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Matter: NMR Classification
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Solution-State NMR: General Protocol

1. Isotopically label protein (*°N, $3C)
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2. Assign the chemical shifts LA / e
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5. Refine (repeat) o

This has been done over 15,000 times in solution!
(http://www.pdb.org/pdb/statistics/holdings.do)

Kumar, A.; Ernst, R.R.; Withrich, K. Biochem. Biophys. Res. Comm. 1980, 95, 1-6.
Williamson, M.P.; Havel, T.F.; Withrich, K., J. Mol. Biol. 1985, 182, 295-315.



Solid-State NMR in Structural Biology

Many proteins cannot be studied by the traditional structural methods (X-ray
crystallography or solution NMR)

Nano/microcrystalline
globular proteins

Membrane proteins

AB,, Fibrils

Bob Griffin and coworkers, 2016



Solution- and Solid-State NMR

Solution NMR: Solid-state NMR:
* size limitation * no size limit on samples
* Very narrow resonances e broader resonances

Solution NMR | —~
sample tube | Solid-state
NMR probe




Targets for SSNMR: Biology

Lipid bilayers

Membranes reconstituted with different additives such as cholesterol,
drugs or peptides

Structure analysis of membrane-active peptides, ion channels, and
receptors

Amyloid fibrils

Globular proteins, IDP’s




NMR: Some Features
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dynamically @'g @
singleglir?e {P ﬂ ?)3

liquid

powder pattern "'.: .
superposition
of all possible % « 'y

orientations

solid:
powder
grientadtion- \ \\
t
Iir?g ?}gsﬁ?nn \ \\
s
solid:

single crystal

1
10 8 ]

o
%]

0
o [kHZ] Figure courtesy: Matthias Ernst



Nuclear Spin Interactions

Spin ¥, 1H, 13C.....

Spin>%, 2Na, 170.....

Control these?!



Nuclear Spin Interactions

Spin Interactions
C Exemal “interal

Only the isotropic parts manifest in solution-state.



Spin: Some History

« Uhlenbeck and Goudsmit: particles have “spin”, corresponding to rotation
of a particle spinning around its own axis

* Spin of the electron is %2: two states +/42="“spin-up”’ and —/42="spin-down”

« This is not fully consistent from what people knew before. However, this is
appropriate because spin is a guantum notion (we do not know why!)

« Stern-Gerlach experiment

v’ The beam of atoms is deflected by
inhomogeneous field

v Reason: intrinsic magnetic moment
(spin) of particles

IM FEBRUAR 1922 WURDE IN DIESEM GEBAUDE DES
PHYSIKALISCHEN VEREINS, FRANKFURT AM MAIN,

v Istributi - i ON OTTO STERN UND WALTHER GERLACH DIE
The d_lstrlbut|on of the H vector Is FUNDXMENTALE ENTDECKUNG DER RAUMQUANTISIERUNG
not continuous! DER MAGNETISCHEN MOMENTE IN ATOMEN GEMACHT.

AUF DEM STERN-GERLACH-EXPERIMENT BERUHEN WICHTIGE
PHYSIKALISCH-TECHNISCHE ENTWICKLUNGEN DES 20. JHDTS.,
WIE KERNSPINRESONANZMETHODE, ATOMUHR ODER LASER.

ini i OTTO STERN WURDE 1943 FUR DIESE ENTDECKUNG
v Spln IS quantISEd! ! DER NOBELPREIS VERLIEHEN.

Spin: From Basic Symmetries to Quantum Optimal Control, llya Kuprov, Springer, 2023



Spin of a particle is its intrinsic angular momentum (as if the particle
rotates). Honestly, nobody (that is, I) knows where spin comes from.

Spin is a very fundamental concept, which also affects the symmetry of the
w.f. of a system of identical particles. Example: Pauli principle.

Spin is a quantum notion.

Spin operators are introduced in the same way as those for the angular
momentum:

—  Eigen-states are S,S, >; $2=5(S+1), S, varies from —Sto S.

—  Commutation rules are

[S,.S,1=iS,, [S,,S,]1=1S,, [S,,S,]=1S,

An important difference from angular momentum: spin can be half-integer
Spin operators are (25+1)*(25+1) matrices
For S=1/2 such matrices are related to the Pauli matrices



Spin operator can be written as
~ 1. 0 1 0 —i 1 0
S=_-6, 6, = , Oy =|. , 0, =
2 1 O I 0 0 -1

Useful relations of the Pauli matrices:

Basis
a=T)
pr=1

8, =6,=06,=6 06,6,=16,, 6,6,=i6,, 66, =i6,

6.6, + 6,6, = 20,, [6i,6j]=2i8ijk6k, Tr{6,}=0

Every 2*2 Hermitian matrix is a linear combination of the unity matrix and

the Pauli matrices




Spin-1/2 Angular Momentum Operators

« Spin-1/2 nuclei have two Zeeman eigenstates: )=l 5 0‘>:T>

« Angular momentum spin operators in the Zeeman eigenbasis:

1 (01 . 0 1 1 (1 0
L”_2(1 0 Iy =2 {4 0 l-=5 0 -1
« Action of spin operators on the Zeeman eigenstates:
Lla) = %m I*|a) =0 I |a) = |8)

L|3) = _21|5> I18) = |o) I718) =0



Spin-1/2 Rotation Operators

- Rotation operators:

» Evaluation of rotation: R.(B)I,R.(—B) = I, cos B + [I,, 1] sin

« Spin-1/2 rotation operators:

B cos =3  —isin _ (Coslﬁ —Siﬂéﬁ)
() = (—isiﬁ%ﬁ — COS %5> By () in 53

R.(8) = (exp{giéﬁ} exp{%@})



Spins in NMR

NMR > Nuclear spins agnetic dipole moment

Strength of the Interaction with
source of magnetism magnetic field

lu — 7/| ) . Spin angular momentum

\ Gyromagnetic ratio

Determines the frequency of precession
of nuclear spins in the magnetic field,
Larmor frequency (yB,)



Spins in NMR

Energy of a magnetic dipole moment in a magnetic field B: E — —N.B

Magnetic energy

Vv

Low energy High energy



Spins and Moments in NMR

Energy of a magnetic dipole moment in a magnetic field B: F — _N-B
B=B,
B0
Energy of a magnetic dipole moment in a magnetic field By: E = _MzBO
po= v
Magnetic moment to spin: _
J P pe = vl
= ~ymh
Energy of a magnetic dipole moment in a magnetic field B: E = —mh')/Bo

Nuclear precession frequency, Larmor frequency, in B,: Wy — —")/BO



Nuclear Spin Quantum Number

Magnitude of the spin quantum number: L = hI(I + 1)

Projected values on to the z-axis: m=—1,—1+1,—1+2,---1




Nuclear Spins & Magnetic Field

Positive y: Clockwise rotation Wy = —7 BO
Negative y: Counter-clockwise rotation
(see MHLevitt: Spin Dynamics)

e
=

b

A spinning gyroscope in a gravity field o
A spinning charge

In a magnetic field



Zeeman Interaction, External Magnetic Field

Zeeman field B>
y > |'1/2>, 1/2 'YBO

AFE = ")/B()

\ | - |[+1/2>, Y% yB,

o>

®,=—YB, Is called the Larmor frequency



Equation of Motion for the Magnetic Moment

Precessional frequency of a spin: Wo = —7Do
Energy of a magnetic dipole moment in a magnetic field: FE = —LL-B
Torque associated with this energy: C=puxDnB
dl
Torque , being the rate of change of angular momentum: C = a = puxXB
dup B
Equation of motion for the magnetic moment: ar THX
dpiy
C’; = YhyBo
In the NMR context: dpy, 5
dt =  —YHzDo
d(;iz _ 0
pa(t) = pz(0)cosyBot + iy (0)sinyBot
Solution: py(t) = —pe(0)sinyBot + ju,(0)cosyBot
/"Jz(t) — HJZ(O)
. 2 2 .2 2
The transverse components oscillate such that: pz(t) 4 pagy (1) = 13,(0) + 415, (0)

This also suggests a precessional motion of the moment with respect to the field?



Density Matrix of a Spin-¥2 Particle

- . . [ Pax  Pap
« D.m. of a spin ¥ particle: p = (Pﬁa ,055)
p=V)| = p*=p
4 BY ( 000008 8 [ B/ B )
= é
000000 - o S . o
- AN AN AN J
Ioaa pﬂﬂ p—:paﬂ p+:pﬂa

« Physical meaning of the elements:
Diagonal elements are populations
Off-diagonal elements are coherences p,,,

The trace of the d.m. isequal to 1
e The d.m. is a Hermitian matrix: (N2 — 1) independent parameters

L w_ (3B 0
e The equilibrium density matrix becomes: P~ = 0 %_iB




Two or More Spins %

«  The d.m. for two spins can be expressed in terms of product operators

£:S.,8,, 8, 0.0, 0,:8,1,S1,

SI,8.0.81.$1,80,81

X yrYyy?r =z y1r=Ex Tz Yy "z

d

z1

SZrX’
E,8,.8,,8,|®E .11 |-

] X! y! Z

«  Each product operator is now a 4*4 matrix; likewise, the Hamiltonian is a 4*4 matrix and it is expressed via
the product operators

*  What is the direct product (Kronecker product)?

a11bll a11b12 a12bll a12b12
A®B:[an aﬂj®(bn bn]:(aﬂB aqu_ by aub, apby  a,b,

a'21 a22 b21 b22 a'21bll a'21blZ a'22 bll a22 b12
a'21b21 a'21bZZ a22 b21 a22 b22

0

0 1/2 1 0) 1|0
«  Example with 2 spins: S,=S,®F :( j®( j 1
0

a,B a,B

1

1/2 0 0 1) 2

, O O O

o o —» O

0
0
0

»  Other operators can be constructed in the same way. More spins: use direct products of spin operators



Two Spins-%2

Relation between populations/coherences and d.m. elements

Energy level diagram
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SQCs are given by S,, S, S,1,, S 1,

DQCs and ZQCs are given by combinations of S,|,,
We can directly measure only transverse magnetization S, S, I, |

Density matrix

ae | p, | Soc |soc |poc
ap |sQc | p, | zQC | sqQc
pe | sQc | zoc | p,. | sQcC
Bp | DOC | sQC | sQC | py
Lo 1, S, S,y
S/l Slys S,y

Other operators cannot be observed directly, but they affect the signal

Coherence order for p,.:

Prin = M (m>)_ M (n>)




Evolution of the Density Matrix

The S.e. in the bra and ket representations IS
0 i 0
— Y =—HVY, ¥Y=-(¥YH
& == R <

The equation for the d.m. is as follows:

L e RIS e S U

Liouville-von Neumann equation:  p(t) = exp(—+Ht)po exp(+ Ht)

p(t) = U(t)p(0)U~ 't

U Is the propagator, time dependent, and unitary
The solution is simple for a time-independent Hamiltonian:

For a time-dependent Hamiltonian we solve the equation numerically in
small time steps or use some tricks



RF-Pulses

« What happens to the d.m. (magnetization) when we apply a pulse?

The phase Is ¢,
}» The flip angle Is 6=w, T,

. The wave functlon and density matrix after the pulse
|?r/}aft€?"> — Rcbp (9) |7wbbefo7‘e> 3 |wafter> — |?r/}b€f0’l"€> qup(_9)
ﬁafter — qup (Q)pbe}oreRqﬁp (_9)

« The action of a strong pulse is equivalent to a rotation (we assume that only
the B,-term is relevant)

Ifi% (0) = e:z:p[—iwnuﬂp(cosqbpgw + smqbpgy)]

= exp[—ib(cosp, Sy + Sin¢p§y))]
« A n/2-pulse generates a coherence, a w-pulse inverts the populations

R, (m12)S,R, (-x12)=-S,, R, (7)S,R, (-7)=-S,



Sandwich Relationships

 Is there a simple way to calculate the effect of pulses?
« Three cyclically commuting operators:

A B]=ic, [¢ Al=iB, [B.C]=iA
« Example:
[$,.8,1=iS,, [$,.8,1=1S,, [$,.$,]=iS,
« The following relation is then true:
exp|—i6AJB explidA]=cos OB +sin 6 C

« A, B, Care like the axis of our 3D-space; we “rotate” B “around” A by the
angle 6. Cyclic permutations provide two more relations

exp|-iB]C expliB|=cos 6 C +sin 6 A
exp|—16C |Aexp|ioC |=cos 0 A+sino B
« Of course, these rules apply to the spin operators

* RF-pulses give x and y-rotations. Free precession gives a z-rotation by a time-

dependent angle wt
See M. H. Levitt, “Spin Dynamics”, cyclic commutation



Phase of the Pulse

Different phases A7 AZ

X-pulse, ¢,=0 / “ y-pulse, ¢,=m/2 /
N AN

—X-pulse, §,=n AZ —y-pulse, ¢,=27/2  pz

AR (e
NP N
Pulse of a general phase is a combination of three rotations

I%qbp (0) = e:cp[—i@(cosqbpgm + sinqﬁpgy)] = ]A%z(qﬁp)f?m(é’)f?z(—qﬁp)

N %%

N

Rotation about z turns the {x,y} axes; then a pulse is turning the spins around
the new x; finally, we return to the original frame

Free precession is just a z-rotation



Representation of x-Pulse

Pulse characteristics:

) Iy Frequency, o,
Phase-, Oy
Amplitude, o,
Assume ¢,=0 Flip angle of the pulse: ¢ = WnutTp
1 1
: : ¢ 5+ 3B 0
« Pulse and density matrix:  p°? = (2 o 1. lB)
2 4
l R.(5)
1 _B
2 4
p p—

B 1
4 2

Pulse equalises the populations of the two states
Pulse converts the population difference into coherences



Rotating Frame Transformation

du B
Equation of motion for the magnetic moment: At = 1 X (vBo)
ZiZ’
bm \y’ Rotating coordinate system: Aty=14iAp +j Ay + K A
di’ .,
>y  With i’, j’°, and k’, rotating with an angular velocity o: It =w X1
Hence, motion as viewed from the lab frame:
X
x’ dA dA ’ dA dA / dZ, d', dk’
= a =+ A A, + A, —
(g v =74 7, g g T Ty
dA, dA,, dA.,
=i == i A S " A+ Ay + K A
= + j o — o (\z + 7' Ay + p;)
\ J
| |

0A
Time rate of change of Awrtto i’, j’, kK’ ( 91 )rot wx A
dA 0A

All the above imply: dt — )iab = (57 It Jrot +w X A




Rotating Frame Transformation

: . dA 0A
Motion between lab and rotating frames: (%)lab = (E)rot +wx A
. _ dp ou
Translating all these to magnetic moments: (E)lab = (E)mt +w X p
This implies: Op
is implies: (a)mt = u X (yBo + w)

This is the motion of p in the rotating system, which is the same as in the lab frame,

: . : W
with B, replaced by an effective field: Bers = Bo + ;




Rotating Frame Transformation: Consequences

Motion between lab and rotating frames: (%)z - (%) L twx A
dt "™ ot "

Translating all these to magnetic moments: d_“ _ % i
(dt )lab (875 )rot+w M
. ou
This implies: (= )rot = b X (7Bo + w)

ot

This is the motion of m in the rotating system, which is the same as in the lab frame,

c . . w
with B, replaced by an effective field: Bery = Bo + ;

O
If o=w,=—B,: (E) rot =0

No motion relative to the rotating frame.
The magnetic moment precesses with an angular velocity o, relative to the
lab frame about the z-axis:
« Equation of the magnetic moment in the rotating frame is simplified,
the moment is static.
« The motion of the moment in the lab frame is a precession about B,,.



Radiofrequency Pulses

WL armor BRF (t) = BRF COS(a)reft + ¢p)ex
By | * Ber (1) = By (1) + B ™ (1)
= 1 |
M%WMWNN Ber (1) =2 Bar {C0S(@r L+ 4, )&, +SiN(00 L+, ), }
X
— non—res 1 .
RF,(Dref(t) BRF (t) = E BRF {Cos(a)reft + ¢p)ex - Sm(a)reft + ¢p)ey}
y
X
oscillating

y /\ y
E % ’x 3
rotating counter

rotating




Radiofrequency Hamiltonian

‘ res 1 -
Z Ber (1) = = B {COS( T+ 9, )e, +SIN(w 1+, )€, }
B, 2
p—
AR
RF,(Dref(t) 1 Transverse part of the RF Hamiltonian:
H RF (t) — _E 7/BRF{COS(COreft T ¢p) I x T Sm(a)reft T ¢p) | y}
1
Dt = E 7/BRF 100 kHz corresponds to 10 us of 360 pulse
1
90
4a)nut

1
H RF — _§7BRF Rz (CI)p) I sz (_(Dp)
CI)p(t):@reft'l'(l)ref




Radiofrequency Hamiltonian: Pulses

V4
magnetisation

y — y

/RF

RF along the x-axis, equilibrium magnetisation along the z-axis:

e—i%-[m]zei%‘[‘% p— IZCOS(g) _I_ [IZB?IZ]S?’n(g)

— —] Y
a. . = 1 7/B . RF field strength (peak RF field in the coil), typically
nut — 9 RF \ 1-200 kHz, also called nutation frequency
1 This field strength corresponds to the nutation of the
Top =7 spins by 2 radian



Rotating Frame Transformation

BQ )] B w
I O 4
c:§
UJO
U\
X B,
Static B, field and Laboratory frame Rotating frame

rotating B, field frequencies frequencies



Rotating Frame Transformation

A good analogy would be a child on a
merry-go-round in which the horse
that the child is riding going up and
down. For an observer standing
outside (a) there are two motions to
see —the spinning of the merry-go-
round and the up and down motion.
But if the observer hops on to the
merry-go-round (b) then the spinning
motion is subtracted and only the up
and down motion is observed —
simplifying the details of the motion.




Rotating Frame Transformation

Clever manipulation _
H(t) . H (no time dependence!!)

Change reference frame

Bo [ =2 |y >=R,(-®) |y >

9
S Y
(DLarmor—(DO

(D(t): ref +(|)ref

~ Yy
RFa(Dref(t)
H R ( ‘CD/)HR ((D) a)ref
D)=, (1), or Normal lab frame Gives additional
X H rotated around z corrections to the
\f I I
< through @ spin dynamics




Rotating Frame Transformation: Consequences

Zeeman Hamiltonain
rot. frame N HZ = w, Rz (—CD) | Z Rz ((D) —w
— (a)o _wref)lz :QOI

off-resonance, off-set frequency

Hz:a)olz reflz

z

RF Hamiltonian .
HRF L >HRF :_57’BRF Rz(_(D_I_(Dp)IXRz((D_(Dp)

~ 1 O = a)reft + ¢ref

HRF :—E]/BRF RZ(_¢ref +¢p)|sz(¢ref _¢p) CI)p :a)reft+¢p

No more time dependence!
ChOOSing ¢ref:7c (Y>O), and ¢ref:O (Y<O)




Typical Experiment in NMR: RF Pulse

M,
4 Z A Z 5
M, i
> Y > VY y
X /X X
@ RF on

RF off . RF off

Effect of a 90° x pulse




After the Pulse: Nuclear Spin Evolution

RF recelvers pick up %W%W
the signals

Time

The spins precess in the xy plane and relax to the equilibrium value, free induction decay



Some Hamiltonians and Their Representations



Chemical-Shift Anisotropy Hamiltonian

\.j \ electrons

CSA interaction: Indirect magnetic interaction between
the external field and the nuclear spins through the
electron cloud at each nuclear spin site

Information about the local environment of the nuclear
spins



Chemical-Shift Anisotropy Hamiltonian

B . =B,+B

local induced

— é;J

mduced

§j Is the CSA tensor at the nuclear spin site j

(o j
5xx 5xy The chemical-shift tensor
slh=|s5V & o
7 W Induced field is not always
\5 ZJX o sz parallel to the Zeeman field

Only terms relevant, since the static field is along the z direction



Chemical-Shift Anisotropy Hamiltonian

J — S
Binduced =0 'BO
The CS Hamiltonian is orientation dependent
I J
Hes = H; Binduces

= —71'5)52 (©)B,] jx—7j5yjz (@)B,| jy_7j5zjz (©)B 1},

Orientation of the molecule with respect to B, and
the position of the nuclear spin within the molecule

Secular approximation:

HCjS = _7j5zjz (®)Boljz



Chemical-Shift Anisotropy Hamiltonian

ch;s = _yjazjz (®)Boljz

In liquids, perform an orientational average:

b — 4] ] — )
HO — Hstatic + Hiso—CS — wo Ijz

The chemically-shifted Larmor frequency a)g =7 B, 1+ 5iio—CS)

In liquids crystals, the resonance position depends upon the orientation (or
phase transition which can shift the peak):

6,(@)=5"



Chemical-Shift Anisotropy Tensor

Chemical shift depends on

molecular orientation with respect CSA tensor j
to the field




Chemical-Shift Anisotropy Tensor

Irreducible components of a tensor

1 0 O
5:5?330

0O 0 1

rank 0

0 gy Qg

O 1 O)+|aye 0

Oy Oy 0

rank 1
antisymmetric

+| Bye  Byy Byz
rank 2
symmetric
iso = =10
1580 — 3 r
Xy = %(QW — Oup)



Principal Axes

There are three special directions in which the induced field is parallel to the
applied field. These are called the principal axes of the tensor (CSA here),
denoted as X, Y, and Z. The principal axes are in general different for various
chemical sites.




Principal Values

When the applied field is along a principal axis, the induced field is proportional
and parallel to the applied field, multiplied by a number, which is called the
principal value of the tensor, here, the CSA tensor.

mduced (along X) 5 XX applled (along X)
mduced (along Y) §YJY applied (along Y)
mduced (along Z) §ZJZ applied (along Z)

Principal values of the chemical shift
tensor for site |



Assignment of the Principal Axes

We use the following convention to assign the principal axes:

» The Z-axis is the one for which the principal value is
the furthest from the isotropic shift

*The Y-axis is the one for which the principal value is
the closest to the isotropic shift

*The X-axis is the other one

Ordering of the principal values:

| 5212 B §ijo |2| 5>J(X B 5:0 |2| §YJY B §i:o |

Herzfeld and Berger, J. Chem. Phys. 73, 6021, 1980




Chemical-Shift Anisotropy Tensor

1 0 0 0 Agy Oz /833:13 Bmy /6:1:7:
d=0dis0 |0 1 0]+ Oy 0 Qyy | + Byac /ny 6yz
0 0 1 Qg Qzy 0 /Bz:c Bzfy Bzz
i 1 : : :
0' =—(0 +06 +0 ) Isotropic chemical shift
IS0 3 XX YY ZZ
. | | Sl =5} . . .
0} =0 =0 J = xx A6’ =6,, -6
aniso 77 - 77 = 51 ZZ XX
CSA value aniso CSA span
CSA asymmetry (shape) P
| /1.0 0 =51+ o 0
Shag=0l,10 1 0 +6%,, 0 —11+n) 0
0 0 1 0 0 1

Anet, O’Leary, Conc. Magn. Reson. 3, 193, 1991




Chemical-Shift Anisotropy Tensor

3 1 0 0 | —1(1+7) 1 0 0
6@80 0 1 0 5JZZ 0 _5(1‘|_77‘7) 0
0 0 1 0 0 1

«—
«—

Only term In solution-state,  The orientation-dependent anisotropic

trace of the CSAtensorand  term leading to spectral broadening
invariant quantity

1
0! =—(06 +J5 +0J ) Isotropic chemical shift
o} 3 XX YY ZZ
i _ S _ .
51’_ =5J’ _51 j_§Yy 5xx A5j=5j Ny
aniso 77 iso 77 — 51 Y4 XX
CSA value aniso CSA span
CSA asymmetry (shape) P

Anet, O’Leary, Conc. Magn. Reson. 3, 193, 1991
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Chemical-Shift Anisotropy Hamiltonian

CSA Hamiltonian upon secular averaging: Hl = —7j5zjz (©)B,1,,
Total Hamiltonian for a site j: Hg — HsjtatiC + ch:s = a)OJ | iz
The chemically-shifted Larmor frequency: ) =—y'B, (1+6)(0))
In isotropic liquids a)OJ =—y'B, (1+ 5))

1SO

the chemically-shifted Larmor frequency:

In liquids crystals, the resonance position
depends upon the orientation (or 5! (@) = S5
phase transition which can shift the peak): “ J




Tensors and PAS

All these tensors, CSA (later DD tensor), are best treated
In their principal axis system, PAS, where the tensor is
Diagonal.

The interaction tensor of each nuclear spin is treated in its
PAS.

The PAS Z-axis of the CSA tensor corresponds to the long axis of
the elliposid representing the CSA tensor.

The PAS Z-axis of the DD tensor between the nuclear spins i and |
IS along the vector joining the nuclear spins 1 and j (here X and Y
are arbitrary).



Chemical-Shift Anisotropy: Response

I a;
......... o

o
148

A. S. Ulrich, Progress in Nuclear Magnetic Resonance Spectroscopy 6 46 (2005) 1-21



CSA Shielding Convention

» We will use the deshielding convention for the chemical shift, d
(as opposed to another convention, shielding convention, c):

O-ajniso — _51

aniso



Chemical-Shift Anisotropy Tensor

. lab
HCSA — _7h5zz Bolz In the lab frame

7LAB B

7PAS

YPAS

The orientation dependence of the CSA tensor
3 ¢ comes on account of a transformation from
PAS to LAB frame, through 6 and ¢

The CS frequency then becomes

Wesp (0,0) = 0,5, —%a)oé(&:os2 0 —1+nsin® @ cos 2¢)

n=0, axially symmetric tensor, 5,,=3,,



Chemical-Shift Anisotropy Tensor

In the lab frame, Hamiltonian H

csn =—Yho, B

In the lab frame, energy from CS Ecen = yhé‘z'jb B,<I,m|L|lI,m>
Iab _ lab

Spectral frequency for ¥ to —%- WD-cp = }’5 —6005

(0)
Remember lab lab

=0 0 1)§®|0

(1)

Tensor from a frame f to lab s =pisp i

Wesp (0,0) = 0,5, —%a)oé(?;cos2 0 —1+nsin® 0 cos 2¢)



Chemical-Shift Frequency: From PAS to Lab

CS contribution to the _ fofpf
spectral frequency:

Euler angles transformation: P™° = (sin@cos ¢@,sin @sin ¢, cos @)

Chemical-shift frequency:

Wesp (0,8) = —@, (5, SiN° OCOS° g+, SiN° @sin® g+ S, cos’ @)

Using definitions:

1

@, (0,9) = —®,0 5 @,8(3¢c0s’ @—1+nsin® @cos 2¢)

!

-w,0,, = @, |sotropic chemical-shift frequency

iSO



Dipole-Dipole Interaction

The magnetic field
generated by one spin
influences its neighbour

y p12 DD coupling is the direct magnetic
PAS system . . .
interaction between two nuclear spins,
of a DD tensor orientation dependent, both distance

and angles



Dipole-Dipole Hamiltonian

Classical interaction energy between pis  — HO fi - iy 3 (£ - 7i5) (B - T35)
two dipoles fi; and fig, separated by 7: m vy T3

Substituting for u = yhl, we get the expression for the dipole-dipole Hamilto-
nian between I and [j: I;-1 L;.r)(I.r
j %ﬁcD:_(Z_O)'Vﬂkhg(Jza k_g(a )5(l<: ))
7 ik T

Defining DD coupling constant: bj L = — Fo ’7j7kh

A7 'r;).’k
bjk
DD coupling in Hz: —
27T
3
Hamiltonian becomes: HﬁcD = bjk (Ij Ay — TT(Ij-T)(Ik-T)
ik

*Two protons at 3A separation, DD coupling = -4.5 kHz

*Two 13C at 1.5A separation, DD coupling =-2.2 kHz
*Two 13C at 5A separation, DD coupling =-61 Hz
*Two 13C at 8 A separation, DD coupling =-15Hz



Dipole-Dipole Hamiltonian

: : 3
: DD
DD Hamiltonian: ij = bk ([j I — TT(IJ'T)(IR'T)
ik
Defining €, as a unit vector pointing in the direction of 7, €1 = ?—2
J

HﬁﬁD = 0jk (Ij . Ik — 3(Ij.ejk)(fk.ejk))

Defining 1 as identity operator and letting é be the dyadic product of € With

itself ((u|é|lv) = eyey): DD .
HOP = bjk(fj AL, =3I ey - Ik)

In dyadi tation:
n dyadic notation %ﬁD = by (Ij Dy - Ik)
With the elements of the 3 x 3 matrix D: (1| Djklv) = 0, — 3€j ek

= 0, — 3€u



Dipole-Dipole Hamiltonian

In dyadic notation:
n dyadic notation HjDkD:bjk:(Ij'Djk'Ik)

With the elements of the 3 x 3 matrix D: (1| Djklv) = 0, — 3€j ek

= 0, — 3€u
M, V=1, Y
p \
1-— 3exx _3exy _3exz
In general D jy: Djk — _3eyx 1— Beyy —3eyz
%, 8¢, 1-3e,




Dipole-Dipole Hamiltonian

(1—3exx -3e,, —3e, ) 10 0)
D, =| -3¢, 1-3¢e, -3¢, | == DjF;(AS -0 1 0
\ _Bezx _Bezy 1- 3ezz) \O O —2)

Trace = 0, no isotropic part, only the rank 2 anisotropic part present

Since, only the Z-axis needs to be defined for DD tensor in the PAS, X and
Y are arbitrary



Dipolar Alphabet

H¥ =b(A+B+C+D+E+F)

A=1;,1;,(3cos*0j, —1)

B=—2(Ij+I— + I;_Ij)(3cos? O, — 1)

C =

][Oy

(LoDt + Ijy i) sin 0y cos 0je "¢

D =

][Oy

(Ijsz_ + Ij_Ikz) sin ij COS ij.eiqb
b= %(Ij—l—flﬁ—) sin” ije_%‘f)

F = 3(1;_I)_)sin® 0;,€*¢




Heteronuclear Dipole-Dipole Hamiltonian

High-field, secular approximation: 0

= —(wor,; Ij> +wor, Ixz) + bjrA
1 2
djk = bjk§(3 COS ij — 1)
A=d2l,. 1.

%jDkD (ij) — jkszzIkz

The I}, spectrum coupled to I; then will have two transitions, one having (1 —
3 cos? 0) dependence, and the other —(1 — 3cos? ) dependence, hence, mirror
images.



Heteronuclear Dipole-Dipole Powder Line Shapes: Pake Doublet

The I}, spectrum coupled to I; then will have two transitions, one having (1 —
3 cos? #) dependence, and the other —(1 — 3 cos?#) dependence, hence, mirror
images.

" (0k) = dji2l2 1k

b, =2000 Hz

8000 4000 0 -4000 -8000 Hz



Homonuclear Dipole-Dipole Hamiltonian

High-field, secular approximation: H="Hz+Hpp

= _(WOIjIjz +wor, Ikz) + bje(A + B)

djk — bjk%(B 0082 ij — 1)

M (05k) = din (3132 Tz — I - Ii)

The I}, spectrum coupled to I; then will have two transitions, one having (1 —
3 cos? #) dependence, and the other —(1 — 3 cos?#) dependence, hence, mirror
images.



Homonuclear Dipole-Dipole Powder Line Shapes: Pake Doublet

The I}, spectrum coupled to I; then will have two transitions, one having (1 —

3cos? #) dependence, and the other —(1 — 3 cos®#) dependence, hence, mirror
images.

%ﬁD(é’jk) =d;k (3115 — 1; - 1)

b, =2000 Hz

it

L] | ] L LJ L LJ | | L LJ L L] LJ L] L] L | ] L L] L L | | L] L
8000 4000 0 -4000 -8000 Hz




Scalar Coupling Hamiltonian

VB

HY =273,1,.1,

Scalar coupling is a magnetic interaction between the
nuclear spins mediated via an electron cloud, through-bond
Interaction.

Too weak in solid-state NMR, still observable with the
advent of high-resolution schemes.



J-Coupling Hamiltonian: Homonuclear

ka =2xd, 1.1,

High field

First-order secular term:

H, =223,1,.1,



J-Coupling Hamiltonian: Heteronuclear

HY =2723,1,.1,

High field

First-order secular term:

J



Secular Approximation

‘Act as perturbations
/to H,
H, (t)

Large H Small H

 Only those parts of H;(t) that have the same eigenfunction
as H, (having matrix elements in the eigen basis of H,) will
contribute to energy level shifts in the first-order

 This means, to first-order energy correction, we need consider
only those parts of H;(t) such that [H,,H;]=0; Secular Approximation

* In solution-state, this is often disguised as weak-coupling (AX), but
not valid in strong-coupling cases (AB)

Secular approximation simplifies our internal Hamiltonians



Secular Approximation

Strictly speaking, secular approximation is more than commutativity.
If A is the large Hamiltonian and B is the small Hamiltonian, a matrix
element of B may be dropped if its magnitude is small compared to the
corresponding difference in the eigenvalues of A

Consider A:a)ol 'B:a)xlx+a)zlz

Z 7
/1 1 B representation in the basis of A
Eigenvalues= —@,,—— @
g 5 0 2 0 5 :E[a)z @, j
@ 2\ o, -0,
1( o, 0
Secular approximation: B=—
2\ 0 -o,

Provided, the following condition holds good (besides commutativity)

0, << @,



Scalar Coupling Hamiltonian

The J-coupling tensor on account of the rapid molecular tumbling
has only the isotropic part

The secular part of the J-coupling Hamiltonian depends on whether
the two coupled spins are homonuclear or heteronuclear

HY =27J,1,1,

Homonuclear case;:

_27Z-‘J1k(ljx kx jylky+|jz|kz)

Unlike chemical shifts, J-coupling is independent of the applied
magnetic field



Scalar Coupling Hamiltonian: Secular Approximation

A=awyl,+w,l,,;B=27d,1,.1,

Basis sets of A=|+1/2,+1/2>, =|+1/2,-1/2>, =|-1/2,+1/2>, =|-1/2,1/2>

Wy T Wy
a-tl O
2 0
0

0
Wy — Wy

0

0

0
0
— Wy + Wy,

0

— Wy

0
0
0

— Wy,

%7[\]12 0 0 0
1
0 —57[\]12 71'\]12 0
1
0 dy, —572'\]12 0
1
0 0 0 Eﬁjlz

Secular approximation is valid (and then B will be diagonal) when

| @y, — 0y |<<| 7, |

This condition is satisfied for heteronuclear case (y, and y, different, of when
the chemical-shift difference is sufficiently large for homonuclear case (weak

coupling)




Relative Magnitude of Interactions: After Motional Averaging

Static _ Q
: RF Chemlcal DD
shift
J
o @ -
Solids
Static
Fie Q
RF Chemical
shift
J
O O
Isotropic Liquids

M. H. Levitt, Spin Dynamics



Product Operator Formalism

*POF-complete and QM description
of NMR experiments (solution state)

*POF have a well-defined physical meaning

Illustrative to look at vector model

At thermal equilibrium: Unequal populations
of the two levels leads to a net magnetization
along the field (z) direction. This may be
treated as a vector. The vector model fully
relies on its behavior. (Lower level more
populated at thermal equilibrium.)

A version of DM theory

Pulses and delays are geometrical
Rotations

Useful in describing the behavior of
an ensemble of non-interacting spins, %

G000 B

Z
A




Product Operator Formalism

* RF pulses are rotations about x or y-axes.

* Angle of rotation 1S = w,,,+t, Where wWnut IS
the RF field strength and ¢ is the duration for
which the pulse is applied. The rotation is in
the yz-plane.

» Free precession is a rotation about the z-axis at frequency (2, which is the offset
(difference between the Larmor and transmitter frequencies. Here, the rotation angle is

0 = Q.



Product Operators

I, X-component of I-spin magnetisation
I, y-component of I-spin magnetisation
I, z-component of I-spin magnetisation
S, X-component of S-spin magnetisation
S, y-component of S-spin magnetisation
S, z-component of S-spin magnetisation
*Product operators for a 9I.S.  Antiphase I-spin magnetisation
non-interacting two-spin _ _ o
system. 21,85, Antiphase I-spin magnetisation

21,5, Antiphase S-spin magnetisation
21,5, Antiphase S-spin magnetisation
2I.S, Longitudinal two-spin order
21,5, Two-spin coherence

21,5,  Two-spin coherence

21,5,  Two-spin coherence

21,5, Two-spin coherence



Product Operators: The Looks

Nl 2

T 1 I
o0 Iy
S""CJ\ Sz
I I S,
0 2 In-phase magnetisation of g
spins 1 and S : <
21,5,
*Absorption mode for 21,8,
I magnetisation aligned along x
i . 21,5,
| |
VQl V 0 *Dispersion mode for 215,
magnetisation aligned along y 21,5,
S?J
: 21,5,
0 (2o 2L, S,
21,5,



Product Operators: The Looks

J\. 21,5, I,

XT
| : I'y
g |

J I Sy
0 Q%/ *Anti-phase magnetization g
*The operator 21,5, is the I-spin 2,5,
2. S magnetization that is anti-phase 21,5,
/\ 4 /\\_ ?IJ i with respect to the coupling to 507 G
spin-S =
Vo o " 218,
21,5, 21,5,
i 21,5,
0 & 21,5,
21,5,



Product Operators: The Looks

Iy
I'y

*Multiple-quantum coherence terms S,



Product Operators: Example 1- RF Pulses

Pulse of flip angle 6 along the x-axis

I, i I,cos0 + 1,s1n0 I, I, LI
y — +Y
Y
Iy .
I, — I,cos0 — I,sin0 I, I, so-ilz
y —p Vel 7 y
Y



Product Operators: Example 2- Chemical-Shift Evolution

*The relevant single-spin Hamiltonian Hf?“ee = O, +Qs5,

()’s being the offset

7{freet

*Evolution under this Hamiltonian for 1, I, — IL,cosQrt + I,sin€)yt
. . . . 7{freet .
*Evolution under this Hamiltonian forIy Iy — IyCOSQIt — I, 51n82t

?{freet

«Evolution under this Hamiltonian for [, I, — 1,



Product Operators: Example 2- Chemical-Shift Evolution

Hf"ree — QIIZ + QSSZ

Z 4
Q. +QgS, I
7_lf?“eeﬁ . I y | I Yy y
I:r: — I$COSQIt + IyS’L?’LQIt z LN
X v
-Z
Z 7 y
I %f—rietf cos§rt — I,sinft Ly ' QI +9s8. !
v ’ — I, y
I
X X Y



Product Operators: Example 2- Chemical-Shift Evolution

*The relevant single-spin Hamiltonian Hf'r'ee = QOrl, +Qs5;

()’s being the offset

Qrtl.+0gtS.

*Evolution under this Hamiltonian for I, I, » L,cosQt + I, sinS)rt

*Evolution of the 27,5, term under a 90° pulse about the y-axis
* The relevant Hamiltonian is H = Wy Iy + Whut Sy

T (s
§Iy ESy
21,5, =— —21.5, =—— —21.5,
T
Remember : wr st = Efor a 90 pulse
*This means that the anti-phase magnetisation of spin | has been transferred into

anti-phase magnetisation of spin S. This is called coherence transfer and plays a great
role in both one- and multi-dimensional NMR



Product Operators: Example 3- Scalar Coupling

H;=2nJrsl.S.; Jrs is the coupling in Hz.

*Evolution under coupling causes interconversion of in-phase and anti-phase magnetisation

HJ = QTFJI_gIzSz

I, — I,cosmJrst + ijszganﬁ_]mt In-phase magnetisation along x
becomes

anti-phase along y
HJ = QWJ[_S'IZSz

21,5, — 21,5, cosmJrst + 21, sinmJrst
«Anti-phase magnetisation along x
becomes in-phase along y
Hy=2nJ;sl.S,

—21,S, — —21,S,cosmJrst + 2S5, sinmJrgt *Theabove, butforspin S

«Complete interconversion of in-phase and anti-phase magnetization requires a delay of

1
mwJrgt = g i.e. a delay OfQJIS

2rJrstl. S,  t=5
I, =5 21,5,




Product Operators: Some References

*O.W. Sorensen, G. W. Eich, M. H. Levitt, G. Bodenhausen, R. R. Ernst, Prog. NMR Sectrosc. 16, 163, 1983
P. K. Wang, C. P. Slichter, Bull. Magn. Reson. 8, 3, 1986

*A handbook of NMR, R. Freeman, Longman, 1987

«J. Shriver, Conc. Magn. Reson. 4, 1, 1992

*D. G. Donne, D. G. Goenstein, Conc. Magn. Reson. A9, 95, 1997

*Understanding NMR spectroscopy, J. Keeler, Wiley, 2010

*D. P. Goldenberg, Conc. Magn. Reson. 36, 49, 2010



Experiments under Static Conditions




Spin Echoes: Spin-1/2

Echo
90 180 Spin-echo experiment

Refocuses chemical-shift interaction
and heteronuclear dipole-dipole interaction

|

~ I

e
=<
5.

RF pulses



Spin Echoes: Spin-1/2

Echo Spin-echo experiment

90 180 Refocuses chemical-shift interaction
. . and heteronuclear dipole-dipole interaction
\j Hog o< 1,

Hhetefro X ]zSz

Spin Echo (Hahn Echo) Sequence:

V4 Z Z z Z
| < =
Bo ) / :
x y X y X -y x NSy x y
2T

9 O\T/ng

RF pulses




Spin Echoes: Spin-1/2-Density Matrix Analysis

Echo Spin-echo experiment

Refocuses chemical-shift interaction
“ I and heteronuclear dipole-dipole interaction
U@ e — Wo I z

pa@) =P =351+ 3BL r@ = —3B1L

r@) = 1 B[—1, coswoT + I, sinwyT] exp (—AT)
P@) = s B[—1, coswoT — I sinwyT] exp (—A7)

1
2 . .
PG = 53[—13, cos” woT + 1, coswoT SinwgT — I, cOSwyT SIn woT

- 1s ind dent of th ffset
- y[81n2 woq-] exp (_ /\7_) P(5) 18 Independent of the resonance otiset, wo

—> the signal at (D) is independent of B
— — %B]y exp (— A7) — echo/refocussing



Spin Echoes: Spin-1/2 but Homonuclear

Echo Echo experiment to refocus
0, homonuclar dipole-dipole coupling
\j ~ 311,12, — I - 1]
z X
X
yy Hxx

Refocussing of interactions



Homonuclear Spin Echo: Analysis

Echo
90-x 90y ]
Echo experiment to refocus
T T homonuclar dipole-dipole coupling
3
@ @ %%OB?'O X 311zI2z — Il . IQ

p(27) = Ugg) (27, 7)Ugy (7, T)U) (7, 0)p(0) [Uny (7, 0)] " [Uggy (7, 7)] " [Ugg)l (27, 7)

p(0) = Iy + Iy

cashomo .ahomo .ashomo
_Z?_LDD _%HDD T _Z,HDD T

U@(T,O):e R T,U@(T,T)Ie h ,U@(QT,T):B 2

Hhomo — A(311,15. — 11 - 1)



Homonuclear Spin Echo: Analysis

Echo
90-x 90y ]
Echo experiment to refocus
T T homonuclar dipole-dipole coupling
3
@ @ %%OB?'O X 311zI2z — Il . IQ

— MR

U@(T, 0)=e 7

_?-I,Hhomo _?:Hh,omo

. T ) T . )
—’L%Iye %D _ e_Z%I’ye %D ez%Iy —145 1y

U@(T, T)U@(T, 0)=¢e

—’L'A(?)Ilm.[gm—fl-fg)’re—iif

2°Y

=€

U (2. 1)U (7. 1)U (r,0) =e 4@ hefaemlufa)r

e—iA(?)IlmIgm—Il-Ig)Te—i%Iy

:e—’iA(Il-12—3113;[23})7'6—?:%13}



Homonuclear Spin Echo: Analysis

Echo
90-x 90y ]
Echo experiment to refocus
T T homonuclar dipole-dipole coupling
D S Hromo —oc 311,15, — I1 - I
@

p(27) = U@(ZT, T)U@(T, T)U@((T, O)p(O)[U@(T, 0)]” [U@ 7,7)]” 1[U@] (27, 7)
o —iA(L T =3T1y Iy) 7 ,~i 5 1,

2

J\u' /\
p(27) = Iy + Iy = p(0) t 4/“\ —

U\\
That is the echo! L

Mueller and Geppi, Solid State NMR, Principles, Methods and Applications

U@(QT,T)U@(T, T)U@(T 0) =




Spherical Tensors: Examples

« Rank /=0 : A s-orbital
* Rank /=1 : Three p-orbitals
« Rank /(=2 : Five d-orbitals




Spherical Tensors

A spherical tensor of rank | is a set of 2 | +1 objects such that when any of them is
rotated in three dimensions, the result is a superposition of the same set of objects

Rotation of spherical tensors

RQ)T,,R(Q)" = ZT.m " (Q)

T \ m'=—|

Rotation operator Spherical tensor element
of rank |

Complex numbers



Rotational Signatures of the Internal Spin Interactions

Interaction |Space Rank |Spin Rank
I A
|1S0-CS 0 1
CSA 2 1
J 0 0
Hetero-DD |2 1
Homo-DD |2 2

Rotation of Rotation of

molecules spins



Euler Angles

'1:"

R = Haely) - Hy(5) - oo

{ ey sy 0 ¢ 0 —s3 coo s ()
N = —sy oy U |- 0 1 0y - —s e )
||.Il o 0 1 =4 ) e o 0 1

{  cvefBeq —sysa eyedsa+ syea  —cys

= —5eco — S —8YC 50 + O e sy

l"x SFco 5 /950 o3



Rotation of Spherical Tensors

RQ)T,RIQ)" = > T, Dy (Q)

T m'=—I
Elements of Wigner matirx
Rotation operator for Euler angles Q
for Euler angles Q



Wigner Matrices

D'(Q)=|e o o o | 2/.]elements

] L - L N

2 [+1 elements

Dy (Q) = exp(-=im'a)d,,, (B) exp(~imy)

I N

_ _ Reduced Wigner matrix element
Wigner matrix element



Reduced Wigner Matrix Elements (Rank 0 and 1)

d°(p) =1
1
Aoo (£)
(14+cosf) —sinfB/x2 =(1—cosf) m = —1
d“}nm’(ﬂ) — ( Sin 3/”\@ EDS,{? _&in 3}‘,\@ ) m =0

1 ‘ Sy
5(1 — cos 3) sin 3/v/2 %(1+EDS,@)



Reduced Wigner Matrix Elements (Rank 2)

dgo (B)

m = —2

/ i(l + cosf)? —%sinﬁ(l + cosf3) \/gsirﬂﬁ —%sinﬁ(l — cosf3) i(l — cosf3)? \
%Sinﬁ(l + cosf3) %(200526 + cosff — 1) —\/gsirﬂﬁ %(200326 —cosff — 1) —%sinﬁ(l — cosf3)
\/gsinzﬁ \/gsifr&ﬁ %(30052,8 —1) —\/gsinQﬁ \/gsingﬁ
1sinB(1 — cosB) —i(2cos’B — cosp — 1) sin2f3 1(2c08®B + cosp—1  —1sinB(1+ cosp)
\ 2(1 — cosp)? 2sinB(1 — cosp) sin?B 2sinB(1 + cospB) 2(1 + cosB)? )

m = 2

m’:—? m’:—l m,ZO m,::l m,:2



Summary of NMR Interactions

Interaction Liquids Solids Field (B,) Notes
dependence
Zeeman Line position Line Linear For liquids this is just the position of each peak, but for
(chemical shift) position and solids each peak can have a range of chemical shifts
structure depending on the orientation of its electronic
environment with the magnetic field. This is known as
the chemical shift anisotropy and can have a larger
range for nuclei in more asymmetric electronic
environments.
Radiofrequency | Amplitude Amplitude None Same for liquids and solids
pulses
J coupling Line structure Not None* Basically the same for solids and liquids but not
normally normally observed in solids due to much wider lines
observed
(?!)
Dipolar coupling | Relaxation Line None* Averages to zero in liquids due to isotropic motions (but
structure does still result in relaxation effects). In solids can
completely dominate the spectra especially for large y
nuclei like protons
Quadrupolar Relaxation Line None* Averages to zero in liquids due to isotropic motions, but
interaction (spin structure in solids can completely dominate the spectra especially

> 1)

for nuclei with large quadrupole moments (N, 2H) in
asymmetric electronic environments.

*To first order




Magic-Angle Spinning, MAS




Reality

dynamically @'g @
singleglir?e {P ﬂ ?)3

liquid

powder pattern "'.: .
superposition
of all possible % « 'y

orientations

solid:
powder
grientadtion- \ \\
t
Iir?g ?}gsﬁ?nn \ \\
s
solid:

single crystal

1
10 8 ]

o
%]

0
o [kHZ] Figure courtesy: Matthias Ernst



Reality

Simple 1D solution-state spectrunm
'H spectrum of a protein

m\wﬁ

Simple 1D solid-state spectrum
13C spectrum of glycine

o

4 3 2 1 o -1 -2 PEm

——10 5 o 5 10
Qz/ kKH=



Solid-State NMR at Frontiers

A fibril core of FUS low-complexity domain B sensory rhodopsin membrane protein
3 X ray/crystals ssNMR/membrane

 Higher fields
* Higher MAS )
« Better coils Nidipsdngen:
" Atk @%%
« Proton detection N\ .
« Sensitivity ?i

intermonomer interface

« Sample volume C@ S
St/

manomer structure

Patrick van del Wel, Emerging topics in life sciences, 2, 57, 2018
Reif, Ashbrook, Emsley, Hong, Nat. Rev. Methods Primers, 2021:1:2.doi: 10.1038/s43586-020-00002-1
Ahlawat, Mote, Lakomek, Agarwal, Chem. Rev. 122, 9643-9737, 2022



*  Mimick the inherent averaging processes in solution-state to
obtain high-resolution, isotropic information

« Goal #1:(Resolution and Sensitivity): Remove anisotropic parts
and retain only isotropic parts: Decoupling

 Goal #2: Get back the anisotropic parts for elucidation of
geometry parameters: Recoupling



Mechanical manipulation

Spatial part

Independent:
Anisotropic part Can be individually
manipulated

Spin part

RF manipulation



Hamiltonians and their Manipulation

. anisotropic isotropic
HTOTAL R [H SPACE ® HSPIN ] T H
Spatial Part: Manipulation Spin Part: Manipulation
-Rotating the crystallites in a *Rotating the spinsin a
given powder given powder
-Sample spinning: Mechanical *Spins rotation:
manipulation Manipulation by RF pulses
*Easier to visualise *Easier to implement
-Difficult to implement *Difficult to visualise
Interaction | Space Rank, | | Spin Rank, A
Iso-CS 0 1
CSA 2 1
J 0 0
Hetero-DD | 2 1
Homo-DD |2 2




Hamiltonians and their Manipulation

. anisotropic isotropic
HTOTAL _ [HSPACE ® HSPIN ] +H

H = Z[Aim]L[Tl—m]L
m=—I| 1‘ T

Space  Spin
part part
, : 2

Interaction | Space Rank, | | Spin Rank, 4 H — Z[Ag ]L[-I- ]|_

150-CS 0 1 B e 2—m

CSA 2 1 T NMR

J 0 0 case

Hetero-DD | 2 1

Homo-DD |2 2

H = [Azo]L[Tzo]L

High field, secular
approximation



Powder at Various Rotor Angles: Spinning

. . 8=5 kHz: =0; =15 kHz
A R S S S S 1

A [ S S S S S S [
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Magic-Angle Spinning (MAS)

AB"

SAMPLE
ROTATION

Average out the chemical shift
anisotropy, to achieve good
sensitivity and resolution




Magic-Angle Spinning (MAS)

=g

.

Averages out the chemical shift
anisotropy, to achieve good
sensitivity and resolution



http://www.cup.uni-muenchen.de/ac/schmedtadg/seminars.html#NMR
http://www.cup.uni-muenchen.de/ac/schmedtadg/seminars.html#NMR

Resolution and Sensitivity Enhancement by MAS

B3C spectra of [1°C,]-glycine

H H
_ ~ T S _ Inning 3
-10 -5 0
€2,/ kHz O
] O-
with MAS
N at 12 kHz
10 5 0 5 10



Magic-Angle-Spinning Spectra: Resolution Enhancement

14 kHz

8 kHz

SKHZJ Glycine
N L.

3 kHz

o J |
HoLHz | | | I The powder pattern breaks up into a
L centreband and sidebands spaced at integer

multiples of the rotor frequency
Static

250 200 150 100 50 0
Chemical Shift &/ (ppm)




MAS Rotor Types

4 3.2251.3mm




Angular Frequency to Linear Velocity

Magic Angle Spinning (MAS)
A 0.8 mm rotor spinning at 100 kHz ...

... has a speed of 250m/s when rolling along the ground...

Angular frequency ~ 120-130 kHz



Standard Bore MAS Probe

proton trap

stator flip mechanism

— Dbearing gas inlet

BN stator

RF electronics

RF coil




Reference Frames in Solid-State NMR

>

PAS-MF-RF-LF

Transformation via the relevant Euler angles necessary for visualisation and
simulations



Rotation of Spherical Tensors

RQ)T,RIQ)" = > T, Dy (Q)

T m'=—I
Elements of Wigner matirx
Rotation operator for Euler angles Q
for Euler angles Q



Wigner Matrices

D'(Q)=|e o o o | 2/.]elements

] L - L N

2 [+1 elements

Dy (Q) = exp(-=im'a)d,,, (B) exp(~imy)

I N

_ _ Reduced Wigner matrix element
Wigner matrix element



Reduced Wigner Matrix Elements (Rank 0 and 1)

d°(p) =1
1
Aoo (£)
(14+cosf) —sinfB/x2 =(1—cosf) m = —1
d“}nm’(ﬂ) — ( Sin 3/”\@ EDS,{? _&in 3}‘,\@ ) m =0

1 ‘ Sy
5(1 — cos 3) sin 3/v/2 %(1+EDS,@)



Reduced Wigner Matrix Elements (Rank 2)

dgo (B)

m = —2

/ i(l + cosf)? —%sinﬁ(l + cosf3) \/gsirﬂﬁ —%sinﬁ(l — cosf3) i(l — cosf3)? \
%Sinﬁ(l + cosf3) %(200526 + cosff — 1) —\/gsirﬂﬁ %(200326 —cosff — 1) —%sinﬁ(l — cosf3)
\/gsinzﬁ \/gsifr&ﬁ %(30052,8 —1) —\/gsinQﬁ \/gsingﬁ
1sinB(1 — cosB) —i(2cos’B — cosp — 1) sin2f3 1(2c08®B + cosp—1  —1sinB(1+ cosp)
\ 2(1 — cosp)? 2sinB(1 — cosp) sin?B 2sinB(1 + cospB) 2(1 + cosB)? )

m = 2

m’:—? m’:—l m,ZO m,::l m,:2



Reference Frames in Solid-State NMR

>

PAS-MF-RF-LF

Transformation via the relevant Euler angles necessary for
visualsation and simulations



Wigner Matrix Chains

D' (QAC) =D (QAB)DI (QBC)

Drlnm(QAC): Z Drlnm(QAB)Drlnm(QBC)

D' (QAD) =D (QAB)DI (QBC)DI (QCD)

Drln'm(QAD): Z Z Dl!nm(QAB)Dl!nm(QBC)Drlnm(QCD)

mll:_l mllI:_I



Frame Transformations of Spherical Tensors

NN

L

[ ]

I\:‘i M""}
’ |

o=

—

O

0




Chain of Reference Frames in Solid-State NMR

Laboratory reference frame
/ Rotor reference frame
Z

Molecular reference frame

|

Principal axis frame of a
spin interaction



Rotor to Lab Frame Transformation

Rotor reference frame Lab reference frame

Qp, ('[5;(0{[, :BRLQ

Spinning frequency Rotor (magic) angle



Molecular Frame

T
«L
Molecular frame is more
arbitrary, although in
certain cases, calculations
W are simpler with a good
r[» choice

Different Euler angles for different molecules



Chain of Transformations in Solid-State NMR

D'(Q))=D (QA )D'(Q7 )D'(Q? (1))

Orientation of an interaction, A, Wlth
respect to the molecular frame. Depends
only on the interaction, not on time or
crystallite

Orientation of the rotor wrt
To the static field, time dependent

Orientation of molecular frame wrt to
rotor frame, depends only on crystallite,
not on interaction or time



Irreducible Tensor Representation of the Hamiltonians

Space part  Spin part

H — _Z[AZm]L[TZ—m]L NMR case

H :[AZO]L[TZO]L High field,

secular approximation



DD Coupling Hamiltonian

— Jk
TE{]

2-2

2-1

jk
15

jk
kTﬂz y,

Hoo =[ASTIT)T

2 LI
%(I}Ih +1 J.EI;)
6‘”2{21 A 5(1;1; - I;I;)}
—%(I}Ih +1 j_,_l;{)
LK

Space tensor in the PAS

Spin tensor

42 -

gk

ﬂu )hyj’yi
A’ 3
Jjk



DD Coupling Hamiltonian

Hop =[ANTIT )T
= D [ANT Do ()T )T
m=-2
=[ALT Do (Qp)IT,) T
Zero at the magig angle :[Azjok]PdOZO (IBPJE)[TZCJ)k]L
1 \2 JK 1 +q1 - -1+
:bjkE(SCO HPL—l){ZIjXIky—E(Ijlk—Ijlk)}



Isotropic Chemical-Shift Hamiltonian

|
H iso a)iso I jZ
Spinrank 1
0)_J — 5_] C()J
IS0 iso 0 Space rank 0



CSA Hamiltonian

Spinrank 1
J ] L
CSA [A ] [T ] B [Azo] Isz
Space rank 2
[ )
Space tensor in the PAS —6 ”Eﬂ"
0
.4 P .
[Afir] :mgrﬂm 1
0
/2 j
6,

aniso aniso 0



Average Hamiltonian Theory and MAS

i ¢ O =~ 1
P =247
v = arbitrary

=g

Isolated spin-1/2 experiencing CSA:

L (Qyr, 1)

CSA

Hi(t)=w' I, +H


http://www.cup.uni-muenchen.de/ac/schmedtadg/seminars.html
http://www.cup.uni-muenchen.de/ac/schmedtadg/seminars.html

CSA Hamiltonian under MAS

HCjSA = [Azjo]L Ijz I30

2

Z [AJ ] D, O(QRL)IJZ

m=-2

Z Z [Azjm.]M D (QMR)D O(QRL)IJZ

2 2 _ |
- Z Z [Azjm.]M Dri'm (QMR)elmwrtdrio (,BRL)Ijz B,



Concept of Average Hamiltonian

If the Hamiltonian is such that:
 Itis periodic, H(t),=H(t+NT)
« |t varies sufficiently fast with respect to time

Then the spin system behaves as if it is subjected to a time average of
H(t) over the period T (then the Hamiltonian also becomes time independent):

HO) = H =2 [H@®de

/ T

Average Hamiltonian



Average CSA Hamiltonian Under MAS

2 2

HchA(QMR) — Z Z [Azjm.]M Dri'm (QMR)eimmrtdrio (:BRL)Ijz Bo

m'=—-—2 m=-2

2

= 3 IAL 1Y D2 (@) (A1 By

m'=-2

Zero for By, =54.7

Exact MAS, hence, averages CSA to zero, provided the rotation
IS sufficiently fast.



CSA Powder Pattern and Rotation Angle

=10

] : ] E L= kHzy n=01 =15 kHz
: 1 - ' : L . 1 Y=

b aan For angles other than 54.7, scaled
P versions of static powder pattern
|6=30 appear, with scale factor ranging from
E 1t0-0.5
Eﬂzdﬂ
[;554.?4 Isotropic spectrum results at the magic
:o angle, 54.7
g=60
| 6=70
| 6=80

N T

v [KHZ]



DD Hamiltonian Under MAS

H 35 (Que 1) = [AKTH[T X

2 AN T Do (QeU)IT ST

m=-2

2 2 AN T D Q) Do (eI, T

m'=—2 m=-2

= > S TAK]Y D2, (Qur)e™ " d 2 (BT X1

2
m'=—2 m=-2



Average DD Hamiltonian Under MAS

2

2. 2 AT Do (Que)e"™ d o (BT, T

m'=—2 m=-2

HZ (Qur.t)

= > [AK1Y D2, (Qur)de (B)ITAT

m'=—2

Zero for By, =54.7

Exact MAS, hence, averages DD to zero, provided the rotation
IS sufficiently fast.



Magic-Angle-Spinning Solid-State NMR

3C spectra of [1°C,]-glycine

no spinning

] with MAS at 12
J\ . kHz




Tracking Spins in NMR

Floquet Wilhelm Magnus F. Fer

Magnus expansion Fer expansion

Floquet theor
| Y Average Hamiltonian theory

Many more: Wilcox, Salzman, Pechukas, Burum



Time Development of the Spin System

% () >= —iH®) [p(t) >

[ Hamiltonian State function}

Time
evolution




Phase Cycling
and
Pulsed Field Gradients



Separating Wheat from Chaff

Inherently a low-sensitive method

Plenty of unwanted signal to make matters worse

NMR

Desired signals are very less

How to select out the desired signals effectively

Phase Cycling or Pulse Field Gradients



Fourier Transform

The Fourier Transform (FT) converts the time domain signal to the frequency
domain. There are several types of FT, and we will examine the discrete FT
(DFT), because it works on discrete points like NMR data

DET f :iNz_ld e—27zikn/N
| \mk=o ‘




0.5 1

FT. Appearance

50

Here is a 25 Hz time-domain signal
from Cos[2*Pi*25*t] sampled for
128 points from t=0 to t=1.27 sec
with 0.01 sec spacing between points

Here is the real part of the DFT of the
signal above. Several things are
worth noting:

1) There are 2 peaks, each 25 Hz from
either edge.

2) The spectral width is 100 Hz
3) The peaks are quite sharp




Why 2 Peaks from One Frequency?

L

WUV
LA

Here is a plot of Cos[2*Pi*2*t]

These are indistinguishable even
though they have opposite
frequencies. Therefore, the FT
results in 2 frequencies, one
positive and the other negative

WWUVTY

Here is a plot of Cos[2*Pi*(-2)*t]




Why 2 Peaks from One Frequency?

UL

VUV
UL

Here is a plot of Sin[2*Pi*2*t]

We can distinguish different signs
in Sin functions

VVUV

Here is a plot of Sin[2*Pi*(-2)*1]




FT of a Sine Function

1t
05 F
111 inee
-0.5
1t
4t
2 L
50

Here is a 25 Hz time-domain signal
from Sin[2*Pi*25*t] sampled for 128
points from t=0 to t=1.27 sec with
0.01 sec spacing between points.

Here is the imaginary part of the DFT of
the signal above. Several things are
worth noting:

1) There are 2 peaks, each 25 Hz from
either edge. Now they are opposite
each other!

2) The spectral width is 100 Hz
3) The peaks are quite sharp




Adding Sine and Cosine FT’s

5

4

3

2
1

L e e 122
4
2
20 40 60 80 100

-2
-4
10
8

6

4

2

20 < o€ 2 e L)

FT of cosine function

90
reference
Receiver
- B AF -
Wy RF
FT of sine function i

AF
o
reference

Sum NMR Receiver



Quadrature Detection

In order to distinguish the sign of frequencies, NMR signals must be collected along
both the x (e.g. cosine) and y (e.g. sine) axes. This is called quadrature detection. The
signal is treated as a “real” part (cosine) and an “imaginary” part (sine). They are
both equally real and important, but this allows easy mathematical manipulation from

Euler’s relations:

COS(t) + |S|n(t) = eit COS(t) _ |S|n(t) _ e—it

\ J \ J \ J
Y Y Y Y

real Imaginary real Imaginary

\




Quadrature Detection

d = Cos[2*Pi*25*t] + I1*Sin[2*Pi*25*t]

10 |

50 0 50

The DFT of the 128 point function defined above with a frequency of 25 Hz



Quadrature Detection: The Full Story

Absorptive

AN

[
=

Dispersive




CYCLOPS (Cyclically Ordered Phase Sequence)

Channels A and B need to be orthogonal and they should amplify both
absorptive and dispersive components of the signals identically

cos (abs)

\

VARV
A

cos (abs)

\/

sin (dis)

cos (abs)

\

\VA\ M cos(wt)

VARV
A

sin (dis)

cos (abs)

sin (dis)

\
VARY

sin (dis)




CYCLOPS

90
bp
Channel A
absé dis _ Channel B
cos (abs) cos (abs)

\ A

A\
VARY

/A

VARV

sin (dis)

sin (dis)

Scan Pulse | Magn. | A:cos B:sin
1 +X -y -y +X
2 +y +X +X +y
3 -X +y +y -X
4 -y -X -X -y
Channel A
_ @ Channel B
dis :
v
cos (abs) cos (abs)
\vﬂ\ B
Al

\/

sin (dis)

\/ \

sin (dis)



CYCLOPS
90

Scan Pulse | Magn. | A:cos | B:sin
(I)rec . ™ 5 5 .
2 +y +X +X +y
(I) 3 -X +y +y -X
4 -y -X -X -y

CYCLOPS compensates for amplitude and phase imbalances of the quadrature
channels. How does the signal look like?

. | . y .y
X X
Recelvy\ ‘/\ \f

(I)rec

fk Net signal




CYCLOPS: Phase Cycling
90

(I)rec Scan Pulse | Magn. | Rec. A:cos | B:sin
1 +X -y +X -y +X
W 2 +y +X +y +X +y
(I) 3 -X +y -X +y -X
4 -y -X -y -X -y

CYCLOPS compensates for amplitude and phase imbalances of the quadrature
channels. How does the signal look like?

H' .y . y
X
J\ J\ J\lgnal adds up!

Unwanted signals like this (DC offset) will then go to zero

Recelverj\



CYCLOPS: Phase Cycling

 Phase cycling
*The pulse and the receiver are cycled together in phase
*The receiver should follow the phase of the desired signal
*The number of steps in a phase cycle depends on how many
undesired signals need to be suppressed and how many desired
signals need to be selected

*CYCLOPS is a 4-step phase cycle

*CYCLOPS can correct for the phase and amplitude imbalances
of the receiver channels with a 2-step phase cycle, 0,90

*CYCLOPS can remove zero peaks (DC offsets) with another
2-step phase cycle, 0,180

*Hence, overall one needs a 4-step phase cycle, 0, 90, 180, 270,
in other words +x, +y, -X, -y (Is this correct?)

*One can do CYCLOPS in 3 steps, with both pulses and receiver
cycled as 0, 120, 240



CYCLOPS/CYCLOPES

CYCLOPES are giant one-eyed creatures in Greek (and later
Roman mythology).

They are three brothers: Brontes, Steropes, Arges (Arges made
the thunderbolt for Zeus, God of lightning among others. Indra,
Hindu God of lightning had Vajra as an equivalent.)




Phase Cycling: Quantitative Derivation

[b>
Coherence order of -1 or +1 for single spin-1/2 p=-1,+1
Single-quantum transitions

=

BB (/2 =)

p=0
(+/5, =) o Ba (—1/,, +1/,) B oo-+1
=+
For a two-spin % system B p=+2

aa (+1/,, +1/,)

, Double-quantum, and single-quantum transitions



Phase Cycling: Coherence Order

A 90 pulse on equilibrium magnetisation |, creates transverse (xy)
magnetisation, the single-quantum transition elements

BB (+1/5, +11))

(-5, +11;) ap Ba. (+1/,, -11,)

aa (-1, -1/y) 20

<z> <Xy>

We represent the SQC or any
coherence by coherence transfer
pathway diagrams, musical stave p=20

Change of coherence order, Ap=-1 P = -1




Phase Cycling: Coherence Order

A coherence of order o, represented by the density operator o(®), evolves
under a z-rotation of angle ¢ according to

exp(—igF,)o'” exp(igF,) = exp(~ipg) o™

1 Definition of coherence order
Total z-component of the spin angular momentum

The effect of a z-rotation on a term like |1+|2
exp(—i¢llz)exp(—i¢|22)exp(—i¢llz)exp(—i¢lzz)
=exp(—igl,)exp(—=1g)l, , exp(igl,,)
= exp(—1g)exp(-ig@)l
= exp(-2ig)|

I1+ 2+

|1+ 2+

|1+ 2+

Hence, a coherence (here DQ term) that experiences a phase shift
of 2¢ could be referred to as p=2



Phase Cycling: Coherence Order

Consider p to p’ by a pulse: How the phase of the pulse affects the phase of
the coherence?

U(_)cy"”)UQ‘1 =o' + H.OTerms

Udj — exp(_i¢|:z )UO eXp(I¢F2)

The effect of the phase-shifted pulse on the initial state:

(p) 11
U¢0 U¢

= exp(-igF,)U, exp(igF,)o'” exp(~igF,)U " exp(igF, )
= exp(ipg) exp(=igF, U0 U, " exp(igF,)

= exp(ipg) exp(—igF,)a"’ exp(igF,)

= exp(ipg) exp(-ip'¢)o "’ = exp(-iApg)c ™’

If a pulse shifted in phase by ¢ causes a coherence order change of Ap,
the coherence acquires a phase label of (-Ap )




Phase Cycling: Coherence Order

"

Change in the
+2 /// coherence
+1 order, Ap=-3

0
-1
-2

Phase cycling: Transformation/rotation of signals under phase shifts
of the RF pusles

Z(¢) tells us the amplitude of conversion of +2 coherence to -1 coherence

Z(¢) = Z(0) exp(iApg)

For Ap=-3, when the phase of the pulse changes by ¢, the phase of the
amplitude, Z, changes by 3¢. How do we catch that particular signal?



Phase Cycling: Coherence Order

phase shift experienced by

step pulse phase ansfer with Ap = -3 equivalent phase
| ; ! ! receiver
2 90) 270 270
3 180 340 180
4 270 8§10 90
step pulse  phase sh?l'l ex.pn:ricncm;l by equivalent  rx. phase m. difference
phase transfer with Ap = 2 phase  select Ap=-3
I 0 0 0 0 0
2 90 ~180 180 270 270 - 180 =190
3 180) -360 0 180) 180 -0 =180
4 210 =340 180 90 90 - 180 =90

Hence, Ap=-3 selected, whilst Ap=2 not
In fact, this phase cycle will select all Ap=-3+4n
where n=-1,+1,-2,+2.....



Phase Cycling: Coherence Order

Phase cycling: General rule-

If the pulse phase gets cycled as ¢‘< = %k, K = 0,1,2,..., N -1

A coherence order change, Ap, gets selected, if the receiver phase

¢rec = _Ap@

For each step and summing up the signal

Also AP £ NN get selected



Phase Cycling: Selection Rule

(I)rec

Apg=-2 Pathway phase

¢path = ApA¢A + ApB¢B + ¢rec
Phase-cycle condition demands ¢,,,,=0 Drec = _Z Apig
i



Coherence and Phase Cycle Rules

Only pulses can change coherence order. Pulses on <z> magnetization
(p = 0) generate p = 1, while pulses on <xy> magnetization can create
higher coherence order, depending on the number of coupled spins

We can only detect coherence with order +1, because it correspond to
single-quantum transitions, or <xy> magnetization

The number of cycles and steps per cycle needed will depend on the
order of the coherence we want to select/transfer

In order to select or detect a certain component of the coherence order
generated by a pulse of phase ¢, the phase of the selecting pulse or

receiver is given by:
¢rec = _Z Apl¢l
i

where Ap is the coherence change we want to follow generated by the
pulse of phase ¢, and ¢ is its phase



CYCLOPS: Phase Cycling

90 Oy,

\ (I)reC ¢rec = _Z Apl¢l
AVAVAVWAM“ Here, $=0,90,180,270

Hence, ¢,..=+1.¢=0,90,180,270

p=-1
ii/acrlle counter,m ¢pulse ¢rec
1 +X +X
2 ty ty
3 -X -X
4 Y -y

This phase cycle will remove Ap=+1 pathway, to select which
$,..=0,270,180,90



Spin Echo: Phase Cycling

90,¢,

180,4,

|Ml Orec

Ap,=+1
Scan ¢1 ¢2 Magn. | Rec
1 +X +x=0 +y +x=0
2 +X +y=90 |-y -x=180
3 +X -x=180 | +y +x=0
4 +X -y=270 |-y -x=180

But now on top of this, we have to do
CYCLOPS on the first pulse

¢rec — _Ap1¢1‘ _ Ap2¢2 — _¢1 + 2¢2

$,=000090909090 180 180 180 180 270 270 270

¢,= 090 180 270 0 90 180 270 0 90 180 270 0 90 180 270
¢,..= 0180 0 180 270 90 270 90 180 0 180 0 90 270 90 270
16-step phase cycle



Nested Phase Cycle

The spin-echo phase cycle (EXORCYCLE) is a classic example
of nested phase cycle

Bodenhausen, Kogler,and Ernst, J. Magn. Reson. 58, 370, 1984

Bain, J. Magn .Reson. 56, 418, 1984

A more economical way of phase cycling called COGWHEEL method
was introduced by the Levitt group

M. H. Levitt et al., J. Magn. Reson. 155, 300, 2002

Also see publications by Jerschow’s group and Norbert Mueller’s group

Also see Multiplex phase cycling, and combinations of cogwheel and
multiplex philosophies for multiple data acquisition and fastening the
experiments



DQF COSY: Phase Cycling

90,9, 90,6, 90,0,
] ] Cycle |¢, | o, b, Rec
tl‘ counter

1 0 0 0 0
- L 2 180 (O 0 180

+2
3 0 0 90 270

+1
0 4 180 (O 90 90

-1
5 0 0 180 180

-2
Ap;=+1,-1 Ap,=3,1,-1,-3 Ap;=-3,+1 |; 180 |0 180 |0
7 0 0 270 90
8 180 (O 270 270

This phase cycle removes all the other undesired
pathways, check this!



MQF COSY

90,4, 90,¢, 90,9,
A o, .
t;: ’ (I)rec
Normal COSY DQF COSY TQF COSY
T | e v
0000 e 'YK X ) N )
T sese ot sess ot
[ NN ] N N] e 'Y X ) N X ) N J
Bl AT SR
[ NN ] 00 o0 o000 [ XN J




Selection of Higher Coherences

Scan, (I)
Cycle pulse
counter,m
1 0
2 60
p=+3 3 120
p=20 4 180
5 240
p=-3
6 300
Scan, Scan,
Cycle ¢pulse Cycle (I)pulse
counter,m counter,m
o 1 0 7 180
p=+3 — 2 30 8 210
/ 3 60 9 240
p=20
4 90 10 270
p=-3 5 120 11 300
6 150 12 330




INADEQUATE

Incredible Natural Abundance Double-Quantum Transfer Experiment

90, 180, 90, 90,

< A I < A I < tl I
HCi— :‘ ': :‘ ': :‘ ': :
+1 i i i \4 \\
0 ' \ \
-1 L y
-2 ha W V4

ﬁ’ulse1,3: 03214765254361073654721014325076
03214765254361073654721014325076

Pulse 2: 03214765254361073654721014325076
47650321610725437210365450761432

Pulse 3: 01230123012301230123012301230123

01230123012301230123012301230123
Receiver: 00000000222222221111111133333333
00000000222222221111111133333333




INADEQUATE

Assignments
Long-range information

1 4 2 3 5 6 7




: : t
Typical NMR signal S(t) = ? exp(iQt) EXp(IiD) exp(— T_)
2
Amplitude Overall phase
FT faCtor:¢signal'¢receiver

S(w) = B[A(®) + iD(w)]exp(iD)

| |
T, (Cf)—Q)Tz2
I (0-Q)° T 1+(w-Q)* T2
| |

Absorpion mode Lorentzian Dispersion mode Lorentzian
centred at o=Q

Normally one displays the real part of S(®)
Re(S(w)) = B[cos PA(w) —SINnDD(w)]

Mixture of both absorption and dispersion line shapes



NMR spectral line shape:
Re(S(w)) = B[cos PA(w) —SINDD(w)]

absorption
How to get pure absorption mode line shapes? Make ®=0,

9]
f\ dispersion
multiply S(w) by a phase factor exp(i0)

S(w)exp(if) = B[A(w) + ID(w)]exp(i®) exp(iH)
= B[A(w) + ID(w)]exp(id + O)

Now choose 6=—®, phase factor is removed and the Re(S(w)) is In pure
Absorption mode: Phase correction



Coherence Transfer Pathways

Selection of CTP: Guidelines

4/\

Frequency discrimination Line shape features
STATES/TPPI Absorption-mode line shapes
Real FT
Typical 2D cos(Qt,) 1, — ™ cos(Q2 )1,

The 2D signal = COS(€2;t;) exp(iQ2;t,)

Amplitude modulated data set in t,



Coherence Transfer Pathways

COS(Qitl) I iX g > COS(thl) | jx

Typical 2D

%cos(Qitl)(li++ 1) —= 5 cos(Q )1,

Amplitude modulation, hence, results from a selection of both the
+1 and -1 coherence pathways

*Retaining symmetrical pathways
*No frequency discrimination
*Pure absorption-mode lineshapes

‘M (I)rec
t1 t2




Coherence Transfer Pathways

f

" rec Selecting p=1 pathway only during t,
tl t2

T — At the start of t,, the signal |, = 1 (1" +17)
0—-". 2
_1 ——

During t,, this evolves into %exp(iQ t)l_

The 2D signal is then given by: S, (L,t,) = %exp(iQ t,)exp(iQ2 t,)

Selecting p=-1 pathway only during t, Phase modulated data set in t,

The 2D signal is then given by: S (t,,1,) = %exp(—iQ t,)exp(iQ2 t,)

Phase modulation, hence, results from a selection of either the
+1 or -1 coherence pathways

*Frequency discrimination

*Phase twisted lineshapes
Frequency discrimination achieved by selecting one pathway with appropriate
phase cycle
This procedure is called anti-echo (P-type) or echo (N-type) selection scheme



Quadrature in t; Dimension

(I)rec
t t "' Anti-Echo/Positive signal

S — S(t,,t,)p ~exp(iCt,) exp(—t, /T,) exp(iC,t,) exp(-t, /T,)
o= _ _
p S(t,t,))y =exp(—iCyt) exp(-t, /T,)exp(iQ,t, ) exp(-t, /T,)

Echo/Negative signal

Phase-modulated signal

(I)rec Normally, 2D experiments record both Pand N
: wﬁ" pathways, resulting in a signal of the form
2

t1
e — _ _

S(t,t,)s = SIN(IQL ) exp(=t, /T, ) exp(i€2,t;, ) exp(~t, /T,)

Amplitude-modulated signal



Quadrature in t; Dimension

S(t,,t,) =cos(1Qt)exp(—t, /T,)exp(i,t,)exp(-t, /T,)

0,

-0, +Q),
S(t,,t,) =sin(iQt)exp(-t, /T,)exp(iQ,t,)exp(-t, /T,)

—Q), +€2,

Amplitude modulation: No frequency discrimination



Quadrature in t; Dimension

S (t1’ tz) ~ eXp(iQf[l) exp(_tl /Tz) eXp(iQth) exp(_tz /Tz)

0,

—Q, +Q,
S (t1’ tz) ~ EXp(_igltl) exp(_tl /Tz) eXp(iQth) exp(_tz /Tz)

—Q), +€2,

Phase modulation: Frequency discrimination possible



To Collect or Not To Collect Both the Pathways

‘l (I)rec
1:1 t2

T p——— S(t,,t,)p = exp(iCt;) exp(-t, /T,) exp(i€,t,) exp(-t, /T,)
0= _ :
P S(tl’ tZ)N ~ exp(_lgltl) exp(_tl /Tz) exp(IQth) exp(_tz /Tz)

Mixture of absorptive and dispersive lineshapes
giving rise to twisted peak appearance for the
2D contour peaks

Collection of both the pathways is necessary to get pure-absorptive lineshapes



Why Collect Both Pathways

S(t,t,)p ~exp(it,) exp(=t, /T,) exp(i2,t,) exp(-t, /T,)

S(L, F,)p =exp(i€t,) exp(=t /T,)[A, +1D,]

S(Fl’ FZ)P — [A&Jr 'iiDlJr][Az + iDz]

Absorption and dispersion
lines at +Q

2
/l

Re(S(Fp FZ)P) — [A1+A2 — D1+D2]

Phase-twisted line shapes at
(F1L.F)= (+Q+Q)

Collection of both the pathways is necessary to get pure-absorptive lineshapes



Why Collect Both Pathways

S(tl’ tz)c — ECOS(Qltl) exp(_tl /Tz) exp(intZ) exp(_tz /Tz)
1 :
S(t1’ Fz)c — ECOS(Qﬂ) eXp(_tl /Tz)[Az + 'Dz]

= %[exp(iﬂltl) +exp(—it))]exp(-t, /T,)[A, +iD,]

Re[S(F, F.)c] = 5 [A. A ~iD,D,]+ ;A A +iD, D,]

Terrible! No frequency discrimination, and moreover, two phase-twisted line

Re[S(t, Fo)e] =5 CoS(@,t) exp(-4 IT) A

RE[S(F, F)cl = 5 (A A+ AA)

Two double-absorption mode lineshapes
without frequency discrimination




Quadrature in t, Dimension, STATES Method

Same t,, do 2 experiments 0,
$=0,90
b $=0, cosine
rec
b t “ Q,  +Q,
_'—
O——?:.
$=90, sine
Thus, quadrature is accomplished in -W, W,
t,; as well
Difference,
Frequency discrimination, STATES CoS-sin
phase cycling method (also, TPPI,
Time Proportional Phase Increment)

States, Haberkorn, Ruben, J. Magn. Reson. 48, 286, 1982
Marion, Wuthrich, Biochem. Biophys. Res. Commun. 113, 967, 1983



2D Spectrum: STATES+Pure-Absorptive Line Shape

Scos(t, t,) SeIN(ty,t,)

(R (R

= &

Se0s(t1,€2y) SN (t,,Q)

(R) (1) (r) (1)

\ Sstates(t, Q).) /

KR

/
Sstates (Ql’QZ)

@ Pure-phase with
Q frequency discrimination

Final Data




Pulsed Field Gradients in NMR:
Theory and Practice

Keeler et al., Methods in Enzymology, Academic Press, San Deigo, 1994, pp145



PFG’s in NMR

«Coherence transfer pathways
«Pathway selection by phase cycling and PFG
DQF-COSY



Coherences and Populations

Population is a generalisation of longitudinal magnetisation:
The corresponding spin operators are 1, S, and their linear
combinations

Coherence is a generalisation of transverse magnetisation:
I, S,, 1., 1, are some of the corresponding spin operators

The observable transverse magnetisation is classified as having
a coherence order P = +1 , single-quantum coherence

) = iz Double-guantum coherence

0 =13 Triple-quantum coherence

D= 0 Zero-quantum coherence, z magnetisation



Phase Cycling: Separating Wheat from Chaff

*Suppression of artifacts
Selection of the desired CTP, rejection of the undesired CTP

*A pulse can change the coherence level and the phase of the
coherence level

*If the pulse phase is changed by Aq, those coherences, for which

the pulse induces a coherence level shift Ap, change the phase ¢
by Ap*Aqg. In other words

Ap=Ap*A6O

Refocusing condition (for selection of desired signals)

Z A¢ +¢rec =0

Phase of the reciever



Coherence and Density Matrix

Density matrix characterises the state of a spin system
Populations are the diagonal elements of the density matrix
Coherences are the off-diagonal elements of the density matrix

The density matrix may be separated into contributions from different
coherence orders, denoted o®

pim (p)
O = O

P=—DPn

P, the maximum coherence order, is equal to the number of mutually
coupled spins



What are Gradients?

B,, applied magnetic field

o

 Spatially varying small magnetic field along z direction,
pulsed field gradients

Different portions of the sample experience different magnetic
fields, and thus have different Larmor frequencies

|
|
|
|
|
|
|
|
—

>
>
>
>
>
>
>
>
[~

During the gradients, due to different Larmor

frequencies, the magnetisation dephases,

Before the gradients, the transverse the net magnetisation becoming zero
magnetisation vectors are aligned

Gradients dephase magnetisation, but, one can apply appropriate gradients
to restore the lost magnetisation in a desired way



Spatial Encoding with Gradients

Field gradient

.I = Magnetic fields
Bs B, experienced

B
n n A NMR spectrum

MRI



Phase cycling:

Gradient pulses:

Gradients Vs. Phase Cycling

All signals are present.

*Desired pathway selection via subtraction.

«Imperfection in pulses and phases will interfere with subtraction
«Imperfect subtraction can lead to considerable amount of

t, noise, particularly for solvent signals which may obscure

with cross peaks, affecting resolution

*Experiments need to be repeated as many times the number of
phase cycles steps are

*Experiment time is sometimes dictated by the phase cycle steps
and not by the signal

Gradients dephase all the signals.

Gradients can then refocus certain signals by applying
gradients of different durations and strengths (This is because
the dephasing rate varies for each of the coherence, DQC
dephase twice as fast as SQC).

Gradients enable the observation of only the required signals
No subtraction process, no repetition of the experiment required



Formal Definition of Coherence Order

Coherences of different orders respond at different rates to z-rotations: central
property in both phase cycling and gradient schemes.

The effect of a z-rotation on a coherence order p, o, can be written as

J(|D) oF, )G(p) exp(—ip¢)

l

Definition of coherence order, p

z-rotation can be brought about by phase shifted pulses (phase cycling)
or by applying spatially varying magnetic fields (pulsed field gradients).



Gradient Induced Dephasing

*The Larmor frequency at a particular point
a(z) =y (B, +Gz)

«After time t the phase

#(2) = (B, + Gt

*More generally
9(2) = GZtZ ay

]/GZt Is the spatially dependent phase induced by the gradient pulse



CTP Selection with Gradients

DQF-COSY
t; I I b ¢1 — Bgl plz-l
o, =B_,p,7
‘W 2 g2 M2to

Net phase is ¢;+¢, and this should be zero

1 "2 for aselection of pathways p, and p,.
+2 \ This refocusing condition means that
+1 / \ among the components dephased with

0 \ \ the first gradient, one particular
-1 component is rephased with the second
-2 gradient

By.7; P

The refocusing condition —

Bg 207 P,

For example, in DQF-COSY, where p;=2 and p,=-1 either 1,=2t, or B;,=2B



CTP Selection with Gradients

The refocusing condition, in general, is
§ ‘, Bgi pz; =0
i

Gradient pulses select only the ratio of coherence orders

Phase cycle by r steps of 360/r selects a particular change in
the coherence order Ap=p,-p,, and further pathways which have

( p2 — pl) + Nr where N=0, 1, 2, ....

Gradients can only select one pathway, there is hence a loss
of signal as compared with phase cycling method of equal length



Conclusion

Phase cycling/Field gradients an integral part of any NMR
experiment

Nested, Cogwheel, Multiplex phase cycle schemes available in the
literature

Cogwheel gaining some prominence, especially in solid state and
TROSY kind of experiments in solution-state NMR (Zuckerstaetter
and Mueller, Concepts in Magnetic Resonance, 81, 30, 2007)



Relaxation in
Nuclear Magnetic Resonance:
Phenomenology



Relaxation References

A. Abragam: Principles of Nuclear Spin Magnetism
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Phenomenological Approcah to NMR Relaxation

Some basic quantum mechanics

Operators, observables, eigen functions, ....

Density operator

Bloch equation

» Lab frame/Rotating frame/solutions

CW/Pulsed NMR

Basic ideas of longitudinal and transverse relaxation time

Relaxation mechanisms



The basgic formalisms of spin-lattice relaxation have been developed from
1948 to about 1960, essentially in the following references:

BropmeERGEN, PURCELL and Pouwn (EPP)[&],
Wangsness and Brocu[9] and Broce[10],
Soromon [11],

Arracam (ref.[1], Chap. VIII),

REpFIELD[12].

The formalisms that emerged from these developments are
good,
efficient,
well understood (at least by their authors).

However, gome of them contain minor blemishes in the form of lack of rigour
of presentation, which may cause (and have caused) some perplexity among be-
ginner students of NMR. It is the purpose of this lecture to present a formal
derivation of relaxation theory that avoids these pitfalls as much as possible.
We will, therefore, not analyse specific relaxation mechanisms, but we will only
be concerned with the form of the relaxation equations and their justifica-
tiom.

One must alzo mention the numerous later developments of relaxation the-
ory, which fall broadly into two categories, those that are pointless or of no

ractical incidence, and those that are completely wrong,
(ref.[1], Chap. VIII). Tt is followed by a section where some of the approaches
or variants that are erroneous or likely to be misused are listed and anal-
yeed.

21. Devivation of the master equation. - We consider a nuelear-spin system
whose Hamiltonian consists of a main, time-independent Hamiltonian 5, plus
a randomly varying term % (t), of vanishing average value, the so-called spin-
lattice coupling:

(2.1) H = Ay + (D).

We assume for the time being that 57 has only discrete levels (i.e. it is a Zee-
man or quadrupole interaction, or a ecombination of beth).
The evolution of the density matrix = of the spin system is described by the

Figure 1.2: Quote from Maurice Goldman

Copied from: Maurice Goldman “Introduction to Some Basic Aspects of NMRE.” in
Proceedings of the International School of Physics “Enrico Fermi” Course CXXIII, Editor
Bruno Maraviglia, pp. 1-68, North Holland, Amsterdam (1993).



Relaxation: Nuclear Spin

Relaxation: Process by which magnetisation (phase coherence among
spins) returns to its equilibrium value (given by the Boltzmann
distribution)

Two time constants in the case of NMR:

* Restoration of longitudinal magnetisation, M, = yh < I, > : Characterised by a
time constant, T,

 Decay to zero of transverse magnetisation, M, , = yA{<I, > +i<I, >}
Characterised by a time constant, T,



Relaxation: Nuclear Spin

» Relaxation driven by molecular motion

« Relaxation, in NMR, can be quite slow. Useful, as one can measure it!

« Relaxation can be used to probe molecular motions

« Nuclear Overhauser Effect, NOE, due to relaxation. This leads to estimate of
distances and molecular structure



The Bloch Equation for Spin-Half Nuclel

M, () (1M )
The Bloch vector: (t) = |\/|y(’[) =y <|y>(t) M _Z'uk

\Mz(t)) \<IZ>(t)) Q

Bloch vector rotation: EM(’[) =M (t) x Q >L‘
dt

The Bloch equation: i M () = M(’[) x O — F(M(t) — Meq)

dt
@, COS @ /1/T2 \ o ( 0 )
52 —C()lSin(D ['= 1/T2 Meq = 0
Aw \ 1/T1/ \MO)




The Bloch Equation for Spin-Half Nuclel

If all the magnetic moments are identical and if the magnetic field, B, is uniform:

%M(o:M(t)wa{Zuk}BﬂV'XB

Once the spin system is perturbed:

. eq M _Mqu . eq
iM(t):yI\/IxB—MX My 7 M j—MZ M.
dt T, T, T,

<

M . M,. M, -M,

|- j——2

T T, T

d
al\/l(t)—yl\/l x B —



The Bloch Equation for Spin-Half Nuclel

- M, _ — -
gM(t):;/I\/IxB—MXi— yj—Mz Mo
dt T2 T2 Tl

1
y M, T, M,
] ) 1
Bloch equations in the laboratory frame: i M, |=|-/B — 0 M,
M, WM, =M,
0 0 —
Tl

Bloch equations solutions in the laboratory frame:

t

M, (&) =M, +(M,(0)-M,)e "

=M, (1-¢e ™) ;M,(0)=0




Solutions of the Bloch Equations for Spin-Half Nuclel

t
- _ T
The longitudinal magnetisation: M. (t) =M, +(M,(0)-M,)e

=M, (l-e ™) M, (0)=0

.
.. Mi(t)ZMi(O)EXp(——ilth)
The transverse magnetisation: T

M, (£)=e [M,(0)cos Bt +M(0)sin sBt]

M, (t)=e "[-M(0)sin Bt +M(0)cos Bt]

ot
— T
The transverse magnetisation with: M. () =Mge * cos Bt

M, (0)=M,(0) =M,

t

M, (t) =—Me " sin Bt




Relaxation in the Presence of a Time-Varying RF Field

Consider an RF with angular frequency, o, perpendicular to B, and with
constant magnitude. ¢ is its phase with respect to the lab frame x and y axes.

B, (t) = B,[cos(at + @)i +sin(at +¢) ]

Assume ¢=0 at t=0

B, =B,
B, = B, cos wt
B, =—B, sin ot

This corresponds to a field perpendicular to B, and rotating about the z-axis
in a clockwise direction.



Bloch Equation with RF Field

M, =M, f_My_qu T_Mz_qu K
T, T T

d
al\/l(t)—yi\/l x B —

d . M

— M, -B M, —BM._ sinot+—==0

dt X 7/BO y 7/81 z -I-2

d M,

—M, +BM, —/BM, cosawt + —=0

dt T,

d M,-M,

—M, +)BM sinwt+)BM, coswt—
dt T




Bloch Equations with RF Field

Transforming these equations into a rotating frame at an angular frequency, w,
about the z-axis, and defining:

1 1
a:T—l’ﬂ:T—,azj/Bo—a),a)lzj/Bl

2

du

—+ pu+ov=0

dt A

%+ﬂu—§v+a)le =0
dt

aM, +oM, —oyv=aM,
dt

Here, the x and y components of M in the lab frame are related to the uand v
components in the rotating frame as:

M, =ucos wt —Vsin ot

M, =—(vcos ot +usin wt)




Magnetisation Trajectories

* M)\JW'M -

0 005 N | 0 0.4 0.8
Time in sec u
& ’ d 1
3] 0.8
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. =
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Bloch Equations: Solution Under Steady State and CW NMR

- 2

u" =M, = 712315T2 —M,

1+(oT,)" +(yB,) T, Saturation term
V' = |\7|y = _ZBléTZ 2

1+(oT,)" +(4B) T,

- 2
MZOO:MZ: 14_2(61-2) 2' Mo
1+(oT,)" + (B T,T,

A = (YBy) T,

v Aw-(yB)-T, |
= 1+ (AwT,)* °

* 1+ (AwL)’
dispersion

Absorption Y

absorption

Dispersion

/ o N

Calculated with: bloch_nosat. mws

& T,=56.8 ns
= v=1.759-10"" 1/s

B,=1105T

http://www.uni-stuttgart.de/gkmr/lectures/lectures. WS _0203/magnetisation_blochequ.PDF



Modern NMR “Earlier” NMR

After short RF pulses Steady state CW signals are measured
Free induction Decay signals are detected during (weak) RF irradiation
M.,

1
\
1
1
1
1
.
1
k___________
N
\\
N
N
\
R v

1 Sk Sy(t)

In MR we measure both transverse magnetization components simultaneously



Pulsed NMR

s, = {7, )(t) =M, cos Awt xe™'"

s, = (7, )(t) =M, sin At xe™'™

After a 90° pulse:

Fast Fourier Transform

|\ AN JLFWHH = 1/T,

Vo s complex” ”
S(t) =S, () +iS,. (1) |V C‘jﬁ'i F(t)= A(Av)+iD(AV)

Mﬁvmvﬁt A

SO=Sec® |\ Ao e NN
VY

F{t)=A(Av)




Simple T, Experiments

Inversion recovery

1809 900

. 0
saturation 90

=

. 0
Pulse saturation 90




Inversion Recovery
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Saturation Recovery

Invers

relative || magnetization
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Saturation Recovery

SR is less sensitive than IR

 Itis not necessary to wait for a long time (10 T,) as in the case of IR
(magnetisation should get back to equilibrium before repetition) and a
priori unknown time between scans

« SR isa quick method to measure T, than IR

« Useful in cases where the lineshapes are very broad, like in the case of
quadrupolar nuclear spins or if the signal cannot be inverted



T, - Measurements

« Homogeneous broadening due to
fluctuating microscopic magnetic
fields: This is quantified in T,

« Inhomogeneous broadening: Due to line width = 1
the variation of the macroscopic 7T,
magnetic field over the volume of g

the sample due to instrumental
iImperfections or susceptibility
effects

 The observed transverse relaxation
time, T, is due to both these effects

« Can the inhomogeneous effects/decay be distinguished from homogeneous
decay for an accurate measurement of T,

» Other effects to be removed are the dead-time delay, how can we get back the
signal with initial point in tact so that phase distortions are absent



T, - Measurements

Requirements

—

Measurement of T, To obtain full fid
To get signals independent To get signals without any
of B, dead-time problems

Spin-echo schemes



Measuring Spin-Spin Relaxation Times

Carr - Purcell

Carr - Purcell — Meiboom - Gill

y X X X X X

Finite pulse compensation (even echoes will be free of pulse errors)



T, - Measurements

90, 180,
IE I ]_/\ Keep incrementing n
\-
T T
n

90, 180,

Keep incrementing 7
Like inversion recovery
(logical thing to do?)

In the method two, formation of the echoes depends on the isochromats (spin vectors)
experiencing exactly the same field through out the duration of the pulse sequence. If any
particular spin diffuses into a neighbourhood region during the sequence, it will experience
a slightly different magnetic field from that where it began, and thus will not be fully
refocussed. As 1 increases, such diffusion losses become more severe and the relaxation

data more unreliable. (However, this is a way to measure molecular diffusion in liquid-state
NMR.)



T, — Measurements: CPMG Scheme

Keep incrementing n
CP scheme

Keep incrementing n
Free of pulse imperfections
CPMG scheme




/T2
0

>t

T, vs. T,*
'H NMR of CHCl,

T, Measurement

T,=19.63 sec

Intensity

T,”=1.06 sec

R e B e

Time (seconds)

Even in a well-shimmed magnet, the actual T, of the
example here is 19 times than the observed value. The
observed value corresponds to 0.33 Hz as FWHH.
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Relaxation Time Constants

The longitudinal and transverse relaxation mechanisms are independent

of each other.

The restraints on T, and T, require that the magnetisation vector can never
exceed the thermal equilibrium value by pulses or by relaxation processes.

This means that the norm is always limited by

IMZEM2 M2 <M,

A common restraint is

But mathematically it turns out that

T, >1T,

T,>T,/2




Relaxation in
Nuclear Magnetic Resonance:
Transition Rate Theory



Relaxation Time Constants

Concepts in Magnetic Resonance, 1991, 3, 171-177

Relaxation
Can T, Be Longer Than T,?

Daniel D. Traficante

Departments of Chemistry and Medicinal Chemistry
and NMR Concepis
University of Rhode Island
Kingston, Rhode Island 02881

Received May 29, 1991

The basic equations describing the decay of the magnetization vector in the
transverse plane and its growth along the longitudinal axis, after a pulse, are
bricfly examined for very simple systems that obey the extreme narrowing
condition, and relax in the absence of radiation damping. It is shown that
in these cases, the vector does not simply tip backwards with a constant
magnitude, retracing the path it followed during the pulse. It is
mathematically proven that if T, is equal to or less than twice T, then
immediately after a pulse, the vector first shrinks and then grows back to
its initial magnitude while it tips back toward the longitudinal axis, instead
of simply retracing its path. It is also shown that if T, is greater than this
threshold value, then at some point during the relaxation, the magnitude of
the resultant will exceed its starting value, a situation apparently not
consistent with our present understanding of the laws of physics.



NMR Relaxation: Towards Transition Rate Theory

 Relaxation mechanisms

« Correlation times, functions

« Spectral densities

 Transition probabilities, W’s

« Relaxation in a two coupled spin-1/2 system

« Dipolar relaxation

« Solomon equations

e Nuclear Overhauser effect



Relaxation: Some Intuitive Arguments

A spin in an external magnetic field undergoes Larmor precession
Relaxation revolves around phase (de)coherence among groups of spins

Relaxation is brought about by fluctuating magnetic fields around the nuclear
spin sites

— Only magnetic fields can do this as only they can interact with the magnetic moment of a spin
Y nuclei. Nuclei with spins greater than Y2, quadrupolar nuclei, can also interact with electric-
field gradients. This is a much stronger interaction.

A nuclear spin can change its magnetic moment associated with any change in
the surrounding magnetic fields, either in magnitude and/or direction

NMR relaxation is mainly brought out by spatial and temporal
fluctuations/variation in the surrounding/local magnetic fields at the respective
nuclear spin sites



Relaxation Sources

Where do the fluctuations come from?

« Random events:
— Rotational diffusion
— Translational diffusion
— Vibrational/librational motions
— Conformational sampling/variability

« Non-random events:
— Magic-angle spinning
— B, quenching



