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Matter: NMR Classification
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Solution-State NMR: General Protocol

1.  Isotopically label protein (15N, 13C)

2.  Assign the chemical shifts

3.  Collect restraints

4.  Calculate structure

5.  Refine (repeat)

Kumar, A.; Ernst, R.R.; Wüthrich, K. Biochem. Biophys. Res. Comm. 1980, 95, 1–6.

Williamson, M.P.; Havel, T.F.; Wüthrich, K., J. Mol. Biol. 1985, 182, 295–315.

This has been done over 15,000 times in solution!

(http://www.pdb.org/pdb/statistics/holdings.do)



Many proteins cannot be studied by the traditional structural methods (X-ray 

crystallography or solution NMR)

50 nm

Membrane proteins
Nano/microcrystalline

globular proteins
Fibrils

Solid-State NMR in Structural Biology

Bob Griffin and coworkers, 2016

Aβ42 Fibrils



Solid-state NMR:

• no size limit on samples

• broader resonances

Solution NMR:

• size limitation

• very narrow resonances

Solution NMR 

sample tube Solid-state 

NMR probe

Solution- and Solid-State NMR



Targets for SSNMR: Biology

• Lipid bilayers

• Membranes reconstituted with different additives such as cholesterol, 

drugs or peptides

• Structure analysis of membrane-active peptides, ion channels, and 

receptors

• Amyloid fibrils

• Globular proteins, IDP’s

• ………………



NMR: Some Features
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• Spectroscopy: Study of materials 

via interactions with EM fields

• Energies associated with NMR are 

orders of magnitude smaller than 

those associated with typical 

thermal processes



Reality

Figure courtesy: Matthias Ernst



Nuclear Spin Interactions

Spin Interactions

Chemical shift Spin-spin couplings

Isotropic

chemical shift

Chemical shift

anisotropy, CSA

Scalar, J-

couplings
Dipolar

Heteronuclear Homonuclear

Quadrupolar

Isotropic quad.

shift

1st, 2nd order quad. 

interaction, anisotropic

Electric Magnetic

Spin ½, 1H, 13C…..Spin>½, 23Na, 17O…..

Control these?!



Spin Interactions

External Internal

Zeeman,HZ RF, HRF(t)

CSA,HCS Dipole,HDD Scalar,HJ Quad,HQ

Only the  isotropic parts manifest in solution-state.

Nuclear Spin Interactions



Spin: Some History

• Uhlenbeck and Goudsmit: particles have “spin”, corresponding to rotation 

of a particle spinning around its own axis 

• Spin of the electron is ½: two states +½=“spin-up” and –½=“spin-down”

• This is not fully consistent from what people knew before. However, this is 

appropriate because spin is a quantum notion (we do not know why!)

• Stern-Gerlach experiment

 The beam of atoms is deflected by 

inhomogeneous field

 Reason: intrinsic magnetic moment 

(spin) of particles

 The distribution of the μ-vector is 

not continuous!

 Spin is quantised!!!

Spin: From Basic Symmetries to Quantum Optimal Control, Ilya Kuprov, Springer, 2023



• Spin of a particle is its intrinsic angular momentum (as if the particle 

rotates). Honestly, nobody (that is, I) knows where spin comes from.

• Spin is a very fundamental concept, which also affects the symmetry of the 

w.f. of a system of identical particles. Example: Pauli principle.

• Spin is a quantum notion.

• Spin operators are introduced in the same way as those for the angular 

momentum:

– Eigen-states are                          ; S2=S(S+1), Sz varies from –S to S.

– Commutation rules are

• An important difference from angular momentum: spin can be half-integer

• Spin operators are (2S+1)*(2S+1) matrices

• For S=1/2 such matrices are related to the Pauli matrices

Spin

zyxyxzxzy SiSSSiSSSiSS ˆ]ˆ,ˆ[,ˆ]ˆ,ˆ[,ˆ]ˆ,ˆ[ 

zSS ,



Spin-½ 

• Spin operator can be written as

• Useful relations of the Pauli matrices:

• Every 2*2 Hermitian matrix is a linear combination of the unity matrix and 
the Pauli matrices
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Spin-1/2 Angular Momentum Operators

• Spin-1/2 nuclei have two Zeeman eigenstates: 

• Angular momentum spin operators in the Zeeman eigenbasis:

• Action of spin operators on the Zeeman eigenstates:











Spin-1/2 Rotation Operators

• Rotation operators:

• Evaluation of rotation:

• Spin-1/2 rotation operators:



Spins in NMR

NMR                Nuclear spins                    Magnetic  dipole moment

Interaction with

magnetic field

Strength of the 

source of magnetism

I  Spin angular momentum

Gyromagnetic ratio

Determines the frequency of precession

of nuclear spins in the magnetic field,

Larmor frequency (B0)



Spins in NMR

Energy of a magnetic dipole moment in a magnetic field B:

B



B



Low energy High energy

Magnetic energy



Spins and Moments in NMR

Energy of a magnetic dipole moment in a magnetic field B:

B=Bz

B0

Energy of a magnetic dipole moment in a magnetic field B0:

Magnetic moment to spin:

Energy of a magnetic dipole moment in a magnetic field B0:

Nuclear precession frequency, Larmor frequency, in B0:



Nuclear Spin Quantum Number

Magnitude of the spin quantum number:

Projected values on to the z-axis:



A spinning gyroscope in a gravity field
A spinning charge

in a magnetic field

Nuclear Spins & Magnetic Field

Positive : Clockwise rotation

Negative : Counter-clockwise rotation

(see MHLevitt: Spin Dynamics)



Zeeman Interaction, External Magnetic Field

Spin-1/2

|-1/2>

|+1/2>, -½ B0

, ½ B0

Zeeman field

w0B0 is called the Larmor frequency

|>

|>



Equation of Motion for the Magnetic Moment

Precessional frequency of a spin:

Energy of a magnetic dipole moment in a magnetic field:

Torque associated with this energy:

Torque , being the rate of change of angular momentum:

Equation of motion for the magnetic moment:

In the NMR context:

Solution:

The transverse components oscillate such that:

This also suggests a precessional motion of the moment with respect to the field?



• D.m. of a spin ½ particle:

• The equilibrium density matrix becomes:

Density Matrix of a Spin-½ Particle

β

α

β

α

β
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β

α

     

• Physical meaning of the elements:

Diagonal elements are populations

Off-diagonal elements are coherences ρmn

The trace of the d.m. is equal to 1

• The d.m. is a Hermitian matrix: (N2 – 1) independent parameters



Two or More Spins ½

• The d.m. for two spins can be expressed in terms of product operators

• Each product operator is now a 4*4 matrix; likewise, the Hamiltonian is a 4*4 matrix and it is expressed via 
the product operators

• What is the direct product (Kronecker product)?

• Example with 2 spins:

• Other operators can be constructed in the same way. More spins: use direct products of spin operators 
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Two Spins-½

• Relation between populations/coherences and d.m. elements

• SQCs are given by Sx, Sy, SxIz, SyIz, Ix, Iy, SzIx, SzIy

• DQCs and ZQCs are given by combinations of SxIx, SyIy, SxIy, SyIx

• We can directly measure only transverse magnetization Sx, Sy, Ix, Iy

• Other operators cannot be observed directly, but they affect the signal

• Coherence order for ρmn:

βα
αβ

ββ

αα

Energy level diagram Density matrix

αα αβ βα ββ

αα pαα SQC SQC DQC

αβ SQC pαβ ZQC SQC

βα SQC ZQC pβα SQC

ββ DQC SQC SQC pββ

)()( nMmMpmn 



• The S.e. in the bra and ket representations is

• The equation for the d.m. is as follows: 

Liouville-von Neumann equation:

• U is the propagator, time dependent, and unitary

• The solution is simple for a time-independent Hamiltonian:

• For a time-dependent Hamiltonian we solve the equation numerically in 

small time steps or use some tricks

Evolution of the Density Matrix
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• What happens to the d.m. (magnetization) when we apply a pulse?

• The wave function and density matrix after the pulse

• The action of a strong pulse is equivalent to a rotation (we assume that only 

the B1-term is relevant)

• A π/2-pulse generates a coherence, a π-pulse inverts the populations 

RF-Pulses

τp ωnut

t           t+τp

The phase is ϕp

The flip angle is q=ωnutτp

zzyz SRSRSRSR
pppp

ˆ)(ˆˆ)(ˆ,ˆ)2/(ˆˆ)2/(ˆ   



• Is there a simple way to calculate the effect of pulses?

• Three cyclically commuting operators:

• Example: 

• The following relation is then true:

• A, B, C are like the axis of our 3D-space; we “rotate” B “around” A by the 

angle θ. Cyclic permutations provide two more relations

• Of course, these rules apply to the spin operators

• RF-pulses give x and y-rotations. Free precession gives a z-rotation by a time-

dependent angle ωt

Sandwich Relationships

      AiCBBiACCiBA ˆˆ,ˆ,ˆˆ,ˆ,ˆˆ,ˆ 

zyxyxzxzy SiSSSiSSSiSS ˆ]ˆ,ˆ[,ˆ]ˆ,ˆ[,ˆ]ˆ,ˆ[ 

    CBAiBAi ˆsinˆcosˆexpˆˆexp qqqq 

   
    BACiACi

ACBiCBi

ˆsinˆcosˆexpˆˆexp

ˆsinˆcosˆexpˆˆexp
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



See M. H. Levitt, “Spin Dynamics”, cyclic commutation



• Different phases

x-pulse, ϕp=0 y-pulse, ϕp=π/2

–x-pulse, ϕp=π –y-pulse, ϕp=2π/2

• Pulse of a general phase is a combination of three rotations

• Rotation about z turns the {x,y} axes; then a pulse is turning the spins around 

the new x; finally, we return to the original frame

• Free precession is just a z-rotation

Phase of the Pulse

y

z

x

z

y

z

x

z



Representation of x-Pulse

Iz -Iy

Pulse characteristics:

Frequency, wref

Phase, p

Amplitude, wnut

tpwnut

Assume p=0

(2)(1)

Flip angle of the pulse: 

• Pulse and density matrix:

• Pulse equalises the populations of the two states

• Pulse converts the population difference into coherences



Rotating Frame Transformation

Equation of motion for the magnetic moment:

x

y

z=z’

x’

y’
Rotating coordinate system:

With i’, j’, and k’, rotating with an angular velocity w:

Hence, motion as viewed from the lab frame:

Time rate of change of A wrt to i’, j’, k’

All the above imply:



Rotating Frame Transformation

Motion between lab and rotating frames:

Translating all these to magnetic moments:

This implies:

This is the motion of  in the rotating system, which is the same as in the lab frame,

with B0 replaced by an effective field: 



Rotating Frame Transformation: Consequences

Motion between lab and rotating frames:

Translating all these to magnetic moments:

This implies:

If ww0B0:

No motion relative to the rotating frame.

The magnetic moment precesses with an angular velocity w0 relative to the

lab frame about the z-axis:

• Equation of the magnetic moment in the rotating frame is simplified,

the moment is static.

• The motion of the moment in the lab frame is a precession about B0.

This is the motion of m in the rotating system, which is the same as in the lab frame,

with B0 replaced by an effective field: 



oscillating

Radiofrequency Pulses
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Radiofrequency Hamiltonian

RF,wref(t)
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Transverse part of the RF Hamiltonian:

100 kHz corresponds to 10 s of 360 pulse

p(t)=wreft+ref



Radiofrequency Hamiltonian: Pulses
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 RF field strength (peak RF field in the coil), typically

1-200 kHz, also called nutation frequency

This field strength corresponds to the nutation of the 

spins by 2 radian
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90x
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RF along the x-axis, equilibrium magnetisation along the z-axis:

magnetisation



Rotating Frame Transformation

Static B0 field and

rotating B1 field

Laboratory frame

frequencies

Rotating frame

frequencies



Rotating Frame Transformation



Rotating Frame Transformation

H(t) H (no time dependence!!)     
Clever manipulation

Change reference frame

RF,wref(t)

(t)=wref(t)+ref

(t)=wreft+ref

x

y

z=z’

x’

y’

B0

wLarmor=w0

zrefzz IHRRH w )()(
~

Normal lab frame

H rotated around z

through 

Gives additional

corrections to the

spin dynamics
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Rotating Frame Transformation: Consequences
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Typical Experiment in NMR: RF Pulse
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RF off
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RF off

Effect of a 90o x pulse



z

x

y

Mo

z

x

y

Mo

w

z

x

y

Time

RF receivers pick up 

the signals

After the Pulse: Nuclear Spin Evolution

The spins precess in the xy plane and relax to the equilibrium value, free induction decay



Some Hamiltonians and Their Representations



Chemical-Shift Anisotropy Hamiltonian

CSA interaction: Indirect magnetic interaction between

the external field and the nuclear spins through the

electron cloud at each nuclear spin site

Information about the local environment of the nuclear

spins



Chemical-Shift Anisotropy Hamiltonian

0

j j

local induced
B B B 

j is the CSA tensor at the nuclear spin site j
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Only terms relevant, since the static field is along the z direction

0
.

j j

induced
B B

The chemical-shift tensor

Induced field is not always

parallel to the Zeeman field



Chemical-Shift Anisotropy Hamiltonian

0
.

j j

induced
B B

The CS Hamiltonian is orientation dependent

.
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Orientation of the molecule with respect to B0 and 

the position of the nuclear spin within the molecule

Secular approximation:
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0 0
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  The chemically-shifted Larmor frequency

Chemical-Shift Anisotropy Hamiltonian

0
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In liquids, perform an orientational average:

In liquids crystals, the resonance position depends upon the orientation (or

phase transition which can shift the peak):
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Chemical-Shift Anisotropy Tensor



Chemical-Shift Anisotropy Tensor



Principal Axes

There are three special directions in which the induced field is parallel to the 

applied field. These are called the principal axes of the tensor (CSA here), 

denoted as X, Y, and Z. The principal axes are in general different for various 

chemical sites.



Principal Values

When the applied field is along a principal axis, the induced field is proportional 

and parallel to the applied field, multiplied by a number, which is called the 

principal value of the tensor, here, the CSA tensor.
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along Y along Y
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induced XX applied
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induced YY applied
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induced ZZ applied
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Principal values of the chemical shift 

tensor for site  j



Assignment of the Principal Axes

We use the following convention to assign the principal axes:

• The Z-axis is the one for which the principal value is 

the furthest from the isotropic shift

•The Y-axis is the one for which the principal value is 

the closest to the isotropic shift

•The X-axis is the other one

Ordering of the principal values:

| | | | | |
ZZ iso iso iso

j j j j j j

XX YY
         

Herzfeld and Berger, J. Chem. Phys. 73, 6021, 1980



Chemical-Shift Anisotropy Tensor
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CSA value

CSA asymmetry (shape)
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Isotropic chemical shift

Anet, O’Leary, Conc. Magn. Reson. 3, 193, 1991



Chemical-Shift Anisotropy Tensor

0.. BIHCSA 

Only term in solution-state,

trace of the CSA tensor and

invariant quantity

The orientation-dependent anisotropic

term leading to spectral broadening

aniso
ZZ iso

j j j   

1
( )

3iso XX YY ZZ

j     

XX

j j j

ZZ
    YY XX

aniso

j j

j

j

 







CSA value

CSA asymmetry (shape)
CSA span

Isotropic chemical shift

Anet, O’Leary, Conc. Magn. Reson. 3, 193, 1991



XX= YY ZZ

XX

XX

ZZ
YY

YY

ZZ

Symmetric CSA tensor

Asymmetric 

CSA tensor

=0

=0.5

=1
2


3

2

Static 13C spectrum of glycine

CSA Powder Line Shapes

=1 kHz



0 0

j j j j

static CS jz
H H H Iw  

0 0
(1 ( ))jj j

zz
Bw     The chemically-shifted Larmor frequency:

Chemical-Shift Anisotropy Hamiltonian

0
( )

j j

CS j zz jz
H B I   CSA Hamiltonian upon secular averaging:

In liquids crystals, the resonance position 

depends upon the orientation (or

phase transition which can shift the peak):
( )

j iso

zz j
  

Total Hamiltonian for a site j:

0 0
(1 )jj j

iso
Bw    In isotropic liquids

the chemically-shifted Larmor frequency:



Tensors and PAS

All these tensors, CSA (later DD tensor), are best treated

in their principal axis system, PAS, where the tensor is

Diagonal.

The interaction tensor of each nuclear spin is treated in its

PAS.

The PAS Z-axis of the CSA tensor corresponds to the long axis of

the elliposid representing the CSA tensor.

The PAS Z-axis of the DD tensor between the nuclear spins i and j

is along the vector joining the nuclear spins i and j (here X and Y

are arbitrary).



A. S. Ulrich, Progress in Nuclear Magnetic Resonance Spectroscopy 6 46 (2005) 1–21

XX

YY

ZZ

Chemical-Shift Anisotropy: Response



CSA Shielding Convention

• We will use the deshielding convention for the chemical shift, d

(as opposed to another convention, shielding convention, ):

aniso
aniso

j j  



0

lab

CSA zz zH B I   In the lab frame

ZPAS
YPAS

XPAS



zLAB, B0

The orientation dependence of the CSA tensor

comes on account of a transformation from

PAS to LAB frame, through q and 

The CS frequency then becomes

)2cossin1cos3(
2

1
),( 22

00 qqwwqw  isoCSA

=0, axially symmetric tensor, xx=yy

q

Chemical-Shift Anisotropy Tensor



)2cossin1cos3(
2

1
),( 22

00 qqwwqw  isoCSA

Chemical-Shift Anisotropy Tensor

0

lab

CSA zz z
H B I  In the lab frame, Hamiltonian

In the lab frame, energy from CS
0

, | | ,
lab

CSA zz z
E B I m I I m    

Spectral frequency for ½ to –½ 0 0

lab lab

CSA zz zz
Bw  w    

Remember

0

(0 0 1) 0

1

lab lab

zz
 

 
 

  
 
 

Tensor from a frame f to lab
Tlab f f f

zz
P P 



2 2

0 0

1
( , ) (3cos 1 sin cos 2 )

2
CSA iso

w q  w  w  q  q     

Chemical-Shift  Frequency: From PAS to Lab

CS contribution to the 

spectral frequency:
0

f f f

CSA
P Pw w  

Euler angles transformation: (sin cos ,sin sin ,cos )
PAS

P q  q  

Chemical-shift frequency:

Using definitions:  

2 2 2 2 2

0
( , ) ( sin cos sin sin cos )

CSA XX YY ZZ
w q  w  q   q      

0 iso iso
w  w  Isotropic chemical-shift frequency



Dipole-Dipole Interaction

DD coupling is the direct magnetic

interaction between two nuclear spins,

orientation dependent, both distance

and angles

PAS system

of a DD tensor



Dipole-Dipole Hamiltonian

•Two protons at 3A separation, DD coupling = -4.5 kHz

•Two 13C at 1.5A separation, DD coupling     = -2.2 kHz

•Two 13C at 5A separation, DD coupling        = -61 Hz

•Two 13C at 8 A separation, DD coupling       = -15 Hz :



Dipole-Dipole Hamiltonian



Dipole-Dipole Hamiltonian

1 3 3 3

3 1 3 3

3 3 1 3

xx xy xz

jk yx yy yz

zx zy zz

e e e

D e e e

e e e

   
 

    
     



Dipole-Dipole Hamiltonian

1 3 3 3

3 1 3 3

3 3 1 3

xx xy xz

jk yx yy yz

zx zy zz

e e e

D e e e

e e e

   
 

    
     

1 0 0

0 1 0

0 0 2

PAS

jk
D

 
 

  
  

Trace = 0, no isotropic part, only the rank 2 anisotropic part present

Since, only the Z-axis needs to be defined for DD tensor in the PAS, X and 

Y are arbitrary



Dipolar Alphabet

A A

A

B

|>

|>|>

|>

C,D

C,DC,D

C,D

E,F

|>

| |>

|>

A



Heteronuclear Dipole-Dipole Hamiltonian

High-field, secular approximation:

qjk

j

k

ejk

B0



Heteronuclear Dipole-Dipole Powder Line Shapes: Pake Doublet

Hz-8000-4000040008000

bjk

bjk=2000 Hz

qjk

j

k

ejk

B0



Homonuclear Dipole-Dipole Hamiltonian

High-field, secular approximation:

qjk

j

k

ejk

B0



Homonuclear Dipole-Dipole Powder Line Shapes: Pake Doublet

1.5 bjk

bjk=2000 Hz

qjk

j

k

ejk

B0

Hz-8000-4000040008000



Scalar Coupling Hamiltonian

2 .
jk

J

jk j k
H J I I

Scalar coupling is a magnetic interaction between the

nuclear spins mediated via an electron cloud, through-bond

Interaction.

Too weak in solid-state NMR, still observable with the

advent of high-resolution schemes.



J-Coupling Hamiltonian: Homonuclear

2 .
jk

J

jk j k
H J I I

High field

First-order secular term:

2 .
J jk j k

H J I I



J-Coupling Hamiltonian: Heteronuclear

2 .
jk

J

jk j k
H J I I

High field

First-order secular term:

2
J

jk jk jz kz
H J I I



Secular Approximation

H(t) HZ +  
Hi(t)

Large H Small H

• Only those parts of Hi(t) that have the same eigenfunction

as HZ (having matrix elements in the eigen basis of HZ) will

contribute to energy level shifts in the first-order

• This means, to first-order energy correction, we need consider

only those parts of Hi(t)  such that [HZ,Hi]=0; Secular Approximation

• In solution-state, this is often disguised as weak-coupling (AX), but

not valid in strong-coupling cases (AB)

Act as perturbations

to HZ

Secular approximation simplifies our internal Hamiltonians



Secular Approximation

Strictly speaking, secular approximation is more than commutativity.

If A is the large Hamiltonian and B is the small Hamiltonian, a matrix

element of B may be dropped if its magnitude is small compared to the 

corresponding difference in the eigenvalues of A

Consider 
0 ;z x x z zA I B I Iw w w  

Eigenvalues= 0 0

1 1
,

2 2
w w

B representation in the basis of A

1

2

z x

x z

B
w w

w w

 
  

 

Secular approximation:
01

02

z

z

B
w

w

 
  

 

Provided, the following condition holds good (besides commutativity)

0ww x



Scalar Coupling Hamiltonian

The J-coupling tensor on account of the rapid molecular tumbling 

has only the isotropic part

The secular part of the J-coupling Hamiltonian depends on whether

the two coupled spins are homonuclear or heteronuclear

2 .

2 ( )

jk

J

jk j k

jk jx kx jy ky jz kz

H J I I

J I I I I I I







  

Homonuclear case:

2
jk

J

jk jz kzH J I IHeteronuclear case:

Unlike chemical shifts, J-coupling is independent of the applied 

magnetic field



Scalar Coupling Hamiltonian: Secular Approximation

01 1 02 2 12 1 2; 2 .z zA I I B J I Iw w   

Basis sets of A=|+1/2,+1/2>, =|+1/2,-1/2>, =|-1/2,+1/2>, =|-1/2,1/2>

01 02

01 02

01 02

01 02

0 0 0

0 0 01

2 0 0 0

0 0 0

A

w w

w w

w w

w w

 
 

 
  
    

12

12 12

12 12

12

1
0 0 0

2

1
0 0

2

1
0 0

2

1
0 0 0

2

J

J J

B

J J

J



 

 



 
 
 
 
 

  
 
 
 
 
 

Secular approximation is valid (and then B will be diagonal) when

This condition is satisfied for heteronuclear case (1 and 2 different, of when

the chemical-shift difference is sufficiently large for homonuclear case (weak

coupling)

|||| 120201 Jww 



Relative Magnitude of Interactions: After Motional Averaging

I > 1/2

DD

J

Q
Chemical

shift

RF
Static 

Field

J

Q
Chemical

shift

RF

Static 

Field

Solids

Isotropic Liquids

M. H. Levitt, Spin Dynamics



Product Operator Formalism

•POF-complete and QM description

of NMR experiments (solution state)

A version of DM theory

•POF have a well-defined physical meaning

•Illustrative to look at vector model

•At thermal equilibrium: Unequal populations

of the two levels leads to a net magnetization

along the field (z) direction. This may be

treated as a vector. The vector model fully

relies on its behavior. (Lower level more

populated at thermal equilibrium.)

Pulses and delays are geometrical 

Rotations

Useful in describing the behavior of

an ensemble of non-interacting spins, ½ 

β

α

x

y

z



Product Operator Formalism

• RF pulses are rotations about x or y-axes.

• Angle of rotation is                , where         is

the RF field strength and   is the duration for  

which the pulse is applied. The rotation is in

the yz-plane.

• Free precession is a rotation about the z-axis at frequency      , which is the offset 

(difference between the Larmor and transmitter frequencies. Here, the rotation angle is

. 

x

y

x

y

z

z

RF

RF

Magn



Product Operators

Operator Significance

x-component of I-spin magnetisation

y-component of I-spin magnetisation

z-component of I-spin magnetisation

x-component of S-spin magnetisation

y-component of S-spin magnetisation

z-component of S-spin magnetisation

Antiphase I-spin magnetisation

Antiphase I-spin magnetisation

Antiphase S-spin magnetisation

Antiphase S-spin magnetisation

Longitudinal two-spin order

Two-spin coherence

Two-spin coherence

Two-spin coherence

Two-spin coherence

•Product operators for a

non-interacting two-spin

system.



Product Operators: The Looks

Operator

0

0

0

0

•In-phase magnetisation of

spins I and S

•Absorption mode for 

magnetisation aligned along x

•Dispersion mode for 

magnetisation aligned along y



Product Operators: The Looks

Operator

0

0

0

0

•Anti-phase magnetization

•The operator is the I-spin

magnetization that is anti-phase

with respect to the coupling to

spin-S



Product Operators: The Looks

Operator

•Multiple-quantum coherence terms



y

Product Operators: Example 1- RF Pulses

y

z

x

•Pulse of flip angle q along the x-axis

y

z

x

x

y

x

z z

y

x
y

x

z

-y

z



Product Operators: Example 2- Chemical-Shift Evolution

•The relevant single-spin Hamiltonian

•Evolution under this Hamiltonian for 

•Evolution under this Hamiltonian for

•Evolution under this Hamiltonian for 



y

Product Operators: Example 2- Chemical-Shift Evolution

y

z

x

y

z

x

x

y

x

z z

y

x
y

x

z z

-z

-x



Product Operators: Example 2- Chemical-Shift Evolution

•The relevant single-spin Hamiltonian

•Evolution under this Hamiltonian for

•Evolution of the             term under a 900 pulse about the y-axis

• The relevant Hamiltonian is 

•This means that the anti-phase magnetisation of spin I has been transferred into 

anti-phase magnetisation of spin S.  This is called coherence transfer and plays a great 

role in both one- and multi-dimensional NMR



Product Operators: Example 3- Scalar Coupling

•Evolution under coupling causes interconversion of in-phase and anti-phase magnetisation

•In-phase magnetisation along x

becomes

anti-phase along y

•Anti-phase magnetisation along x

becomes in-phase along y

•The above, but for spin S

•Complete interconversion of in-phase and anti-phase magnetization requires a delay of



Product Operators: Some References

•O.W. Sorensen, G. W. Eich, M. H. Levitt, G. Bodenhausen, R. R. Ernst, Prog. NMR Sectrosc. 16, 163, 1983

•P. K. Wang, C. P. Slichter, Bull. Magn. Reson. 8, 3, 1986

•A handbook of NMR, R. Freeman, Longman, 1987

•J. Shriver, Conc. Magn. Reson. 4, 1, 1992

•D. G. Donne, D. G. Goenstein, Conc. Magn. Reson. A9, 95, 1997

•Understanding NMR spectroscopy, J. Keeler, Wiley, 2010

•D. P. Goldenberg, Conc. Magn. Reson. 36, 49, 2010



Experiments under Static Conditions



Spin Echoes: Spin-1/2 

90 180
Echo

Spin-echo experiment

Refocuses chemical-shift interaction

and heteronuclear dipole-dipole interaction
t t

zz

hetero

DD

zCS

SIH

IH





Spin Echo (Hahn Echo) Sequence:

RF pulses

90-x 180x

Refocussing of interactions



Spin Echoes: Spin-1/2 

90 180
Echo Spin-echo experiment

Refocuses chemical-shift interaction

and heteronuclear dipole-dipole interaction
t t

Spin Echo (Hahn Echo) Sequence:

RF pulses

90-x 180x



Spin Echoes: Spin-1/2-Density Matrix Analysis 

90x 180y

Echo Spin-echo experiment

Refocuses chemical-shift interaction

and heteronuclear dipole-dipole interactiont t



Spin Echoes: Spin-1/2 but Homonuclear 

90-x 90y

Echo Echo experiment to refocus

homonuclar dipole-dipole coupling

t t

y
z x

z

x

yyH
xxH

y

Refocussing of interactions



Homonuclear Spin Echo: Analysis

90-x 90y

Echo

t t
Echo experiment to refocus

homonuclar dipole-dipole coupling



Homonuclear Spin Echo: Analysis

90-x 90y

Echo

t t
Echo experiment to refocus

homonuclar dipole-dipole coupling



Homonuclear Spin Echo: Analysis

90-x 90y

Echo

t t
Echo experiment to refocus

homonuclar dipole-dipole coupling

That is the echo!

Mueller and Geppi, Solid State NMR, Principles, Methods and Applications



Spherical Tensors: Examples



Spherical Tensors

A spherical tensor of rank l is a set of 2 l +1 objects such that when any of them is 

rotated in three dimensions, the result is a superposition of the same set of objects

Rotation of spherical tensors

†

' '

'

( ) ( ) ( )
l

l

lm lm mm

m l

R T R T D


   

Rotation operator Spherical tensor element

of rank l

Complex numbers



Rotational Signatures of the Internal Spin Interactions

Interaction Space Rank

l

Spin Rank

l

Iso-CS 0 1

CSA 2 1

J 0 0

Hetero-DD 2 1

Homo-DD 2 2

Rotation of

molecules
Rotation of

spins



Euler Angles



Rotation of Spherical Tensors

†

' '

'

( ) ( ) ( )
l

l

lm lm mm

m l

R T R T D


   

Rotation operator

for Euler angles 

Elements of Wigner matirx

for Euler angles 



Wigner Matrices

)exp()()'exp()( ''  imdimD l

mm

l

mm 

Wigner matrix element
Reduced Wigner matrix element



Reduced Wigner Matrix Elements (Rank 0 and 1)

1

00 ( )d 



Reduced Wigner Matrix Elements (Rank 2)

)(2

00 d



Interaction Liquids Solids Field (B0) 

dependence

Notes

Zeeman 

(chemical shift)

Line position Line 

position and 

structure

Linear For liquids this is just the position of each peak, but for 

solids each peak can have a range of chemical shifts 

depending on the orientation of its electronic 

environment with the magnetic field.  This is known as 

the chemical shift anisotropy and can have a larger 

range for nuclei in more asymmetric electronic 

environments.

Radiofrequency 

pulses

Amplitude Amplitude None Same for liquids and solids

J coupling Line structure Not 

normally 

observed 

(?!)

None* Basically the same for solids and liquids but not 

normally observed in solids due to much wider lines

Dipolar coupling Relaxation Line 

structure

None* Averages to zero in liquids due to isotropic motions (but 

does still result in relaxation effects).  In solids can 

completely dominate the spectra especially for large  

nuclei like protons

Quadrupolar 

interaction (spin 

> ½)

Relaxation Line 

structure

None* Averages to zero in liquids due to isotropic motions, but 

in solids can completely dominate the spectra especially 

for nuclei with large quadrupole moments (14N, 2H) in 

asymmetric electronic environments.

Summary of NMR Interactions

*To first order



Magic-Angle Spinning, MAS



Reality

Figure courtesy: Matthias Ernst



Reality

Simple 1D solution-state spectrum
1H spectrum of a protein

Simple 1D solid-state spectrum
13C spectrum of glycine



Solid-State NMR at Frontiers

• Higher fields

• Higher MAS

• Better coils

• Proton detection

• Sensitivity

• Sample volume

Patrick van del Wel, Emerging topics in life sciences, 2, 57, 2018

Reif, Ashbrook, Emsley, Hong, Nat. Rev. Methods Primers, 2021:1:2.doi: 10.1038/s43586-020-00002-1

Ahlawat, Mote, Lakomek, Agarwal, Chem. Rev. 122, 9643-9737, 2022



Remedies

• Mimick the inherent averaging processes in solution-state to 

obtain high-resolution, isotropic information

• Goal #1:(Resolution and Sensitivity): Remove  anisotropic parts 

and retain only isotropic parts: Decoupling

• Goal #2: Get back the anisotropic parts for elucidation of 

geometry parameters: Recoupling



Remedies

Anisotropic part

Spatial part

Spin part

Independent:

Can be individually

manipulated

Mechanical manipulation

RF manipulation



Hamiltonians and their Manipulation

  isotropiccanisotropi

SPINSPACETOTAL 

•Rotating the crystallites in a   

given powder          

•Sample spinning: Mechanical 

manipulation

•Easier to visualise

•Difficult to implement

Spatial Part: Manipulation Spin Part: Manipulation

•Rotating the spins in a   

given powder          

•Spins rotation: 

Manipulation by RF pulses

•Easier to implement

•Difficult to visualise

Hamiltonians and their Manipulation

Interaction Space Rank, l Spin Rank, l

Iso-CS 0 1

CSA 2 1

J 0 0

Hetero-DD 2 1

Homo-DD 2 2



Hamiltonians and their Manipulation

  isotropiccanisotropi

SPINSPACETOTAL 

Hamiltonians and their Manipulation





l

lm

L

ml

L

lm TAH ][][

Space 

part

Spin 

part

LL TAH ][][ 2020

NMR 

case

High field, secular 

approximation





2

2

22 ][][
m

L

m

L

m TAH
Interaction Space Rank, l Spin Rank, l

Iso-CS 0 1

CSA 2 1

J 0 0

Hetero-DD 2 1

Homo-DD 2 2



Powder at Various Rotor Angles: Spinning



Average out the chemical shift 

anisotropy, to achieve good 

sensitivity and resolution

Magic-Angle Spinning (MAS)



Averages out the chemical shift 

anisotropy, to achieve good 

sensitivity and resolution

Magic-Angle Spinning (MAS)

q=54.7

http://www.cup.uni-muenchen.de/ac/schmedtadg/seminars.html#NMR
http://www.cup.uni-muenchen.de/ac/schmedtadg/seminars.html#NMR


13C spectra of [13C2]-glycine

no spinning

with MAS 

at 12 kHz

+H3N
C

H H

O

O-

Resolution and Sensitivity Enhancement by MAS



Magic-Angle-Spinning Spectra: Resolution Enhancement

Glycine

The powder pattern breaks up into a 

centreband and sidebands spaced at integer 

multiples of the rotor frequency

14 kHz

8 kHz

5 kHz

3 kHz

1181 Hz

 

Static

Chemical Shift δ/ (ppm)

50 0100150200250



MAS Rotor Types

7       4   3.2 2.5 1.3 mm



Angular Frequency to Linear Velocity

Magic Angle Spinning (MAS)

A 0.8 mm rotor spinning at 100 kHz …

… has a speed of 250m/s when rolling along the ground…

……. needs only 44 hours to roll around the earth….  

rf coil

air bearings

optical fibres

drive air

bearing air

VT air

turbine

1.8mm MAS probe (50kHz)
(A. Samoson et al. J. Magn. Reson. 149, 264 (2001))

Outer diameter of MAS rotor determines maximum rotation frequency: 6 mm - 8 kHz, 4 mm 

- 15 kHz, 2.5 mm - 30 kHz, 1.8 mm - 50 kHz, 1.3 mm - 70 kHz, 0.8 mm - 100 kHz.

Sample volume depends on (inner diameter).

Higher MAS frequencies allow the implementation of different types of experiments.

1.3 mm Samoson rotor

6 mm Chemagnetics rotor

Angular frequency ~ 120-130 kHz



Standard Bore MAS Probe

stator flip mechanism

bearing gas inlet

RF electronics

BN stator

proton trap

RF coil



PAS-MF-RF-LF

Transformation via the relevant Euler angles necessary for visualisation and

simulations

Reference Frames in Solid-State NMR



Rotation of Spherical Tensors

†

' '

'

( ) ( ) ( )
l

l

lm lm mm

m l

R T R T D


   

Rotation operator

for Euler angles 

Elements of Wigner matirx

for Euler angles 



Wigner Matrices

)exp()()'exp()( ''  imdimD l

mm

l

mm 

Wigner matrix element
Reduced Wigner matrix element



Reduced Wigner Matrix Elements (Rank 0 and 1)

1

00 ( )d 



Reduced Wigner Matrix Elements (Rank 2)

)(2

00 d



PAS-MF-RF-LF

Transformation via the relevant Euler angles necessary for 

visualsation and simulations

Reference Frames in Solid-State NMR
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Wigner Matrix Chains



Frame Transformations of Spherical Tensors



Chain of Reference Frames in Solid-State NMR

Principal axis frame of a 

spin interaction

Molecular reference frame

Rotor reference frame
Laboratory reference frame



X

Y

Z

L

B0

Rotor reference frame Lab reference frame

}0,,{)( RLrRL tt w

Spinning frequency Rotor (magic) angle

Rotor to Lab Frame Transformation



Molecular Frame

Molecular frame is more

arbitrary, although in 

certain cases, calculations

are simpler with a good

choice

MR

Different Euler angles for different molecules



Chain of Transformations in Solid-State NMR

))(()()()( tDDDD
RLMRPMPL

llll  

Orientation of an interaction, , with

respect to the molecular frame. Depends

only on the interaction, not on time or

crystallite

Orientation of molecular frame wrt to

rotor frame, depends only on crystallite,

not on interaction or time

Orientation of the rotor wrt 

To the static field, time dependent



Irreducible Tensor Representation of the Hamiltonians





l

lm

L

ml

L

lm TAH ][][

Space part Spin part

LL TAH ][][ 2020

NMR case

High field, 

secular approximation





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2

22 ][][
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L

m

L

m TAH



DD Coupling Hamiltonian

LjkLjkjk

DD TAH ][][
2020



Spin tensor

Space tensor in the PAS
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DD TAH ][][
2020
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Ljkjk

PLm

Pjk
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 
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2
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2){1cos3(

2

1 2   kjkjkyjx
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PLjk IIIIIIb q

DD Coupling Hamiltonian

Zero at the magic angle



Isotropic Chemical-Shift Hamiltonian

iso

j j

iso jzH Iw

0iso iso

j j jw  w

0 0

j j Bw  

Spin rank 1

Space rank 0



CSA Hamiltonian

Spin rank 1

Space rank 2
20 20 200 0[ ] [ ] [ ]j j L j L j L

CSA jzH A T B A I B 

Space tensor in the PAS

0aniso aniso

j j jw  w



Average Hamiltonian Theory and MAS

q=54.7

arbitrary

7.54







RL

RL

rRL t





w

Isolated spin-1/2 experiencing CSA:

),()( tHItH MR

j

jz

jj

CSAiso
 w

http://www.cup.uni-muenchen.de/ac/schmedtadg/seminars.html
http://www.cup.uni-muenchen.de/ac/schmedtadg/seminars.html


CSA Hamiltonian under MAS

20 0[ ]j j L

CSA jzH A I B
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2
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Concept of Average Hamiltonian

If the Hamiltonian is such that:

• It is periodic, H(t),=H(t+NT) 

• It varies sufficiently fast with respect to time

Then the spin system behaves as if it is subjected to a time average of

H(t) over the period T (then the Hamiltonian also becomes time independent):

 dttH
T

HtH )(
1

)(
)1(

Average Hamiltonian



Average CSA Hamiltonian Under MAS

2 '

2 2
2 2

' 0 0

' 2 2

( ) [ ] ( ) ( )r

m

im tj j M

CSA MR m m MR m RL jz

m m

H A D e d I B
w 

 

   

2 '

2
2 2

'0 00 0

' 2

[ ] ( ) ( )
m

j M

m MR RL jz

m

A D d I B


 

Zero for RL=54.7

Exact MAS, hence, averages CSA to zero, provided the rotation 

is sufficiently fast.



CSA Powder Pattern and Rotation Angle

For angles other than 54.7, scaled 

versions of static powder pattern

appear, with scale factor ranging from

1 to –0.5

Isotropic spectrum results at the magic

angle, 54.7



DD Hamiltonian Under MAS
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Average DD Hamiltonian Under MAS
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Zero for RL=54.7

Exact MAS, hence, averages DD to zero, provided the rotation 

is sufficiently fast.



Resolution and Sensitivity Enhancement by MAS

θ= 

54.70

Magic-Angle-Spinning Solid-State NMR

13C spectra of [13C2]-glycine

no spinning

with MAS at 12 

kHz

+H3N
C

H H

O

O-



Tracking Spins in NMR

Floquet Wilhelm Magnus F. Fer

Many more: Wilcox, Salzman, Pechukas, Burum 

Floquet theory Magnus expansion

Average Hamiltonian theory

Fer expansion



Time Development of the Spin System

| ( ) ( ) | ( )
d

t iH t t
dt

   

Hamiltonian State function

| ( )at  | ( )bt 

at bt
t

Time 

evolution



Phase Cycling 

and 

Pulsed Field Gradients



Separating Wheat from Chaff

NMR

Inherently a low-sensitive method

Plenty of unwanted signal to make matters worse

Desired signals are very less

How to select out the desired signals effectively

Phase Cycling or Pulse Field Gradients



Fourier Transform

The Fourier Transform (FT) converts the time domain signal to the frequency 

domain.  There are several types of FT, and we will examine the discrete FT 

(DFT), because it works on discrete points like NMR data







1

0

/21 N

k

Nikn

kn ed
N

f 
DFT

fn is the nth point in the “frequency vector”

N is the number of time data points, dk

i is 

k and n are integers that refer to the points in dk and fn

1



FT: Appearance

Here is a 25 Hz time-domain signal 

from Cos[2*Pi*25*t] sampled for 

128 points from t=0 to t=1.27 sec 

with 0.01 sec spacing between points

20 40 60 80 100 120

-1

-0.5

0.5

1

1

2

3

4

5
Here is the real part of the DFT of the 

signal above.  Several things are 

worth noting:

1) There are 2 peaks, each 25 Hz from 

either edge.

2) The spectral width is 100 Hz

3)  The peaks are quite sharp
-50 0 50



Why 2 Peaks from One Frequency?

Here is a plot of Cos[2*Pi*2*t]
0.5 1 1.5 2 2.5 3

-1

-0.5

0.5

1

0.5 1 1.5 2 2.5 3

-1

-0.5

0.5

1

Here is a plot of Cos[2*Pi*(-2)*t]

These are indistinguishable even 

though they have opposite 

frequencies.  Therefore, the FT 

results in 2 frequencies, one 

positive and the other negative



Why 2 Peaks from One Frequency?

Here is a plot of Sin[2*Pi*2*t]

Here is a plot of Sin[2*Pi*(-2)*t]

We can distinguish different signs 

in Sin functions

0.5 1 1.5 2 2.5 3

-1

-0.5

0.5

1

0.5 1 1.5 2 2.5 3

-1

-0.5

0.5

1



FT of a Sine Function

Here is a 25 Hz time-domain signal 

from Sin[2*Pi*25*t] sampled for 128 

points from t=0 to t=1.27 sec with 

0.01 sec spacing between points.

Here is the imaginary part of the DFT of 

the signal above.  Several things are 

worth noting:

1) There are 2 peaks, each 25 Hz from 

either edge. Now they are opposite 

each other!

2) The spectral width is 100 Hz

3)  The peaks are quite sharp

20 40 60 80 100 120

-1

-0.5

0.5

1

-4

-2

2

4

-50 0 50



Adding Sine and Cosine FT’s

20 40 60 80 100 120

-4

-2

2

4

2

4

6

8

10

1

2

3

4

5

+

=

FT of cosine function

FT of sine function

Sum NMR Receiver



Quadrature Detection

In order to distinguish the sign of frequencies, NMR signals must be collected along 

both the x (e.g. cosine) and y (e.g. sine) axes.  This is called quadrature detection.  The 

signal is treated as a “real” part (cosine) and an “imaginary” part (sine).  They are 

both equally real and important, but this allows easy mathematical manipulation from 

Euler’s relations:

itetiSintCos  )()(
itetiSintCos  )()(

real realimaginary imaginary



Quadrature Detection

d = Cos[2*Pi*25*t] + I*Sin[2*Pi*25*t]

The DFT of the 128 point function defined above with a frequency of 25 Hz  

2

4

6

8

10

-50 0 50



Absorptive

Dispersive

Quadrature Detection: The Full Story



CYCLOPS (Cyclically Ordered Phase Sequence)

cos (abs)

sin (dis)

A

B

Channels A and B need to be orthogonal and they should amplify both 

absorptive and dispersive components of the signals identically

cos (abs)

sin (dis)

cos (abs)

sin (dis)

A

B

cos (abs)

sin (dis)

M

M M-


M cos(wt)

M sin(wt)



CYCLOPS

90 Scan Pulse Magn. A:cos B:sin

1 +x -y -y +x

2 +y +x +x +y

3 -x +y +y -x

4 -y -x -x -y

cos (abs)

sin (dis)

A

B

cos (abs)

sin (dis)

Channel A

Channel B

Channel A

Channel B
abs dis

cos (abs)

sin (dis)

B

A

cos (abs)

sin (dis)

abs

dis

p



CYCLOPS

90

p

rec

Scan Pulse Magn. A:cos B:sin

1 +x -y -y +x

2 +y +x +x +y

3 -x +y +y -x

4 -y -x -x -y

CYCLOPS compensates for amplitude and phase imbalances of the quadrature 

channels. How does the signal look like?

x

y y y y

x x x
Net signal

0!

rec=x

Receiver



CYCLOPS: Phase Cycling

90

p

rec
Scan Pulse Magn. Rec. A:cos B:sin

1 +x -y +x -y +x

2 +y +x +y +x +y

3 -x +y -x +y -x

4 -y -x -y -x -y

CYCLOPS compensates for amplitude and phase imbalances of the quadrature 

channels. How does the signal look like?

x

y y y y

x x x

Signal adds up!    
Receiver

Unwanted signals like this (DC offset) will then go to zero



CYCLOPS: Phase Cycling

• Phase cycling

•The pulse and the receiver are cycled together in phase

•The receiver should follow the phase of the desired signal

•The number of steps in a phase cycle depends on how many

undesired signals need to be suppressed and how many desired

signals need to be selected

•CYCLOPS is a 4-step phase cycle

•CYCLOPS can correct for the phase and amplitude imbalances

of the receiver channels with a 2-step phase cycle, 0,90

•CYCLOPS can remove zero peaks (DC offsets) with another

2-step phase cycle, 0,180

•Hence, overall one needs a 4-step phase cycle, 0, 90, 180, 270,

in other words +x, +y, -x, -y (Is this correct?)

•One can do CYCLOPS in 3 steps, with both pulses and receiver 

cycled as 0, 120, 240



CYCLOPS/CYCLOPES

CYCLOPES are giant one-eyed creatures in Greek (and later

Roman mythology).

They are three brothers: Brontes, Steropes, Arges (Arges made

the thunderbolt for Zeus, God of lightning among others. Indra,

Hindu God of lightning had Vajra as an equivalent.)



Phase Cycling: Quantitative Derivation

Coherence order of -1 or +1 for single spin-1/2

Single-quantum transitions 
|a>

|b>
p=-1,+1

For a two-spin ½ system

 (1/2, 
1/2)

(1/2, 
1/2) 

 (1/2, 
1/2)

 (1/2, 
1/2) p =  1

p =  2

p = 0

Zero-quantum, Double-quantum, and single-quantum transitions



Phase Cycling: Coherence Order

p = + 1

p  =   0

p =  - 1

<z> <xy>

 (-1/2, -
1/2)

(-1/2, +
1/2) 

 (+1/2, +
1/2)

 (+1/2, -
1/2)

90

p =  1

A 90 pulse on equilibrium magnetisation Iz creates transverse (xy) 

magnetisation, the single-quantum transition elements

We represent the SQC or any 

coherence by coherence transfer 

pathway diagrams, musical stave

Change of coherence order, p=-1



Phase Cycling: Coherence Order

A  coherence of order , represented by the density operator (p), evolves 

under a z-rotation of angle  according to

( ) ( )exp( ) exp( ) exp( )p p

z zi F i F ip      

Total z-component of the spin angular momentum

Hence, a coherence (here DQ term) that experiences a phase shift

of 2 could be referred to as p=2

The effect of a z-rotation on a term like
1 2I I 

1 2

1 2

1 2

1 2 1 2

1 1

exp( )exp( )exp( )exp( )

exp( )exp( ) exp( )

exp( )exp( )

exp( 2 )

z z z z

z I I z

I I

I I

i I i I i I i I

i I i I i I

i i I

i I

   

  

 



 

 

 

   

  

  

 

Definition of coherence order



Phase Cycling: Coherence Order

Consider p to p’ by a pulse: How the phase of the pulse affects the phase of

the coherence? 

( ) 1 ( ')

0 0 .p pU U H OTerms    0exp( ) exp( )z zU i F U i F   

The effect of the phase-shifted pulse on the initial state:

( ) 1pU U  

( ) 1

0 0exp( ) exp( ) exp( ) exp( )p

z z z zi F U i F i F U i F      

( ) 1

0 0exp( )exp( ) exp( )p

z zip i F U U i F    

( ')

( ') ( ')

exp( )exp( ) exp( )

exp( )exp( ' ) exp( )

p

z z

p p

ip i F i F

ip ip i p

   

    

 

    

If a pulse shifted in phase by  causes a coherence order change of p, 

the coherence acquires a phase label of (-p )



Phase Cycling: Coherence Order 

A

0

-1

-2

+2

+1

Phase cycling: Transformation/rotation of signals under phase shifts

of the RF pusles

Change in the 

coherence 

order, p=-3

Z() tells us the amplitude of conversion of +2 coherence to -1 coherence

( ) (0)exp( )Z Z i p  

For p=-3, when the phase of the pulse changes by , the phase of the

amplitude, Z, changes by 3. How do we catch that particular signal?



Phase Cycling: Coherence Order 

receiver

Hence, p=-3 selected, whilst p=2 not

In fact, this phase cycle will select all p=-3+4n

where n=-1,+1,-2,+2,….



Phase Cycling: Coherence Order 

Phase cycling: General rule-

If the pulse phase gets cycled as 
2

, 0,1,2,..., 1k k k N
N


   

A coherence order change, p, gets selected, if the receiver phase

For each step and summing up the signal

Also                         get selected

.rec kp  

p nN 



Phase Cycling: Selection Rule 

0

-1

+1

pA=+1
pB=-2

A,A

( ; , , ) ( ; , , )

( ; , , ) ( ;0,0,0)exp( )

A A rec path A A rec

path

path A A rec path path

S t S t

S t S t i

     

   



 



Pathway phase

path A A B B recp p       

Phase-cycle condition demands path=0

B,B

rec i i

i

p   

rec



Coherence and Phase Cycle Rules 

Only pulses can change coherence order. Pulses on <z> magnetization 

(p = 0) generate p = 1, while pulses on   <xy> magnetization can create 

higher coherence  order, depending on the number of coupled spins

We can only detect coherence with order 1, because   it correspond to 

single-quantum transitions, or <xy>  magnetization

The number of cycles and steps per cycle needed will   depend on the 

order of the coherence we want to select/transfer

In order to select or detect a certain component of the coherence order 

generated by a pulse of phase , the  phase of the selecting pulse or 

receiver is given by:

where p is the coherence change we want to follow  generated by the 

pulse of phase , and  is its phase

rec i i

i

p   



CYCLOPS: Phase Cycling

p

rec

p = + 1

p  =   0

p =  - 1

90

rec i i

i

p   

Here, =0,90,180,270

Hence, rec=+1.0,90,180,270

p=-1

Scan,

Cycle counter,m
pulse rec

1 +x +x

2 +y +y

3 -x -x

4 -y -y

This phase cycle will remove p=+1 pathway, to select which
rec=0,270,180,90



Spin Echo: Phase Cycling

0

-1

+1

p1=+1
p2=-2

90,1 180,2 rec

t t

Scan 1 2
Magn. Rec

1 +x +x=0 +y +x=0

2 +x +y=90 -y -x=180

3 +x -x=180 +y +x=0

4 +x -y=270 -y -x=180

But now on top of this, we have to do 

CYCLOPS on the first pulse

1= 0 0 0 0 90 90 90 90  180 180 180 180 270 270 270

2= 0 90 180 270 0 90 180 270 0 90 180 270 0 90 180 270

rec= 0 180 0 180 270 90 270 90 180 0 180 0 90 270 90 270

16-step phase cycle

1 1` 2 2 1 22rec p p          



Nested Phase Cycle 

The spin-echo phase cycle (EXORCYCLE) is a classic example

of nested phase cycle

Bodenhausen, Kogler,and Ernst, J. Magn. Reson. 58, 370, 1984

Bain, J. Magn .Reson. 56, 418, 1984

A more economical way of phase cycling called COGWHEEL method

was introduced by the Levitt group 

M. H. Levitt et al., J. Magn. Reson. 155, 300, 2002

Also see publications by Jerschow’s group and Norbert Mueller’s group

Also see Multiplex phase cycling, and combinations of cogwheel and

multiplex philosophies for multiple data acquisition and fastening the 

experiments



DQF COSY: Phase Cycling

0

-1

+1

p1=+1,-1 p2=3,1,-1,-3

90,1

rec

90,2 90,3

Cycle 

counter
1 2 3

Rec

1 0 0 0 0

2 180 0 0 180

3 0 0 90 270

4 180 0 90 90

5 0 0 180 180

6 180 0 180 0

7 0 0 270 90

8 180 0 270 270

p3=-3,+1

This phase cycle removes all the other undesired

pathways, check this!

+2

-2

t1`

t2`



MQF COSY

Normal COSY DQF COSY TQF COSY

90,1

rec

90,2 90,3

t1`

t2`



Selection of Higher Coherences

p

p = + 3

p  =   0

p =  - 3

90 Scan,

Cycle 

counter,m

pulse

1 0

2 60

3 120

4 180

5 240

6 300

p = + 3

p  =   0

p =  - 3

Scan,

Cycle 

counter,m

pulse
Scan,

Cycle 

counter,m

pulse

1 0 7 180

2 30 8 210

3 60 9 240

4 90 10 270

5 120 11 300

6 150 12 330



180y90x 90x

13C:

90

  t1

+2

+1

0

- 1

- 2

Pulse 1,3: 0 3 2 1 4 7 6 5 2 5 4 3 6 1 0 7 3 6 5 4 7 2 1 0 1 4 3 2 5 0 7 6

0 3 2 1 4 7 6 5 2 5 4 3 6 1 0 7 3 6 5 4 7 2 1 0 1 4 3 2 5 0 7 6

Pulse 2:   0 3 2 1 4 7 6 5 2 5 4 3 6 1 0 7 3 6 5 4 7 2 1 0 1 4 3 2 5 0 7 6

4 7 6 5 0 3 2 1 6 1 0 7 2 5 4 3 7 2 1 0 3 6 5 4 5 0 7 6 1 4 3 2 

Pulse 3:   0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

Receiver: 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3

0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3

INADEQUATE

Incredible Natural Abundance Double-Quantum Transfer Experiment
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Lineshapes

Typical NMR signal
2

( ) exp( )exp( )exp( )
t

S t B i t i
T

   

Amplitude Overall phase

factor=signal-receiverFT

( ) [ ( ) ( )]exp( )S B A iD iw w w  

2

2 2
21 ( )

T

Tw 

2
2

2 2
2

( )

1 ( )

T

T

w

w



 

Absorpion mode Lorentzian

centred at w

Dispersion mode Lorentzian

Normally one displays the real part of S(w)

Re( ( )) [cos ( ) sin ( )]S B A Dw w w   

Mixture of both absorption and dispersion line shapes



Lineshapes

Re( ( )) [cos ( ) sin ( )]S B A Dw w w   

NMR spectral line shape:

How to get pure absorption mode line shapes? Make =0,

multiply S(w) by a phase factor exp(iq)

( )exp( ) [ ( ) ( )]exp( )exp( )S i B A iD i iw q w w q  

[ ( ) ( )]exp( )B A iD iw w q   

Now choose q, phase factor is removed and the Re(S(w)) is in pure

Absorption mode: Phase correction



Coherence Transfer Pathways

Selection of CTP: Guidelines

Frequency discrimination Line shape features

STATES/TPPI Absorption-mode line shapes

Real FT 

Typical 2D
1 1cos( ) cos( )

mixing

i ix j jxt I t I  

The 2D signal 1 2cos( )exp( )i jt i t  

Amplitude modulated data set in t1



Typical 2D
1 1cos( ) cos( )

mixing

i ix j jxt I t I  

1 1

1
cos( )( ) cos( )

2

mixing

i i i j jxt I I t I    

Coherence Transfer Pathways

Amplitude modulation, hence, results from a selection of both the

+1 and -1 coherence pathways

•Retaining symmetrical pathways

•No frequency discrimination

•Pure absorption-mode lineshapes

rec

t1 t2

0
-1

+1



Coherence Transfer Pathways

0
-1

+1

frec

t1 t2

Selecting p=1 pathway only during t1

At the start of t1, the signal 
1

( )
2

xI I I  

During t1, this evolves into  
1

1
exp( )

2
i t I

The 2D signal is then given by: 
1 2 1 2

1
( , ) exp( )exp( )

4
PS t t i t i t  

Selecting p=-1 pathway only during t1

The 2D signal is then given by: 1 2 1 2

1
( , ) exp( )exp( )

4
NS t t i t i t   

Phase modulated data set in t1

Phase modulation, hence, results from a selection of either the

+1 or -1 coherence pathways

•Frequency discrimination

•Phase twisted lineshapes

Frequency discrimination achieved by selecting one pathway with appropriate 

phase cycle

This procedure is called anti-echo (P-type) or echo (N-type) selection scheme



Quadrature in t1 Dimension

0
-p

+p

rec

t1 t2

1 2 1 1 1 2 2 2 2 2( , ) exp( )exp( / ) exp( )exp( / )PS t t i t t T i t t T    

1 2 1 1 1 2 2 2 2 2( , ) exp( )exp( / ) exp( )exp( / )NS t t i t t T i t t T     

Anti-Echo/Positive signal

Echo/Negative signal

Phase-modulated signal

0

rec

t1 t2

Normally, 2D experiments record both P and N

pathways, resulting in a signal of the form

1 2 1 1 1 2 2 2 2 2( , ) cos( )exp( / )exp( )exp( / )CS t t i t t T i t t T    

1 2 1 1 1 2 2 2 2 2( , ) sin( )exp( / )exp( )exp( / )SS t t i t t T i t t T    

or

Amplitude-modulated signal



Quadrature in t1 Dimension

1 2 1 1 1 2 2 2 2 2( , ) cos( )exp( / ) exp( )exp( / )S t t i t t T i t t T    
w1

1 1

w2

1 2 1 1 1 2 2 2 2 2( , ) sin( )exp( / ) exp( )exp( / )S t t i t t T i t t T    

1 1

w2

Amplitude modulation: No frequency discrimination



Quadrature in t1 Dimension

1 2 1 1 1 2 2 2 2 2( , ) exp( )exp( / )exp( )exp( / )S t t i t t T i t t T    
w1

1 1

w2

1 2 1 1 1 2 2 2 2 2( , ) exp( )exp( / )exp( )exp( / )S t t i t t T i t t T     

1 1

w2

Phase modulation: Frequency discrimination possible



To Collect or Not To Collect Both the Pathways

0
-p

+p

rec

t1 t2

1 2 1 1 1 2 2 2 2 2( , ) exp( )exp( / ) exp( )exp( / )PS t t i t t T i t t T    

1 2 1 1 1 2 2 2 2 2( , ) exp( )exp( / )exp( )exp( / )NS t t i t t T i t t T     

Collection of both the pathways is necessary to get pure-absorptive lineshapes

Mixture of absorptive and dispersive lineshapes

giving rise to twisted peak appearance for the

2D contour peaks



Why Collect Both Pathways

1 2 1 1 1 2 2 2 2 2( , ) exp( )exp( / ) exp( )exp( / )PS t t i t t T i t t T    

Collection of both the pathways is necessary to get pure-absorptive lineshapes

1 2 1 1 1 2 2 2( , ) exp( )exp( / )[ ]PS t F i t t T A iD   

1 2 1 1 2 2( , ) [ ][ ]PS F F A iD A iD   

Absorption and dispersion

lines at +

1 2 1 2 1 2Re( ( , ) ) [ ]PS F F A A D D  

Phase-twisted line shapes at

(F1,F2)= (+,)



Why Collect Both Pathways

1 2 1 1 1 2 2 2 2 2

1
( , ) cos( )exp( / )exp( )exp( / )

2
CS t t t t T i t t T    

1 2 1 1 1 2 2 2

1
( , ) cos( )exp( / )[ ]

2
CS t F t t T A iD   

1 1 1 1 1 2 2 2

1
[exp( ) exp( )]exp( / )[ ]

4
i t i t t T A iD      

1 2 1 2 1 2 1 2 1 2

1 1
Re[ ( , ) ] [ ] [ ]

4 4
CS F F A A iD D A A iD D      

Terrible! No frequency discrimination, and moreover, two phase-twisted line

shapes, one at (F1,F2)= (+,),  and the other at (F1,F2)= (-,)

1 2 1 1 1 2 2

1
Re[ ( , ) ] cos( )exp( / )

2
CS t F t t T A  

1 2 1 2 1 2

1
Re[ ( , ) ] ( )

4
CS F F A A A A  

Two double-absorption mode lineshapes

without frequency discrimination



0

rec

t1 t2

=0,90

Quadrature in t1 Dimension, STATES Method

w1

1 1

-W1 +W1

Same t1, do 2 experiments

=0, cosine 

=90, sine 

Difference,

cos-sin 

-W1 +W1

Thus, quadrature is accomplished in 

t1 as well

Frequency discrimination, STATES 

phase cycling method (also, TPPI, 

Time Proportional Phase Increment)

States, Haberkorn, Ruben, J. Magn. Reson. 48, 286, 1982

Marion, Wuthrich, Biochem. Biophys. Res. Commun. 113, 967, 1983



2D Spectrum: STATES+Pure-Absorptive Line Shape

R I R I

R I

R I

R I

R I

Scos(t1,t2) Ssin(t1,t2)

Scos(t1,2) Ssin(t1,2)

Sstates(t1,2)

Sstates(1,2)

FT2 FT2

FT2

Final Data

Pure-phase with 

frequency discrimination



Pulsed Field Gradients in NMR:

Theory and Practice

Keeler et al., Methods in Enzymology, Academic Press, San Deigo, 1994, pp145



PFG’s in NMR

•Coherence transfer pathways

•Pathway selection by phase cycling and PFG

•DQF-COSY



Coherences and Populations

Population is a generalisation of longitudinal magnetisation:

The corresponding spin operators are Iz, Sz and their linear

combinations

Coherence is a generalisation of transverse magnetisation:

Ix, Sx, I1+, I1- are some of the corresponding spin operators

The observable transverse magnetisation is classified as having

a coherence order                  , single-quantum coherence1p  

2p  

3p  

0p 

Double-quantum coherence

Triple-quantum coherence

Zero-quantum coherence, z magnetisation



Phase Cycling: Separating Wheat from Chaff

•Suppression of artifacts

•Selection of the desired CTP, rejection of the undesired CTP

•A pulse can change the coherence level and the phase of the 

coherence level

•If the pulse phase is changed by q, those coherences, for which 

the pulse  induces a coherence level shift p, change the phase 

by p*q. In other words

p q   

Refocusing condition (for selection of desired signals)

0i rec

i

   
Phase of the reciever



Coherence and Density Matrix

Density matrix characterises the state of a spin system

Populations are the diagonal elements of the density matrix

Coherences are the off-diagonal elements of the density matrix

The density matrix may be separated into contributions from different

coherence orders, denoted (p)

( )
m

m

p p
p

p p

 




 

pm, the maximum coherence order, is equal to the number of mutually

coupled spins



What are Gradients?

B0, applied magnetic field

Spatially varying small magnetic field along z direction,

pulsed field gradients

Different portions of the sample experience different magnetic

fields, and thus have different Larmor frequencies

Before the gradients, the transverse

magnetisation vectors are aligned

During the gradients, due to different Larmor

frequencies, the magnetisation dephases,

the net magnetisation becoming zero

Gradients dephase magnetisation, but, one can apply appropriate gradients

to restore the lost magnetisation in a desired way



Field gradient

B1 B2 B3 B4

Magnetic fields 

experienced

NMR spectrum

Spatial Encoding with Gradients

MRI



Gradients Vs. Phase Cycling

Phase cycling:

•All signals are present.

•Desired pathway selection via subtraction.

•Imperfection in pulses and phases will interfere with subtraction

•Imperfect subtraction can lead to considerable amount of

t1 noise, particularly for solvent signals which may obscure

with cross peaks, affecting resolution

•Experiments need to be repeated as many times the number of

phase cycles steps are

•Experiment time is sometimes dictated by the phase cycle steps

and not by the signal

Gradient pulses:

Gradients dephase all the signals.

Gradients can then refocus certain signals by applying

gradients of different durations and strengths (This is because

the dephasing rate varies for each of the coherence, DQC 

dephase twice as fast as SQC).

Gradients enable the observation of only the required signals

No subtraction process, no repetition of the experiment required



Formal Definition of Coherence Order

( ) ( ) exp( )zFp p ip
   

Coherences of different orders respond at different rates to z-rotations: central

property in both phase cycling and gradient schemes.

The effect of a z-rotation on a coherence order p, (p), can be written as

Definition of coherence order, p

z-rotation can be brought about by phase shifted pulses (phase cycling)

or by applying spatially varying magnetic fields (pulsed field gradients).



Gradient Induced Dephasing

•The Larmor frequency at a particular point

•After time t  the phase

•More generally

0( ) ( )z B Gzw  

0( ) ( )z B Gz t  

Gzt is the spatially dependent phase induced by the gradient pulse

( ) i i

i

z Gzt p  



CTP Selection with Gradients

t1 t2

0

+1

+2

-2

-1

t1 t2

DQF-COSY

1 1 1 1gB p t

2 2 2 2gB p t

Net phase is 12 and this should be zero

for a selection of pathways p1 and p2.

This refocusing condition means that 

among the components dephased with 

the first gradient, one particular 

component is rephased with the second 

gradient

For example, in DQF-COSY, where p1=2 and p2=-1 either t2=2t1 or Bg2=2Bg1

1 1 2

2 2 1

g

g

B p

B p

t

t
 The refocusing condition



CTP Selection with Gradients

0gi i i

i

B pt 

The refocusing condition, in general, is

Gradient pulses select only the ratio of coherence orders

Phase cycle by r steps of 360/r selects a particular change in

the coherence order p=p2-p1, and further pathways which have

where N= 0, 1, 2, ….
2 1( )p p Nr 

Gradients can only select one pathway, there is hence a loss

of signal as compared with phase cycling method of equal length



Conclusion

• Phase cycling/Field gradients an integral part of any NMR 

experiment

• Nested, Cogwheel, Multiplex phase cycle schemes available in the 

literature

• Cogwheel gaining some prominence, especially in solid state and 

TROSY kind of experiments in solution-state NMR (Zuckerstaetter 

and Mueller, Concepts in Magnetic Resonance, 81, 30, 2007)
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• Some basic quantum mechanics

• Operators, observables, eigen functions, ….

• Density operator

• Bloch equation

• Lab frame/Rotating frame/solutions

• CW/Pulsed NMR

• Basic ideas of longitudinal and transverse relaxation time

• Relaxation mechanisms

Phenomenological Approcah to NMR Relaxation





Relaxation: Nuclear Spin



Relaxation: Nuclear Spin

• Relaxation driven by molecular motion

• Relaxation, in NMR, can be quite slow. Useful, as one can measure it!

• Relaxation can be used to probe molecular motions

• Nuclear Overhauser Effect, NOE, due to relaxation. This leads to estimate of 

distances and molecular structure



The Bloch vector:
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The Bloch Equation for Spin-Half Nuclei
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The Bloch Equation for Spin-Half Nuclei

If all the magnetic moments are identical and if the magnetic field, B, is uniform:

BMBtMtM
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Once the spin system is perturbed:

k
T

MM
j

T

MM
i

T

MM
BMtM

dt

d eq

zz

eq

yy
eq

xx


122

)(








 

k
T

MM
j

T

M
i

T

M
BMtM

dt

d zyx


1

0

22

)(


 



The Bloch Equation for Spin-Half Nuclei
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Bloch equations in the laboratory frame:

Bloch equations solutions in the laboratory frame:
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The longitudinal magnetisation:

The transverse magnetisation:
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Solutions of the Bloch Equations for Spin-Half Nuclei



Relaxation in the Presence of a Time-Varying RF Field

Consider an RF with angular frequency, w, perpendicular to B0 and with

constant magnitude.  is its phase with respect to the lab frame x and y axes.

])sin()[cos()( 11 jtitBtB


ww 

Assume =0 at t=0

tBB

tBB

BB

y

x

z

w

w

sin

cos

1

1

0







This corresponds to a field perpendicular to B0 and rotating about the z-axis 

in a clockwise direction.



Bloch Equation with RF Field
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Bloch Equations with RF Field

Transforming these equations into a rotating frame at an angular frequency, w,

about the z-axis, and defining:

110

21

,;
1

;
1

BB
TT

ww 

01

1 0

0

MvM
dt

dM

Mvu
dt

dv

vu
dt

du

z
z

z

w

w









Here, the x and y components of M in the lab frame are related to the u and v

components in the rotating frame as:
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Magnetisation Trajectories



dispersion absorption

http://www.uni-stuttgart.de/gkmr/lectures/lectures_WS_0203/magnetisation_blochequ.PDF

Saturation term

Bloch Equations: Solution Under Steady State and CW NMR

0

21

2

1

2

2

2

2

0

21

2

1

2

2

21

0

21

2

1

2

2

2

21

)()(1

)(1~

)()(1

~

)()(1

~

M
TTBT

T
MM

M
TTBT

TB
Mv

M
TTBT

TB
Mu

zz

y

x


































After short RF pulses

Free induction Decay signals are detected 

Steady state CW signals are measured

during (weak) RF irradiation

eqM

)( ptM
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Sx(t)

In MR we measure both transverse magnetization components simultaneously

Sx(t)

Modern NMR “Earlier” NMR



Fast Fourier Transform
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Inversion Recovery
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Saturation Recovery

900
saturation

t
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Saturation Recovery

• SR is less sensitive than IR

• It is not necessary to wait for a long time (10 T1) as in the case of IR 

(magnetisation should get back to equilibrium before repetition) and a 

priori unknown time between scans

• SR is a quick method to measure T1 than IR

• Useful in cases where the lineshapes are very broad, like in the case of 

quadrupolar nuclear spins or if the signal cannot be inverted



T2 - Measurements
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• Homogeneous broadening due to 

fluctuating microscopic magnetic 

fields: This is quantified in T2

• Inhomogeneous broadening: Due to 

the variation of the macroscopic 

magnetic field over the volume of 

the sample due to instrumental 

imperfections or susceptibility 

effects

• The observed transverse relaxation 

time, T2’ is due to both these effects

• Can the inhomogeneous effects/decay be distinguished from homogeneous 

decay for an accurate measurement of T2

• Other effects to be removed are the dead-time delay, how can we get back the 

signal with initial point in tact so that phase distortions are absent



T2 - Measurements

Requirements

Measurement of T2 To obtain full fid

To get signals independent

of B0

To get signals without any 

dead-time problems

Spin-echo schemes



x     x            x            x          x           x

y       x           x            x           x          x

Carr - Purcell

Carr - Purcell – Meiboom - Gill

Measuring Spin-Spin Relaxation Times

Finite pulse compensation (even echoes will be free of pulse errors)



T2 - Measurements

90x 180x

90x 180x

t t

t t

n

Keep incrementing n

Keep incrementing t

Like inversion recovery

(logical thing to do?)

In the method two, formation of the echoes depends on the isochromats (spin vectors) 

experiencing exactly the same field through out the duration of the pulse sequence. If any 

particular spin diffuses into a neighbourhood region during the sequence, it will experience 

a slightly different magnetic field from that where it began, and thus will not be fully 

refocussed. As t increases, such diffusion losses become more severe and the relaxation 

data more unreliable. (However, this is a way to measure molecular diffusion in liquid-state 

NMR.)



90x 180x

t t

n

Keep incrementing n

CP scheme

90x 180y

t t

n

Keep incrementing n

Free of pulse imperfections

CPMG scheme

T2 – Measurements: CPMG Scheme



Even in a well-shimmed magnet, the actual T2  of the 

example here is 19 times than the observed value. The 

observed value corresponds to 0.33 Hz as FWHH.

T2 and T2’

https://www.google.co.in/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwi36pf3jcPOAhUJRo8KHUPwAuEQjRwIBw&url=https://www2.warwick.ac.uk/fac/sci/physics/research/condensedmatt/imr_cdt/students/stephen_day/relaxation/&psig=AFQjCNFOld1Nx0Fkk2Iolzb9cYg_MVg18Q&ust=1471339772304572
https://www.google.co.in/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwi36pf3jcPOAhUJRo8KHUPwAuEQjRwIBw&url=https://www2.warwick.ac.uk/fac/sci/physics/research/condensedmatt/imr_cdt/students/stephen_day/relaxation/&psig=AFQjCNFOld1Nx0Fkk2Iolzb9cYg_MVg18Q&ust=1471339772304572


Relaxation Time Constants

The longitudinal and transverse relaxation mechanisms are independent

of each other.

The restraints on T1 and T2 require that the magnetisation vector can never

exceed the thermal equilibrium value by pulses or by relaxation processes.

This means that the norm is always limited by 

A common restraint is

But mathematically it turns out that 
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Relaxation in 

Nuclear Magnetic Resonance: 

Transition Rate Theory



Relaxation Time Constants



• Relaxation mechanisms

• Correlation times, functions

• Spectral densities

• Transition probabilities, W’s

• Relaxation in a two coupled spin-1/2 system

• Dipolar relaxation

• Solomon equations

• Nuclear Overhauser effect

NMR Relaxation: Towards Transition Rate Theory



Relaxation: Some Intuitive Arguments

• A spin in an external magnetic field undergoes Larmor precession

• Relaxation revolves around phase (de)coherence among groups of spins

• Relaxation is brought about by fluctuating magnetic fields around the nuclear 

spin sites

– Only magnetic fields can do this as only they can interact with the magnetic moment of a spin 

½ nuclei. Nuclei with spins greater than ½, quadrupolar nuclei, can also interact with electric-

field gradients. This is a much stronger interaction.

• A nuclear spin can change its magnetic moment associated with any change in 

the surrounding magnetic fields, either in magnitude and/or direction

• NMR relaxation is mainly brought out by spatial and temporal 

fluctuations/variation in the surrounding/local magnetic fields at the respective 

nuclear spin sites



• Random events:

– Rotational diffusion

– Translational diffusion

– Vibrational/librational motions

– Conformational sampling/variability

• Non-random events:

– Magic-angle spinning

– B0 quenching

Relaxation Sources

Where do the fluctuations come from?


