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Some concepts behind the methods we will use  
tomorrow during the hands-on session

• Empirical additivity-based models

• Quantum chemistry

• Machine learning

For students, ORCA quantum chemistry software can be  
installed on laptop after the talk.  

Don’t Leave!
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(From synthesis to) Structure elucidation workflow
Extract and isolate a compound

High-resolution mass spectroscopy
Molecular formula 
Degree of unsaturation (DBE)

Initial spectroscopic analysis 
• IR 
• 1H NMR 
• 13C NMR + DEPT

Functional groups (CO, OH, etc.) 
H environments, population, coupling 
C environments,  CH/CH3/CH2/Cq 

2D NMR 
• COSY, HSQC, HMBC Structural details: H-H connectivity (rings,  

chains), H-C attachment, long range C-H links

Conformational search, geometry  
optimization, NMR shielding, solvent effectsQuantum chemistry / ML models

Propose candidate structures 

Statistical and probabilistic error analysisFinal validation of the structure

Assign stereochemistry (ECD, VCD)

Empirical models (sanity check)

Confirm with quantum chemistry



4

Empirical models: power and ambiguity
Extract and isolate a compound

High-resolution mass spectroscopy
Molecular formula 
Degree of unsaturation (DBE)

Initial spectroscopic analysis 
• IR 
• 1H NMR 
• 13C NMR + DEPT

Functional groups (CO, OH, etc.) 
H environments, population, coupling 
C environments,  CH/CH3/CH2/Cq 

Empirical models (sanity check)
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Empirical models: power and ambiguity
Extract and isolate a compound

High-resolution mass spectroscopy
Molecular formula 
Degree of unsaturation (DBE)

Initial spectroscopic analysis 
• IR 
• 1H NMR 
• 13C NMR + DEPT

Functional groups (CO, OH, etc.) 
H environments, population, coupling 
C environments,  CH/CH3/CH2/Cq 

Empirical models (sanity check)

Parameters for H and C environments

No dependence on dihedral angles,  
stereochemistry, or 3D structure
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Empirical additivity models for 1H chemical shifts 

P. S. Beauchamp, R. Marquez, J. Chem. Educ., 74, 1483 (1997). 

methyl

methylene

methine
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Empirical additivity models for 13C chemical shifts 

D. W. Brown, J. Chem. Educ., 62, 209 (1985). 
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Empirical additivity model for 13C chemical shifts on MolDis-Lab

Network: nmr_meets_biology 
Wifi password: nointernet1
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Empirical additivity model for 13C chemical shifts on MolDis-Lab
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Empirical additivity model for 13C chemical shifts on MolDis-Lab
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Empirical additivity model for 13C chemical shifts on MolDis-Lab

C           methane
CC          ethane
CCCCC       pentane
CC(C)CC     isopentane
CC(C)(C)C   neopentane
C1CC1       cyclopropane
C1CCCCC1    cyclohexane
c1ccccc1    benzene

SMILES representation
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Empirical additivity model for 13C chemical shifts on MolDis-Lab
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Empirical additivity model for 13C chemical shifts on MolDis-Lab

D. W. Brown, J. Chem. Educ., 62, 209 (1985). 

Empirical models offer instantaneous predictions for sanity checking

J. Chem. Educ., 64, 915 (1987). 
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Empirical degeneracy

L. J. Tilley et al., J. Chem. Educ. 79, 593 (2002)

C12(OCCO2)C2(OCCO2)CCCC1 C123C(OCCO2)(OCCO3)CCCC1

Identical empirical chemical shifts for different structures 
(lack of long-range effects and 3D interactions)

Perhaps both structures have same 1H (sub) spectrum?
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Can the proposed structure go wrong?
Extract and isolate a compound

High-resolution mass spectroscopy
Molecular formula 
Degree of unsaturation (DBE)

Initial spectroscopic analysis 
• IR 
• 1H NMR 
• 13C NMR + DEPT

Functional groups (CO, OH, etc.) 
H environments, population, coupling 
C environments,  CH/CH3/CH2/Cq 

2D NMR 
• COSY, HSQC, HMBC Structural details: H-H connectivity (rings,  

chains), H-C attachment, long range C-H links

Propose candidate structures 

Empirical models (sanity check)
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Structure assignment going wrong for hexacyclinol
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Initial structure assignment of hexacyclinol extracted (in 2002)

B. Schlegel et al., J. Antibiot, 55, 814 (2002). 

C23H28O7 

strained endoperoxide
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Initial structure assignment of hexacyclinol synthesized (in 2006)
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NMR data 

2002 2006
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Reassignment of the structure of hexacyclinol with DFT-based NMR

Conformer of 6

DFT-exp. 13C chemical shifts

Mean abs. error = 6.8 ppm

Previously reported structure

Structure 7

Mean abs. error = 1.8 ppm

synthetic route

DFT modeling: 
Geometry: HF/3-21G 

13C NMR: mPW1PW91/6-31G(d,p) 
Methanol solvent

Has an error of 1-2 ppm for similar compounds

S. D. Rychnovsky, Org. Lett. 8, 2895 (2006).
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DFT modeling: 
Geometry: B3LYP/6-31G(d,p) 

1H NMR: B97-2/cc-pVTZ

Mean abs. error = 0.4 ppm Mean abs. error = 0.2 ppm

averaged over two  
conformers
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Probabilistic error metrics for high confidence structure assignment

S. G. Smith, J. M. Goodman, J. Am. Chem. Soc. 132, 12946 (2010).

• DP4 score: Penalizes a structure with outliers in computed chemical shifts

: Cumulative probabilities for Student’s -distribution with  degrees of freedom 
: standard score of scaled prediction error

Tν (t) t ν
t

P (i |δ1, δ2, ⋯, δN) =
ΠN

k=1 [1 − Tν (t)]
∑m

j=1 ΠN
k=1 [1 − Tν (t)]

Bayesian probability that a candidate  
structure  (with  centers)  

is correctly assigned  
to the experimental data

i N

t =
|(δi

scaled,k − δexp,k) − μ |

σ

: Linearly corrected calculated values against experimental valuesδ j
scaled,k

: Free parameters (unlike in hypothesis testing)μ, σ, ν

For partially or unassigned peaks, permute computed values to maximize accuracy
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DP4 probability vs. statistical metrics 

S. G. Smith, J. M. Goodman, J. Am. Chem. Soc. 132, 12946 (2010).

A B

Error metrics for comparing  
computed chemical shifts of two  

structures A and B against  
experimental values

Mean absolute error

Standard deviation of the error

DP4 probability

13C NMR

Mean absolute error

Standard deviation of the error

DP4 probability

1H NMR

1.50

1.59

1.62

1.83

0.11

0.13

0.18

0.22

79.5% 20.5%

100% 0%
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Example structure assignment of a natural product

B. N. S. Pinto et al., Asian J. Org. Chem., 11, e202200182 (2022). 

DFT modeling: 
Geometry: B3LYP/6-311+G(2d,p) 

NMR: M06-2X/6-31+G(d,p) 
Methanol solvent

Proposed candidate structures for a natural product 

DP4 probability: 99.8%

DFT spectrum of the lowest energy conformer for each candidate
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High-confidence structure assignment of laurefurenyne (32 diastereomers)

D. J. Shepherd, Chem. Eur. J.19, 12644 (2013).

MUE 0.9-3.1 ppm

MUE 0.15-0.36 ppm

Diastereomer 5 has the highest DP4 probability

DFT modeling: Geometry: wB97XD/6-31G(d), Shielding: mPW1PW91/6-311G(d,p) 
Boltzmann weighing of conformers sampled with Monte Carlo search (and MMFF)
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Quantum chemistry of NMR parameters
Extract and isolate a compound

High-resolution mass spectroscopy
Molecular formula 
Degree of unsaturation (DBE)

Initial spectroscopic analysis 
• IR 
• 1H NMR 
• 13C NMR + DEPT

Functional groups (CO, OH, etc.) 
H environments, population, coupling 
C environments,  CH/CH3/CH2/Cq 

2D NMR 
• COSY, HSQC, HMBC Structural details: H-H connectivity (rings,  

chains), H-C attachment, long range C-H links

Quantum chemistry / ML models

Propose candidate structures 

Empirical models (sanity check)

Conformational search
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Ensemble averaging of chemical shifts: conformational / vibrational effects

• Quantum mechanical (nuclear QM) ensemble

⟨σ⟩T = ∫ dR ∑
n

e−βEn

Z
|Ψn(R) |2 σ (R)

• Classical-/ab initio-MD ensemble (classical nuclei)

⟨σ⟩T =
1
Z ∫ dRdP e−βHcl

nuc(R, P) σ (R)

• Local vibrational correction for anharmonic effects (within each conformer)

σ (R) ≈ σ0 + Σk ( ∂σ
∂Qk ) Qk +

1
2

Σk ( ∂2σ
∂Q2

k ) Q2
k + …

• Discrete conformer approximation (common practice)

⟨σ⟩T = ∑
i

wiσi; wi =
e−βEi

∑j e−βEj

Needed for high-level benchmarking of computer NMR against precise experimental data
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Boltzmann weighing of conformers

P. H. Willoughby et al., Nature Protocols, 9, 644 (2022). 

2 kcal/mol

energy

weights = exp(−E/RT ) w1 = 1.0 w2 = 0.034 Z = w1 + w2 = 1.034

p1 = w1/Z = 96.7 % p2 = w2 /Z = 3.3 %

(T = 298.15K)

p1δ1 + p2δ2

Boltzmann-weighted  
chemical shifts 

MAE 0.02 0.32 0.02
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NMR parameters
Extract and isolate a compound

High-resolution mass spectroscopy
Molecular formula 
Degree of unsaturation (DBE)

Initial spectroscopic analysis 
• IR 
• 1H NMR 
• 13C NMR + DEPT

Functional groups (CO, OH, etc.) 
H environments, population, coupling 
C environments,  CH/CH3/CH2/Cq 

2D NMR 
• COSY, HSQC, HMBC Structural details: H-H connectivity (rings,  

chains), H-C attachment, long range C-H links

NMR shielding (and scalar coupling)Quantum chemistry / ML models

Propose candidate structures 

Empirical models (sanity check)



• In quantum chemistry, the total energy is the central observable.  
• Molecular properties emerge as a response (of the electron density and nuclei) to an 

external perturbation ( ) can be represented as a Taylor expansion of the energy 
around the unperturbed value 

ε

A. Hinchcliffe, Ab initio determination of Molecular Properties (1987)

J. Gauss, in http://www.fz-juelich.de/nic-series/ (2000)

E(ε) = E(ε = 0) +
dE
dε

ε=0

ε +
1
2!

d2E
dε2

ε=0

ε2 + …

• When the external perturbation ( ) is the electric fieldε

E(ε1, ε2) = E(ε1 = 0,ε2 = 0) +
dE
dε1 ε1=0

ε1 +
dE
dε2 ε2=0

ε2 +
1
2!

d2E
dε2

1 ε1=0

ε2
1 +

1
2!

d2E
dε1dε2

ε1=0,ε2=0

ε1ε2 +
1
2!

d2E
dε2

2 ε2=0

ε2
2 + …

Molecular properties as derivatives of electronic total energy

30



CFOUR for molecules

Gaussian, NWCHEM, GAMESS, Orca, Molpro,  
Qchem, and other programs for molecules

CASTEP, VASP, Quantum Espresso for solids

J. Gauss, in http://www.fz-juelich.de/nic-series/ (2000)
31

Availability of response equations (analytic second derivatives) for NMR



R. Ditchfield, Molecular Physics (1973)

σ(A)
αβ =

∂2E
∂Bα ∂mA,βNuclear magnetic shielding tensor  

of nucleus A σαβ = σdia
αβ + σpara

αβ

σdia
αβ = ⟨Ψ0 | Ôαβ

dia |Ψ0⟩

Ôαβ
dia = ∑

i∈electrons
(ri ⋅ riA δαβ − riαriAβ) r−3

iA ; riA = ri − RA

σpara
αβ = − 2∑

n≠0

⟨Ψ0 | ̂Pα
para |Ψn⟩⟨Ψn | Q̂β

para |Ψ0⟩ + α ↔ β

En − E0

̂Pα
para = ∑

i∈electrons

Liα; Li = ri × pi

Q̂α
para = ∑

i∈electrons

LiAαr−3
iA ; LiA = (ri − RA) × pi

σ(A)
αβ = ∑

μ,ν∈AOs

∂2hμν

∂Bα∂mA,β
+ ∑

μν∈AOs

∂Dμν

∂Bα

∂hμν

∂mA,β

Linear response form used in calculations

Calculation of NMR shielding

 total electronic energy 
 components x, y, z 

: external magnetic field vector 
 magnetic moment of nucleus A

E :
α, β :
B
mA :

32
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Electronic Hamiltonian of a molecule in magnetic field

Ĥ = ∑
i

ĥ(i) + ∑
i<j

̂g(i, j)

• Sum of one- and two-electron terms

: two-electron operator, Coulomb 
: one-electron operator contains magnetic field

̂g(i, j) = 1/rij
ĥ(i)

1
2 (p̂ + A)2 =

p̂2

2
+

1
2 (p̂ ⋅ A + A ⋅ p̂)

paramagnetic term

+
1
2

A2

⏟
diamagnetic term

ĥ(i) =
1
2 (p̂i + A(ri))2 − ∑

A [ ZA

|ri − RA |
− mA ⋅ B(ri)]
magnetic vector potential, B(r) = ∇ × A(r)

• Pure gauge transformation (uniform field) ,  unchangedA′￼(r) = A(r) + ∇χ(r) B = B0

B′￼= ∇A′￼= ∇ × (A + ∇χ) = ∇ × A + ∇ × ∇χ = ∇ × A + 0 = B
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Gauge-origin dependence in finite basis set 

• Gauge independence of exact wavefunction

• MOs expanded on a finite basis of AOs:  ψ(r) = ∑
μ

cμϕμ(r)

Let  

 

ĤΨ =
1
2 (p̂ + A)2 Ψ + V(r)Ψ

A′￼(r) = A(r) + ∇χ(r) ⟶ Ĥ(A′￼)Ψ′￼=
1
2 (p̂ + A + ∇χ)2 Ψ′￼+ V(r)Ψ′￼

∇ × A′￼= ∇ × A ⟶ Ψ′￼(r) = eiχ(r)Ψ(r) ⟹ ⟨Ψ | Ĥ |Ψ⟩ = ⟨Ψ′￼| Ĥ′￼|Ψ′￼⟩

Finite AO basis cannot represent , i.e., cannot be expanded as  

For magnetic properties, gauge-including AOs (GIAOs) are used 

  

GIAO removes dependence on  by attaching the correct phase to each AO.

eiχ(r)ϕμ(r) ∑
μ

dμϕμ(r)

ϕGIAO
μ (r) = exp [ i

2 (B0 × Rμ) ⋅ r] ϕμ(r)

R0

• Shifting the global origin of the vector potential 

Let , and  

 where  

A(r) =
1
2

B0 × (r − R0) A′￼(r) =
1
2

B0 × (r − R0 + dR0) =
1
2

B0 × (r − R′￼0)

A′￼(r) − A (r) =
1
2

B0 × (R0 − R′￼0) = ∇χ(r); χ(r) =
1
2 [B0 × (R0 − R′￼0)] ⋅ r
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Linear response and coupled-perturbed equations 

• For Hartree-Fock formalism 

DHF
μν

∂Bα
=

occ

∑
i (C(0)

μi
∂Cνi

∂Bα
+

∂Cμi

∂Bα
C(0)

νi )

(F − εiS) ∂Ci

∂Bα
= − ( ∂F

∂Bα
−

∂εi

∂Bα
S) C(0)

i

σ(A)
αβ = ∑

μ,ν∈AOs

∂2hμν

∂Bα∂mA,β
+ ∑

μν∈AOs

∂DHF
μν

∂Bα

∂hμν

∂mA,β

DHF
μν =

occ

∑
i

CμiCνi charge-density bond-order matrix

 ψMO
i (r) = ∑

μ

cμiϕbasis
μ (r) e.g. LCGTO (Gaussian-type orbitals)

implicit dependence on B

solution of coupled-perturbed  
Hartree-Fock (CPHF) equations

In Kohn-Sham DFT, coupled-perturbed Kohn-Sham equations are solved



36E. C. Vauthier, Can. J. Chem. 66, 1781 (1988)

Post-Hartree-Fock corrections (follow energy corrections)

E(2) =
1
4 ∑

ijab

|⟨ij | |ab⟩ |2

ϵi + ϵj − ϵa − ϵb

: occupied MOs from HF  
: virtual MOs from HF 

: energies of MOs from HF 
: antisymmetrized two-electron integrals 

i, j
a, b
εp
⟨ij | |ab⟩

tab
ij =

⟨ij | |ab⟩
ϵi + ϵj − ϵa − ϵb

=
Vijab

Δab
ij

• MP2 correlation correction to HF energy 

• Using double-excitation amplitudes

E(2) =
1
4 ∑

ijab

tab
ij

• MP2 correlation correction to HF shielding tensor 

σ(2)
αβ =

∂2E(2)

∂Bα∂mA,β
=

1
4 ∑

ijab

∂2

∂Bα∂mA,β
[tab

ij Vijab]

σ(2)
αβ =

1
4 ∑

ijab [
∂2tab

ij

∂Bα∂mA,β
Vijab +

∂tab
ij

∂Bα

∂Vijab

∂mA,β
+

∂Vijab

∂Bα

∂tab
ij

∂mA,β
+

∂2Vijab

∂Bα∂mA,β
tab
ij ]

Requires CP-MP2 equations.



|Φ⟩ = eĈ |Ψ0⟩  is the cluster operator, and Ĉ eĈ = 1 + Ĉ +
1
2!

Ĉ2 +
1
3!

Ĉ3 + …

The effect of the cluster operator is defined as the sum

Ĉ |Ψ0⟩ = Ĉ1 |Ψ0⟩ + Ĉ2 |Ψ0⟩ + … + ĈN |Ψ0⟩

Ĉ1 |Ψ0⟩ = ∑
a,r

tr
a |Ψr

a⟩, Ĉ2 |Ψ0⟩ = ∑
a,b,r,s

tr,s
a,b |Ψr,s

a,b⟩

with

where the excitation amplitudes, , are determined by a non-linear iterative optimizationt

• Truncating the sum gives rise to CCSD, CCSDT, etc., approximations. One of the most 
popular approximations is CCSD(T), where the triples energy correction is estimated 
using the perturbation theory. CCSD(T) with a large LCAO expansion is commonly used 
for accurate modelling of spectroscopic properties (very) small molecules.

Coupled-cluster theory for high-precision quantum chemistry

37



38J. F. Stanton et al., Chem. Phys. Lett. 262, 183 (1996)

CCSD(T) settles the disputes based on approximate modeling

α

β
γ

β′￼

• An earlier MP2 calculation 
suggested geometric 
reorganization in the solvent to 
influence the  shift of 13C Cα



Some quantum chemistry benchmarks

39
F. A. A. Mulder, Chem. Soc. Rev., 39, 528 (2010)

0.7 ppm

MAE

1.5 ppm
8.8 ppm



Jacob’s ladder in DFT approximations

40
J. P. Perdew, K. Schmidt, AIP Conf. Proc. 577, 1 (2001)

Accuracy earth

Accuracy heaven

J. M. L. Martin, G. Santra, Israel J. Chem. 60, 787 (2020)

workhorse for molecules

workhorse for solids
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HF, MP2 and DFT benchmarks with CCSD(T) reference

13C1H

D. Flaig, J. Chem. Theory Comput. 10, 572 (2014)
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(From synthesis to) Structure elucidation workflow
Extract and isolate a compound

High-resolution mass spectroscopy
Molecular formula 
Degree of unsaturation (DBE)

Initial spectroscopic analysis 
• IR 
• 1H NMR 
• 13C NMR + DEPT

Functional groups (CO, OH, etc.) 
H environments, population, coupling 
C environments,  CH/CH3/CH2/Cq 

2D NMR 
• COSY, HSQC, HMBC Structural details: H-H connectivity (rings,  

chains), H-C attachment, long range C-H links

Quantum chemistry / ML models

Propose candidate structures 

Empirical models (sanity check)

Machine learning models as surrogates  
of  quantum chemistry

Quantum chemistry calculations are time-consuming

The goal is to develop ML models trained on large datasets that offer quantum chemistry 
accuracy at empirical speed 
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Example web-app for electronic excitation energy of BODIPY dyes

A. Gupta, J. Chem. Phys. 155, 244102 (2021)

• ML model trained on TDDFT data  
with 5-10% error 

• Enables rapid screening of  
253 Billion possible combinations  
(empirical speed)

https://moldis.tifrh.res.in/db/bodipy

https://moldis.tifrh.res.in/db/bodipy
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ML workflow

Predicted
E

Statistical
Model

Learning
Algorithm

Training data
XYZ
E

New
XYZ

molecular
descriptor

Kij = exp(-| di - dj | / σ)

c = (K + λI)-1 Etrain 

Σj cj exp(-| dnew - dj | / σ)

Training data

Learning  
algorithm

Trained modelQuery feature

{feature, label}

Label of query

Tr
ai

ni
ng

Prediction

• feature: structural descriptor of an atom 
handcrafted:  
simple NN models, Kernel-based models 
Learned during training: 
message-passing NN 

• label: molecular properties (energy), 
properties of atoms-in-molecules (atomic 
forces, partial charges, NMR shielding)
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Taxonomy of ML models used in chemistry problems

(Topical review) J..Phys.: Condens. Matter 38, 013002 (2026)
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QM9NMR dataset

A. Gupta, et al. Mach. Learn.: Sci. Technol. (2021).

• Contains isotropic shielding of 
CHONF atoms in 134,000 QM9 
molecules (with upto 9 CONF 
atoms).  

• mPW1PW91/6-311+G(2d,p)@B3LYP/
6-31G(2df,p) level DFT modelling in 
vacuum and with continuum models 
of five commonly used polar and 
non-polar organic solvents: acetone, 
CCl4, DMSO, methanol, and THF 

• The dataset contains 0.8 Million 13C 
shielding and 1.2 Million 1H 
shielding in each phase

R. Ramakrishnan, et al. Scientific Data (2014).
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∆ML modeling of 13C isotropic shielding

A. Gupta, et al. Mach. Learn.: Sci. Technol. (2021).

• ∆ML modeling is done with PM7 geometries for generating structural descriptors (FCHL, 
SOAP, CM)  

• B3LYP/STO3G level shielding is the baseline 

• The targetline is mPW1PW91/6-311+G(2d,p)@B3LYP/6-31G(2df,p)



Transferability to large drug molecules unknown to the model

48
mean absolute error

standard deviation  
of the error
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Neighborhood-informed features for 13C chemical shifts

S. Das, et al. J. Chem. Phys. (2026).

  a) Atomic Coulomb matrix (aCM)   b) Atomic bag-of-bonds (aBoB)

 c) Continuous atomic Coulomb matrix (aCM-RBF)  d) Continuous atomic bag-of-bonds (aBoB-RBF)

d = Mupper

MIJ = 0.5 × Z2.4
I ,  for I = J

= ZI ZJ
RIJ

⋅ s (RIJ ),  for I ≠ J

d(r) = ∑
J≠I

gIJ(r) ⋅ ZI ZJ
RIJ

⋅ s (RIJ )

Query atom

M (A,B)
IJ = ZI ZJ

RIJ
⋅ s(RIJ)

M (H,H) = [0,0⋯]
M (C,C) = [MC2−C1,0,0,⋯]
M (N,N) = [0,0⋯]

⋅
⋅

M (H,C) = [MC2−H4, MC2−H5, MC2−H1, ⋯]
⋅
⋅

M (C,N) = [0,0⋯]
M (C,O) = [MC2−O1,0,0,⋯]
M (C,F) = [0,0⋯]

⋅
⋅

d = [M (H,H), M (C,C), ⋯, M (H,C), ⋯, M (C,N), M (C,O), M (C,F), ⋯]

Pairwise elements:

Concatenated pairwise bags:

Coulomb matrix elements:

C1
C2H1

H2
H3

H4
H5

H6

O1

Coulomb matrix ( ):M

Descriptor vector, upper triangular matrix:

d(r) = [d(H,H)(r), d(C,C)(r), ⋯, d(H,C)(r), ⋯, d(C,N)(r), d(C,O)(r), ⋯]

d(A,B)(r) = ∑
J≠I,I∈A,J∈B

gIJ(r) ⋅ ZI ZJ
RIJ

⋅ s (RIJ )
Pairwise functions:

C, C

H, C

C, O

⋯ ⋯

⋯ ⋯

Concatenated pairwise functions:

C, C H, C C, O

++

Pairwise functions:

Summed pairwise functions:

Qu
er

y a
to

m

In
cr

ea
si

ng
 d

is
ta

nc
e

d(r)

⋯ ⋯

d(0) = dC2

d(1) = dC2 dH4

d(2) = dC2 dH4 dO1

d(3) = dC2 dH4 dO1 dC1

d(4) = dC2 dH4 dO1 dC1 dH1

d(5) = dC2 dH4 dO1 dC1 dH1 dH2

Neighboring atoms are indexed  
as per distance from the query atom

C1

H1

H2 H4

O1

H3

C2 

query atom

Query atom’s descriptor vector

First neighbour’s descriptor is padded

Second neighbour

Third neighbour

Fourth neighbour

Fifth neighbour

Scaling term:  (like dipole-induced dipole)
1

R4

aBoB-RBF(4): Out-of-sample mean prediction error 1.69 ppm 
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MLQM9NMR Python module (XYZ to 13C shifts)

S. Das, et al. J. Chem. Phys. (2026).



Comparison with target-level data for larger drug molecules

51S. Das, et al. J. Chem. Phys. (2026).
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DFT-level 13C chemical shifts predicted with ML on MolDis-Lab

Scoll down
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DFT-level 13C chemical shifts predicted with ML on MolDis-Lab

13C shifts with mPW1PW91/6-311+G(2d,p) calculated on 
B3LYP/6-31G(2df,p)  geometries

Predicted with KRR-aBoB-RBF(4) model using SMILES as input

CPU time ~1 hour for Aspirin 
Several hours for larger molecules

~30 sec for any size 
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See you tomorrow for the hands-on!

Pics from Kang-Yatse-2 expedition, September 2025


