (2026).

a 4 26 135

DFT

ML

200 175 150 125 100
ppm

75
hjd
gfb la

50 25

0

DFT

id
g fbhla

ML

200 175 150 125 100 75

ppm

50 25

0
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DFT-level 13C chemical shifts predicted with ML on MolDis-Lab

IMoOILDIS ° .
;|@WW¢WWWWWM (&tlfl‘

SMILES — 13C Shifts Structure Viewer + Output

SMILES: C1CCCCCA Download SVG Download XYZ

Paste SMILES, render 2D structure, compute 13C shifts.

SMILES

C1CCCCC1 @
) O O
Try: clcccccl (benzene), CCO (ethanol), CC(=0) 0 (acetic acid)
Render + 13C shifts Load Example Clear
Show atom numbers 3 12

ML 13C spectrum (from 3D XYZ) plotted.

Notes: 13C shifts predicted with a minimal additivity model

« This tool is intended for educational use. Predicted values are
approximate and should be interpreted with caution in
production or applied settings.

« The ML-based '3C predictor is trained on the QM9NMR dataset
(C, H, N, O, F atoms only) and will not work for molecules

Model scope: This prediction uses a minimal empirical additivity model. It is intended for small to medium organic molecules and typical
functional groups. Results may be unreliable for large, highly branched, strained, hydrogen-bonded, substituted aromatic or strongly
conjugated systems.

D 1: 27.8 ppm: +sp3+R6+nA+nB+nA+nB
containing other elements. 2: 27.8 ppm: +sp3+R6+nA+nB+nA+nB
« ML prediction may take a few seconds to compute the aBoB- 3: 27.8 ppm: +sp3+R6+nA+nB+nA+nB
RBF(4) descriptor. After clicking Predict from 3D / XYZ, please 4: 27.8 ppm: +sp3+R6+nA+nB+nA+nB
wait and do not refresh the page. 5: 27.8 ppm: +sp3+R6+nA+nB+nA+nB
6: 27.8 ppm: +sp3+R6+nA+nB+nA+nB

/

Predicted 13C spectrum (& / ppm) Lock 0—-220 ppm Download spectrum image
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DFT-level 13C chemical shifts predicted with ML on MolDis-Lab

| 1 1 1 | 1 1
220 200 180 160 140 120 100 80 60 40 20 0
 (ppm)

13¢ shifts predicted with a KRR-ML model (using 3D / XY2)

Predict '3C shifts using KRR-ML

Model scope: This ML model is trained on the QUWINMR dataset and supports molecules containing only C, H, N, O, and F atoms. Predictions
for very large molecules or molecules containing other elements are not supported and may fail or return incorrect results.

26.68 ppn 13C shifts with mPW1PW91/6-311+G(2d,p) calculated on

1:

2: 29.67 ppm o

3. 29.66 ppn B3LYP/6-31G(2df,p) geometries

4: 29.66 ppm

S:  29.68 pem CPU time ~1 hour for Aspirin

: . ppm

Several hours for larger molecules
Predicted with KRR-aBoB-RBF(4) model using SMILES as input
~30 sec for any size
ML-predicted 13C spectrum (5 / ppm) Download ML spectrum image
250 2(l)0 1 éO 1 (ISO 1 1[10 1 .']20 1 (])0 8]O 6l0 410 2l0 (l)

5 (ppm) 53



Pics from Kang-Yatse-2 expedition, September 2025




