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Proteins Structure and Dynamics
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Protein Energy Landscape

Reaction Coordinate



Protein Energy Landscape
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Why to measure fast protein
dynamics?



Conformational Entropy regulates Protein Activity
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Conformational Entropy regulates
Protein Degradation
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Why NMR to measure fast protein
dynamics?



Measure Loop dynamics

Other Techniques

} loop
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Measure changes in dynamics (with

solutes, co-factors, etc)
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How to measure fast protein
dynamics?

Calculate Order Parameter (S?)
Conformational Entropy (S)

T1, T2 & het-NOE



Spin-Lattice (T1) and Spin-spin (T2) relaxation
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T2 (spin-spin) relaxation

_ Y M,, =M, e(-t/T2)

Dephasing happens due to
1) T2
2) Field inhomogeneity
3) Diffusion effect



T2 (spin-spin) relaxation
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Measure 15N-T2
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2D T2 spin-echo experiment
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NMR Analysis of Protein Dynamics

Typical T, data for a Protein
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NMR Analysis of Protein Dynamics

Typical Quality of 1.0 r " . . .
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Spin-Lattice relaxation (T1)
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Spin-Lattice relaxation (T1)
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Spin-Inversion Recovery
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NMR Analysis of Protein Dynamics

Typical T, data for a Protein

Biochemistry 1990, 29, 7387-7401
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Heteronuclear NOE

Nuclear Overhauser Effect — NOE : Effect of dipolar coupling through space
(distance dependent effect)




Heteronuclear NOE

Nuclear Overhauser Effect — NOE : Effect of dipolar coupling through space
(distance dependance)
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Heteronuclear NOE
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NMR Analysis of Protein Dynamics

Positive (A) and Negative
(B) contours for NOE data

- negative NOEs indicate
highly mobile residues
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Why do NH spins relax?

A

Energy of magnetic dipole in magnetic field = -u.B
= - uBcos(0)

where p is the magnetic dipole moment
and 0 is the angle between ypand B

The relaxation occurs due to rotational diffusion motions of the
nitrogen atom and orientation of the N-H bond vectors relative to the
external field.

The molecular motions cause °N nucleus to create energy
fluctuation, inducing transitions amongst the Zeeman energy levels
and resulting in relaxation

Bo M A NN AR AN ™AL
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Spectral density functions

The frequency distribution of the motion of a randomly tumbling molecule is

expressed in terms of its spectral density J(w,tau,)

Spectral density function J(w,t.) = Probablity of finding the frequency (energy) o in

the thermal bath that is provided by the motion of the molecule.
T,

For a spherical object J( u:u;r;_) = =—
1+ w'T;
t. =10%g? ¢
> Spectral Density Function (J(®))
= Tc=10'95" L e RN
o g & N
P \
2] .
& § T, =1010g! bf— — _'.‘._ _\\\\ -
T.=101s!1 a \\ \}
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Rotational correlation time or Tumbling time (tauc)=

Time taken to rotate by 1 radian = 360/2n

For spherical objects

3
dma n
T =

) 3kT




T,, T,, and the NOE defined in terms of spectral
density function

/T, =
Pl (wy — wy) + Iwy) + 6J(wyt wy)] + ET(wy)

1/T, = 0.5d44J(0) + J(wy — wy) + 3J(wy) + 6J/(w,y) +
6J(£IJA + {ﬂx:lf + %0213‘;{@3() + 4;(0”

NOE = 1 + [(va/vx)d46J(wy + wy) — J(wy — wy)}Ty]

where:
d = 0.1y, vx?h?/(47%)(1/rix)? Iy — tH-15N bond distance
2 2112 2 H, — magnetic field strength
c”=(% H - 0 : .
(%57)( 0(0y=0.) o, — o, - °N chemical shift tensors

o, —o, =-160 (peptide bonds)



Some concepts of Motion

Both T1 and T2 depend on spectral density functions (o and tauc)
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Quantifying Protein Dynamics From NMR Data

* For a Protein in Solution, J(w;) depends on:
+ overall motion of the protein as a whole
+ internal motion of the *H->N bond vector

Lipari-Szabo Model-Free Formulism

2 521, (1— 5%
-'I(m) = = 3 ‘|‘ 3 -1 - -1 + -1
5 [1 + w’t, 1+ o’t :I t Te” T tm
where: 1., IS the overall motion of the protein

1, is the TH-N internal motion
S? is the spatial restriction of internal motion (order parameter)

If the internal motion is very rapid, t, approaches zero.
If the internal motion is not present, S? approaches one.

Sometimes it is necessary to add an exchange contribution (R.,)
to the predicted R, (T,) to account for the experimentally observed R,

Journal of Biomolecular NMR, 18: 83-100, 2000.



Quantifying Protein Dynamics From NMR Data

* T,, T, and NOE can then be described in terms of:
+ order parameters (S?, S2, S¢)
+ correlation time (t,,,t,) L/T = 831/ T )l + (10 4+ 8) /(3 +8) %
(1 - 8%) /S e/ o wyrm)?]

1 /Ty = 831/ Ty)iael] + 110 4 (7768 /12 + (2/3)8] x
W1 = 8% /8%r/Tem)] |

MNOE =
NOE ;o = 50/(3 + 8)[I(1 = 5%) /83( 7,/ T woxTr )]

Table 1: Expressions of Spectral Density Functions for the Five

Models
optimized

model spectral density functions parameters

1 ) = Y5[SP1./(1 + )] 52

20 Jlw) = Ys5[SP1/(1 + 'ty + (1 — SO/ 5% 1. Biochemistry, 29: 7387-7401, 1990

(1 + w?r?)] Biochemistry, 31:9150-9157,1992
3 Jw) = Us[S* (1 + @?1?)]
Rychy = R + R 5°, Rex

4 Hw) = 5[5 15/(1 + wlrte?) + (1 — $H1/
(1 +w'r.?)]
Ryghsy = Rz + Rex 5% To, Rex
5b He) = 5[ S/ (1 + ) + SA(1 — SO S, 52 1.
(1 + w'r/?)]

a IE’ = 'rmTE"I.(Im + Te)- B Isl' = 'Im'I:-"I(Tm + T::I.: Sﬂ = Sf}ss'z'




Quantifying Protein Dynamics From NMR Data

* For a Protein in Solution, J(w;) depends on:
+ overall motion of the protein as a whole
+ internal motion of the 'H->N bond vector

Extended Model-Free Approach
St (1—SH

1+ w?t, 1 4+ w?t?

2 | 1
J(m):ESf[ ] T =T, + 1,

where: T, IS the overall motion of the protein
1, IS effective correlation time for the slow motion
S¢ is the order parameter for fast internal motion
S.2 is the order parameter for slow internal motion

The effective correlation time for the fast motion is assumed to be zero.

Sometimes it is necessary to invoke internal motions on two widely different time scales



Quantifying Protein Dynamics From NMR Data

* If you assume the only motion present in the protein is the overall molecular tumbling then:
+ spectral density function is only dependent on S? and t,,

+ModelFree (RELAX) — software program generally used to analyze NMR T1,T2 and NOE
data to extract dynamic parameters (T, S%,5:,S¢°)

Mandel, A. M.,Akke, M. & Palmer, A. G. (1995) J. Mol. Bio 246, 144-163.
Palmer, A. G.,Rance, M. & Wright, P. E. (1991) J. Am. Chem. Soc. 113, 4371-4380.



Quantifying Protein Dynamics From NMR Data

+ModelFree (RELAX) — software program generally used to analyze NMR T1,T2 and NOE
data to extract dynamic parameters (t,,t,,5%,S¢,S¢%)

* Given the overall rotational correlation time t,, for the protein, can determine how well each
residues T,,T, and NOE data can be explained by only this motion
+ Does the data fit better by adding:
-~ exchange (R,,)
~ single internal motion (t,)
> fast (S7) and slow (S¢2,t,) internal motion
+ Using ModelFree, 7, and the individual T,,T, and NOE data calculate dynamic parameters
for each residue in the protein. —

L
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D.B |
06F-

§* ost

Relationship between S? and the angle (0)
between the bond vector (u) and the cone the
bond vector traces.

Smaller 6 angle = smaller motion - larger S? M
Larger 6 angle - larger motion - smaller S?
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nature structural biology ¢ volume 7 number 9 ¢ september 2000
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Quantifying Protein Dynamics From NMR Data

* Model for system with two distinct internal motions
+ motions on time scale of <20-50 ps and 0.5-4 ns
+ slower motion is represented by a jump between two states (i and j)
+ faster motion is represented as free diffusion within two axially symmetric cones centered
about the two | and j states
> 0,5 1S the semiangle of the cone
> ¢ is the angle between the NH vectors in the two states (i and )

State | State |
| S = [0.5 cos 8, (1 + cos f))?

S22 =(1+ 3 cos® ¢)/4

§? = §78,2




Quantifying Protein Dynamics From NMR Data
* Relationship between entropy (S) and NMR order-parameter (S?\yr)
S = kgM[A + Bf(1 — Siyr )]

Table 1. Amino Acid-Specific Parametrizations of Side-Chain and
Backbone Entropies versus Sfur According to Equation 2

amino acid® no. of data points error/M (kg) RI M A? B

VST 30 0.13 0.93 I 2.19 1.32
IL? 34 0.09 0.96 2 1.95 1.55
M= 4 0.02 0.98 3 2.73 0.77
NS 7 0.06 0.99 2 206 208
Q+ 11 0.17 0.93 3 2.16 1.60
FHY“*# 18 0.10 0.96 2 2.07 1.51
p 10 0.05 0.89 I 1.90 1.15
K* 21 0.06 0.93 4 2.20 1.22
R“ 10 0.07 0.98 5 2.22 1.23
D” 11 0.12 0.93 2 369 044
EP 21 0.09 099 3 366 064
backbone” 206 0.15 0.88 2 342 0.50

D. W. Li & R. Bruschweiler (2009) J. Am. Chem. Soc. 131, 7226.



NMR Analysis of Protein Dynamics

How Do We Measure T,, T, and NOE data For a Protein?

» Modified 2D H-N HSQC Spectra
+ Standard 1D T1, T2, and NOE experiments are incorporated into the HSQC experiment

d
T, experiment: generate —Z magnetization bo, 180, w5, a0, | uke, 10, 98,

that relaxes as exp(-T/T,) Hoa]s ‘I_‘u_l— D:>‘
180, B0,.1 80, #e,, v80, 90189,

x L L L o

b

T, experiment: generate XY magnetization o, 198, B, 180, o, | 1es, 95, ,.,,

that relaxes as exp(-T/T,) with re-focusing v |aJa]= ] L |f

of field inhomogeniety (CPMG) w0, 90, 100, | 0o, 0o, 99,180, >‘
X L__]_(ala AN

-l—T—l-

NOE experiment: data sets are collected " ) 0, 180, 80, wu
with/without tH presaturation. NOE is (“"] I I E >—
measured from the ratio of the peak " "l"" t “i "o o

intensity in the two experiments.
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Protein Dynamics

Experimental parameters plotted
as a function of sequence

Calculated order parameters (S?) as a
function of sequence. Regions of high
mobility are inferred from low S? values

Residues with exchange contribution
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In general, regions of
secondary structure

show low mobility while &
turns, loops and N-,C-
terminus exhibit high
mobility

T, (s)

007

0.05

T.(s)

0.03}

80 80 100 120 140 160
Residue

TO L1 T1 L2 T2 L3 T3 W4
— - wmh w— wm)  — = -
B C D E F G H

PNAS 2002 vol. 99 no. 21 13560-13565



HIV-protease

The HIV-1 Protease (PR) hydrolyzes viral poly-proteins into
functional protein products that are essential for viral assembly
and subsequent activity




HIV-protease




HIV-protease
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HIV-protease
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These information can lead to better drug-design
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How to obtain motional parameters ?

One can keep measuring multiple relaxation experiments

OR
Make an assumption of an analytical model of the spectral density function
that has only 3 parameters and can be used to fit the measured relaxation data

Lipari-Szabo model

-

= T 5 |
JHw) =5 —=—4(1- 5| ﬂ
|+ (wT, ) 14 (wT)

’ | | |
withTt =T, +T
1, = correlation time for internal motions

T, = overall correlation time
S? = Order parameter (a quantitative measure of internal motions)



How to obtain motional parameters ?

Lipari-Szabo model

T

Jw)=5 —=+(1-§)

| +(wT ) |+ (wT)

: 1 1 1
withTt =T, +T

Fit to obtain tau,, tau,,, S? and a by-product Rex !!
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Fast exchange

k =nAv2 /2(h, - hy)

k=m (Av2 - Av2)Y2[2112

Intermediate exchange

k = m (he-h) /\Snw exchange A
k — exchange rate

v — peak frequency
h — peak-width at half-height /\
Mo exchange

e — with exchange
0 — No exchange




NMR Analysis of Protein Dynamics

For Protein Samples, Typically Monitor Exchange Using 2D NMR

Experiments

* Need resolution and chemical shift dispersion to identify exchange peaks
+ presence of slow exchange effectively increases the number of expected peaks based on the
sequence
+ typically in the range of milusecond to second time range

Expanded Region of 2D H-1>N HSQC Showing Major
and Minor Conformational Exchange Peaks

0 *G36 \

p79°
G7o ‘ o G49

Biochem. J. (2002) 364, 725737



NMR Analysis of Protein Dynamics

Line-Widths Are Indicative of Overall Tumbling Times of the Molecule
* Rotational Correlation Time (t,)
+ related to MW
+ time it takes a molecule to rotate one radian (360°/27)
+ typically in the nanosecond time range

T,.T,(s)
10%
3 T
A7 77r o 1
o T TakT
] =
where:
r = radius 0" -
k = Boltzman constant
n = viscosity coefficient 1072 -
T2
107 -

107 1078 107° 107 10" Tc(s)



NMR Analysis of Protein Dynamics

The MW of the Protein Would Imply an Expected NMR Line-Widths

* Broader than expected line-widths in the 2D tH-1>N HSQC may imply:
+ multimer formation (dimer, tetramer, etc)

(A)

+ aggregation
+ unfolded/denatured

Barstar pH 6.8

Can estimate t, for a spherical protein:

Barstar pH 2.7

T, ~ MW/2400 (ns)

)
» | 0 B G,
. g ® A | 3
* [
512, + 9
* . 2:' - =
ar *, Hy — 2
* . 1 " < hing
LTS R S rio =
‘ 'E.sa A = '39 E
A - &
-t g 08 H7 o =
. o = o =
ol " 1o - & - Es o Z
¢ u‘ﬂ“' 018 vmo = E' B g. ‘“‘7_
t % Al W
. AT v o L16 o - aa'i}w Lie
i, . 2 . Ve ™
.P". - —g} -
— - =
o K2 - o5
NE » - . <
- S - e Loy S
— A
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| | T I | T T ! I T | |
102 986 80 8B4 78 7.2 6.8 88 8.6 a4 8.2 80
M
F>(H") (ppm)

Biochemistry, Vol. 41, No. 31, 2002
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Quantifying Protein Dynamics From NMR Data

* T, and T, relaxation and the NOE are related to dynamics
+ correlated to the rotational correlation time of the protein

log ( Ti)

Biochemistry, Vol. 28, No. 23, 1989
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Quantifying Protein Dynamics From NMR Data

* T,, T, and the NOE defined in terms of spectral density function
+ total “power” available for relaxation is the total area under the spectral density function

/T =
A (ws — wy) + 3J(wy) + 6J(wat wy)] + 2 (wy)

1/T, = 0.5d44J(0) + J(wy — wy) + 3J(wy) + 6J(w,y) +
EJ(WA + {.r.?x:lf + '/‘50213J{wx) + 4;(0”

NOE = 1+ [(va/vx)d46J(wy + wy) — J(wy — wy)}Ty]

where:
d = 0.1y, vx?h?/(47%)(1/rix)? Iy — tH-15N bond distance
2 2112 2 H, — magnetic field strength
c”=(% H - 0 : .
(%57)( 0(0y=0.) o, — o, - °N chemical shift tensors

o, —o, =-160 (peptide bonds)
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Quantifying Protein Dynamics From NMR Data

* For a Protein in Solution, J(w,;) depends on:
+ overall motion of the protein as a whole
+ internal motion of the *H-1°N bond vector

Lipari-Szabo Model-Free Formulism
[ 52, (1— SE)‘E]

2
J = —
(®) l+w’t, 1+ o’

5

1=r-1 -1
T =T, T 714

where: 1. 1S the overall motion of the protein
1, is the TH-N internal motion
S? is the spatial restriction of internal motion (order parameter)

If the internal motion is very rapid, t, approaches zero.
If the internal motion is not present, S? approaches one.

Sometimes it is necessary to add an exchange contribution (R,,)
to the predicted R, (T,) to account for the experimentally observed R,

Journal of Biomolecular NMR, 18: 83-100, 2000.
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Quantifying Protein Dynamics From NMR Data

* For a Protein in Solution, J(w,;) depends on:
+ overall motion of the protein as a whole
+ internal motion of the *H-1°N bond vector

Extended Model-Free Approach
St (1—SH

1+ w?t, 1 4+ w?t?

Z 0 A= -l 1
J(m):ESf[ ] T =T, + 1,

where: T, 1S the overall motion of the protein
1, IS effective correlation time for the slow motion
S¢ is the order parameter for fast internal motion
S.2 is the order parameter for slow internal motion

The effective correlation time for the fast motion is assumed to be zero.

Sometimes it is necessary to invoke internal motions on two widely different time scales
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Quantifying Protein Dynamics From NMR Data

* T,, T, and NOE can then be described in terms of:
+ order parameters (S?, S2, S¢)
+ correlation time (t,,,t,) L/T = 831/ T )l + (10 4+ 8) /(3 +8) %
(1 - 8%) /S e/ o wyrm)?]

/Ty = S/ Tl + 10 + (7/6)8] /12 + (2/3)8] %
1= 5%)/8%(re/Tm)] |

MNOE =
HGEH,.;H = 5':',-"'[3 + 6]”“ - Sz}!'rslﬂfu"rfm}{ulrrn]i]

Table 1: Expressions of Spectral Density Functions for the Five

Models
optimized
model spectral density functions parameters
1 ) = Y5[SP1./(1 + )] 52
20 Jlw) = Ys5[SP1/(1 + 'ty + (1 — SO/ 5T,

(1 + w?r?)]
3 Jw) = Us[S* (1 + @?1?)]
Rychy = R + R 5°, Rex
4 Hw) = 5[5 15/(1 + wlrte?) + (1 — $H1/
(1 + oY)

Ryghsy = Rz + Rex 5% To, Rex
58 He) = 5[ S/ (1 + ) + SA(1 — SO S, 52 1.
1+ ') Biochemistry, 29: 7387-7401, 1990

a Ie’ — rmrel."(rm — Te)- b 1’5" = ImI:-"I(Tm -+ 1'::|; o SESS_ BiOChemiStry, 31:9150-9157,1992
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Quantifying Protein Dynamics From NMR Data

* If you assume the only motion present in the protein is the overall molecular tumbling then:
+ spectral density function is only dependent on S? and t,,

Ja) = S0 /(1 + (wrg)?]

+ correlation time can then be determined from the ratio of experimental T,/T, ratios
+ determined by minimizing the difference between the left and right side of the following
equation for each T,/T, pair for each residue in the protein.

T\ /Ty~ [dJMws — wy) + 3 wy) + 67wy + wy)] +
T (wy)] /[0.5444TN0) + Jwy, — wy) + 3 wy) +
6 ws) + 6JTwy + wx)l + Vc®l3T Twy) + 4J(0)] |

+ ModelFree — software program generally used to analyze NMR T1,T2 and NOE data to
extract dynamic parameters (t,,,t,,5%,5¢4,S:%)

Mandel, A. M.,Akke, M. & Palmer, A. G. (1995) J. Mol. Bio 246, 144-163.
Palmer, A. G.,Rance, M. & Wright, P. E. (1991) J. Am. Chem. Soc. 113, 4371-4380.
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Quantifying Protein Dynamics From NMR Data

 Given the overall rotational correlation time <, for the protein, can determine how well each
residues T,,T, and NOE data can be explained by only this motion
+ Does the data fit better by adding:
- exchange (R,,)
- single internal motion (t,)
- fast (S¢) and slow (S¢2,t,) internal motion
+ Using ModelFree, 7, and the individual T,,T, and NOE data calculate dynamic parameters
for each residue in the protein.
0.81 I | | | ”— |
o8 .\ |

o.7r

Relationship between S? and the angle (0)
between the bond vector (1) and the cone the
bond vector traces.

06-
§* ost

0.4

Smaller 6 angle = smaller motion - larger S?
Larger 6 angle - larger motion - smaller S?

D.3r

0.2

ot ~_

ﬂ 1 1 i 'l 1 S 1 i
0 10 20 30 40 50 &0 70 80
8,

nature structural biology ¢ volume 7 number 9 * september 2000
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Quantifying Protein Dynamics From NMR Data

* Model for system with two distinct internal motions
+ motions on time scale of <20-50 ps and 0.5-4 ns
+ slower motion is represented by a jJump between two states (i and j)
+ faster motion is represented as free diffusion within two axially symmetric cones centered
about the two | and j states
- 0, 1S the semiangle of the cone
> ¢ Is the angle between the NH vectors in the two states (i and j)

State i State |
(=] . H sz - [ﬂ,j COs ﬂ:,f [] + cos Eﬂf}]i

S By S.2= (1 + 3 cos? ¢) /4

51 - szsai
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Quantifying Protein Dynamics From NMR Data

* Relationship between entropy (S) and NMR order-parameter (S?\yr)
2
S = kgM|[A + Bf(1 — Sqyr)|  fislog (x) base e

Table 1. Amino Acid-Specific Parametrizations of Side-Chain and
Backbone Entropies versus Sfur According to Equation 2

amino acid® no. of data points error/M (kg) RI M A? B

VST 30 0.13 0.93 I 2.19 1.32
IL? 34 0.09 0.96 2 1.95 1.55
M= 4 0.02 0.98 3 2.73 0.77
NS 7 0.06 0.99 2 206 208
Q+ 11 0.17 0.93 3 2.16 1.60
FHY“*# 18 0.10 0.96 2 2.07 1.51
p 10 0.05 0.89 I 1.90 1.15
K“ 21 0.06 0.93 4 2.20 1.22
R“ 10 0.07 0.98 5 2.22 1.23
D” 11 0.12 0.93 2 369 044
EP 21 0.09 0.99 3 3.66 0.64
backbone” 206 0.15 0.88 2 342 0.50

D. W. Li & R. Bruschweiler (2009) J. Am. Chem. Soc. 131, 7226.
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How Do We Measure T,, T, and NOE data For a Protein?

» Modified 2D H-N HSQC Spectra
+ Standard 1D T1, T2, and NOE experiments are incorporated into the HSQC experiment

d
T, experiment: generate —Z magnetization BURMURLTRLT B 108 99, 14,

that relaxes as exp(-T/T,) H I_ﬂ_lﬂ 1'1 l 1] afa >‘
B0, 90 16D, 3 o120, 90, 180,

HI‘ &0
x LBl Lt L e

b
T, experiment: generate XY magnetization o, 198, 40, 100, o, | 1e0, 99, 100,
that relaxes as exp(-T/T,) with re-focusing v |afa]: - | ] afa
of field inhomogeniety (CPMG) wo, 90,5100, | 1ne, | 00, 98,180, >‘
N HE B0 DN N ey
T+

180 180, §0, 180,

c
NOE experiment: data sets are collected , "
with/without *H presaturation. NOE is : (“"I) I K *"I_":'I>—
measured from the ratio of the peak " 'l"" ) "i‘““ 'i" —
intensity in the two experiments.
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Typical T, and T, data For a Protein

Biochemistry 1990, 29, 7387-7401

A T4

[ - - = - o - =)
' . - ° & ° o
T = 48 ms * e - u -“ - L {20 T = 5.3 ma - o o= q." -B k120
« . 8L e, & . 8% e
= oL, ) - T e £ -
- = o == a0 o= o g
- - ." L] L O‘q
-] L =] L
- . e e [ - = = o 125
- ﬂ"' o o o - ﬂ. =
- - - ° e _e -
- - - =1 - -
K 4 8 0 8 B
| - -—= = . -~ - . [ - B
| . - - - - &
[ Tedoime = o - l'.- e 120 TediZims * = ﬂ-.‘—' -a 120
x - = | 3 -
- -2 = & - | - -'-‘. i 1{ ﬂ" -
- s - - e | - T o =o -
- - - : - - 't
- - | o e L
- - . - l-12’6 - - . - 125
= - o - | - - - - I
- - = - ! . e e -
- - - | o - - |
w0 g [ 0 ) 8
= —— - = -~ = -
. - | . - -
T =588 ms & " ‘._ﬂ"' s Fi20 Folll92ms =~ = - ‘.-.‘ *a H20
- - -0 . - F - - " "
“a -" ] . . - - "& -
. - P e a = &2 me L]
- L]
- - -- - - -
= L - - !
- .. - 125 | - - . - 125
= - -
- - - - - - .-' - -
- - - - -
0 g 8 0 8 8

IH Fz (ppm)
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Typical Quality of Fits
for T,and T, 2D !H-
15N HSQC Data

Positive (A) and Negative
(B) contours for NOE data
- negative NOEs indicate
highly mobile residues

Intensity
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i_ \ \\:’\H 0.8
0.8 'xf%\\ ]
: G%\ ., : 04
I h \Hx‘\ \\-'\N NEE .\‘\.
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ot . 0 3
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| | 1 i i 1
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Experimental parameters plotted <
as a function of sequence

Calculated order parameters (S?) as a
function of sequence. Regions of high J

T
L Lo T

_.“1'"'*"‘]'. -.“"Fi NM La‘d"d"r&hdiaﬂﬁw"ﬂiﬂf*‘ﬂﬁ' ‘-{TLJ_
» 4

e 2o A i LI b an LU L - B R C L

F wep W ! Ta ~
= L 't -
=] ! 1 T R
R ATARY fimett ]
2T e <L e Porg o 2 ] BT
LW ;-\,.w-“s_‘,- Ml et e i
1 L=t 1 1 1 1 i 1 1 9
we 0 30 40 B0 B TR 4D R 180 LID LRG 130 L4 1N
o

PN Pl Ay TR AR T

L) e '

mobility are inferred from low S? values

Residues with exchange contribution
(Re,) to T, = slow conformational
exchange (msec to sec) —

Residues that exhibit
fast internal motions ()

) as ; B
; L L% Experimenial NOEs
48 :
gl | 1 i 1 L 1 I 1 1 L 1 i i
W B B 4 60 80 H B4 @8 105 118 130 180 148 188
~
1o —T T T T T
| [} f
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- | !Iﬂ .él o lI
iéwm;ﬂm 0
) ] [ e
Difference in calcu_lated NOEs E—
between models with one and g - et 200
two internal motions 5
|
~ P T B F0 02 L1Q LED 130 p4D 35D
Calculated fast (Sf:?) and sonv_(_SSZ) order < ; "”ﬁ_é v SRl :m*n |
parameters for residues exhibiting botha < . \ Onderpoametrs for Mol 2 3
- . Lt s = i S5 iw) 8l (m) p
fast (ps) and slow (ns) internal motion A SR fome
> 12 B M 40 50 &0 D BF B 100 L0 13D 130 a0 LB
. . . e e
Slow internal motions (t,) for residues ,4 L’ * A T
oy ey . ] | dm 7
exhibiting both fast and slow internal o .ﬁw S S
motion (Te = 0) L W a3 41 B B0 0 B B0 0D L0 LE0 130 GeD 130
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In general, regions of
secondary structure

show low mobility while &
turns, loops and N-,C-
terminus exhibit high
mobility

T, (s)

007

0.05

T, (s)

0.03}

0 20 40 60 80 100 120 140 160
Residue

TO LI Til2 T2 L3 T3 W4
—_— - — - w—
5S¢ D & P& B

PNAS 2002 vol. 99 no. 21 13560-13565
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