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NMR Meets Biology (and Medicine)




Human Brain

~ 10" nerve cells
~ 3:-10° m fibers

¢

cannot image single fibers

but: NMR can measure the average orientation of bundles
of nerve cells!



Anisotropic Diffusion

Axon Length : cm
Diameter : 10 um
- Diffusion || axis » Diffusion L axis
Measure (x(0)x(7)) ™= Diffusion tensor
90" 180
RF

< I L

dx

E. O. Stejskal and J. E. Tanner, J. Chem. Phys. 42, 288-292 (1965).



Limits on Precision

. - /N

Example : measure diameter
and orientation of neurons
Quantum sensing:
Measurement process

. . . . \
determines ultimate precision Axon 6@(@
Quantum Cramér-Rao bound (AH)* >

)2

Quantum Fisher information F, = 2 2 | (k|A|l) k

+ 4
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Limits on Precision

Quantum Cramér-Rao bound (A8)* >

Optimal control
parameters

Diameter d [um]

Quantum limits on
diffusion-weighted
measurements

PR Applied 14, 024088 (2020) Gradient G [T/m] ”



Quantification of Brain Tumours

Glioma Early detection and identification
IS essential for successful
treatment and survival

Choices:
® Pulse sequence
e Contrast
e Data analysis

Z. Med. Physik 28, 14 - 24 (2018). _,



Spectroscopic Imaging

Distribution of metabolites in the
human body can assist identification
of disease and treatment

The concentration of metabolites
is tiny compared to H20

4 Frequency
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Spectroscopic Imaging

Distribution of metabolites in the
human body can assist identification
of disease and treatment Selective excitation

The concentration of metabolites and detection

is tiny compared to H20

ala-CHs;

l

lac-CH3 + lipid

v

wanted: lac-CHs;

1.6 1.4 1.2 1
Chemical shift [ppm]
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Spectroscopic Imaging

I - Selective excitation ala-CHs lac-CHs + lipid
and detection l e

A

(b) Gaussian: w1x 1.0

SSEL 1.00

A 4

(c) Gaussian: w1x .26

I 0.67

(d) optimized: X I T
Optimal control xsoQA JL .00

N/
(e) optimized: w1x 1.26 A
JL 0.97

1 2
JMR 243, 8-16 (2014); 255, 34-38 (2015). Chem|cal shift [ppm]
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Atomic Resolution?

le MR
. g\e molecy Specy : :
g9 s, Use an atomic-size sensor
(single spin)
single protein
single DNA
: single ubiquitin
spin network
\'}
HIV-1 RNA
€ N
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% fullerene qubit o
= Q
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hBN
graphene

Du et al., Rev. Mod. Phys. 96, 025001 (2024).

Materials



Spins in Diamond

Room temperature Spins are (almost)
operation ideal qubits
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Diamond

e

Band gap ~5.5 eV
— transparent



Color Centers

Nitrogen: yellow-orange Boron: blue

Defects make diamonds
valuable and interesting!
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Diamond Nitrogen-Vacancy (NV)

Defects make diamonds
valuable and interesting!
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Optical Properties

possible charge states

5 electrons | 6 electrons
spin 1/2 spin 1
1 \'}

o
N

>

NV/- N

PL Intensity

600 700 800
PL wavelength [nm]



NV Centers : Optical Excitation

Energy

Triplet

1.945 eV

ks

-

) 3
3
‘_

3 Fluorescence

Singlet

1)

¥

Laser
initializes
system into
ms=0 state
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Gates: Electron Spin

ms ==>LL .- m— —
v R Apply resonant
N 2.87 GHz MW pulse(s)
msg — 0
0) Pulse generates rotation

Single qubit: —

on Bloch sphere
Bloch sphere

Parameters: Frequency,
amplitude, phase, duration

>

Y Controls: orientation of

rotation axis, rotation angle

1) D> Arbitrary single-qubit gates
1 25



Measuring with Quanta

Quantum systems are at the basis of many
high-precision measurements

Time Magnetic field Temperature
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Single Atom Thermometer

Frequency shift [kHZ]

| | >

I
-0.1 0.0 0.1
Temperature change [deg]
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- Single Atom Magnetometer

300—
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X, 200—
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Magnetic field [uT]

28



Sensing Magnetic Fields

B Is a vector ! meg = +1

Splitting o« B
me = 0 plitiing ;

A single NV measures
component || z (NV-axis)

Can we measure all
components?
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Sensing B

Can we measure all
components?

Tetrahedral symmetry around every atom

4 equivalent orientations in an ideal crystal
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Sensing B

PL (arb. units)

MW frequency (MHz)
J. Appl. Phys. 130, 150902 (2021).
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Variation with |BI




Sensing Modalities

Magnet

Charge

2700 2800 2900 3000 2700 2800 2900 3000
MW frequency (MHz) MW frequency (MHz)

J. Appl. Phys. 130, 150902 (2021). 33



Sensing Magnetic Fields

B is a vector !
3 Amplitude components
Frequency ﬁ(t) — ?(a)t + @)

Phase

Can we measure all these quantities with NVs?

Use multiple NVs in a sample to measure components

2.7 2.8 2.9 3.0
Frequency [GHZ]
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Sensing Magnetic Fields

B 1s a vector !

Can we measure all these quantities with NVs?
Can we measure all these quantities with

a single NV? Method |
Py o) 4 |4 1) 0= n/2
A)l E)O —> = | — 1>— +1> Z

Each magnetic dipole X Y

component couples
to 1 transition

10) 3



Vector Sensing

B 1s a vector !

Can we measure all these quantities with single NVs?

Method Il £ 1

_—1LZ

=

0)

New Journal of Physics 22, 103065 (2020).



Vector Sensing: AC and DC

B 1s a vector !

Can we measure all these quantities with single NVs?

Method Il £ 1
— — 12 Z
BO

Also for tlme-dependent signals!

0)
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- Vector Sensing: AC and DC

B,

Signal « sin(wt + @); w/2x = 2 MHz
pP= 8.8 mW, ¢, = 287°
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Vector Sensing: X, Y

Transverse components? |+ 1)

B, —

X,Y

0)

Nonsecular

== (Observable on longer timescales!

~Bloch-Sigert shift with time resolution
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Vector Sensing: X, Y, Z

Population P,

RF field : 2 MHZz

14 Il
0.5

—eXxpP.

N R

0 10 20

RF pulse duration 7z, [us]
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Vector Sensing: AC and DC

T

11l Il

O
O

Population P,
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M N
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RF pulse dt 9,
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PR Research 5, L022026 (2023). .,



- Sensing Biological Systems




Nanoscale Thermomeftry

Laser
beam Gold
nanoparticle
Green light
Nanodiamond ‘ ﬂ
Microwave
irradiation
Red
fluorescence
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Nanoscale Thermomet

LLLLL

nanoparticle

eeeeeeeeeee

G. Kucsko et al., Nature 500, 54-58 (2013). .,



~Sensing Biological Systems .
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Barry et al., Proc Natl Acad. Sci. USA 113, 14133-14138 (2016).



Future directions: al Sys tems

_ e Spatial resolution

® Other samples
® e¢.g. axons of mammalian neurons

Image courtesy Francois Treussart
Diamond nanopillars fabrication: X. CHECOURY, T. D. HO

(C2N lab) & L. HANLON (LuMIn lab)

Mouse hippocampal neuron culture (14 days in culture):
B. POTIER & B. GRIMAUD (LuMin),

SEM: V. COSTACHE (MIMA2 imaging platform, INRAe)
All the labs are located in Paris-Saclay campus.

Frangois.
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