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Introduction and Overview
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Liquid-State NMR - High Spectral Resolution
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M.O. Ebert, Skript zur Vorlesung “Analytische Chemie I & II NMR-Spektroskopie”

Changmiao Guo, John C.Williams, and Tatyana 
Polenova, Biophys J. 117, 938-949 (2019)
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Solution-State and Solid-State NMR Spectra

4

–100–50050100

–50050100150200250300

δ [ppm]

δ [ppm]

1H

13C

H2N CH C

CH

O

CH3

CH3

N
H

CH C

CH2

OH

O

❏ Static solid-state NMR spectra of powdered samples are very broad compared to solution-
state NMR spectra.

❏ This is due to the anisotropic interactions.
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Source of Anisotropy
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B0

B1

Without an external field, the 
dipolar-coupling Hamiltonian 
is isotropic.

The static magnetic field B0
truncates the dipolar-coupling 
Hamiltonian.

An applied rf field B1 truncates 
the dipolar-coupling 
Hamiltonian again.

B0

B1
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Averaging of Anisotropic Interactions
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❏ The spatial part of the anisotropic part of the Hamiltonian is a second-rank tensor and has 
an orientation dependence of (3 cos2(θ)-1)/2.

❏ Rotation of the sample about an axis  θr leads to a scaling of the tensor by (3 cos2(θr)-1)/2.
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Isotropic and Anisotropic Interactions
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Interaction Liquid-State NMR Solid-State NMR

chemical shift
(20000 Hz)

differentiation 
between 
different atoms

differentiation 
between 
different atoms

J-coupling
(100 Hz)

sgnittilpssgnittilps

chemical-shift 
tensor
(20000 Hz)

relaxation: line 
broadening

anisotropic 
powder line 
shape

dipolar coupling 
(50000 Hz)

relaxation: line 
broadening

anisotropic 
powder line 
(Pake pattern)

❏ Broad powder lines are the source of many technical difficulties in solid-state NMR.
❏ High spectral resolution is important to distinguish different lines and match them to atoms 

in the molecule.
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❏ Broad powder lines are the source of many technical difficulties in solid-state NMR.
❏ High spectral resolution is important to distinguish different lines and match them to atoms 

in the molecule.

–25–20–15–10–50510152025
δ [kHz]

Molecular tumbling leads to an averaging of the anisotropic 
interaction.

Anisotropy is only manifest through line broadening by relaxation 
processes.
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Isotropic and Anisotropic Interactions
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Interaction Liquid-State NMR Solid-State NMR
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❏ Broad powder lines are the source of many technical difficulties in solid-state NMR.
❏ High spectral resolution is important to distinguish different lines and match them to atoms 

in the molecule.

–25–20–15–10–50510152025
δ [kHz]

Molecular tumbling leads to an averaging of the anisotropic 
interaction.

Anisotropy is only manifest through line broadening by relaxation 
processes.

Different crystallite orientations contribute to different positions in 
the powder line shape.

Anisotropy is manifest through broad lines.
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Magic-Angle Spinning
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rf coil

air bearings

optical fibres

drive air

bearing air

VT air

turbine

1.8 mm MAS probe (50 kHz)
(A. Samoson et al. J. Magn. Reson. 149, 264 (2001))

❏ Outer diameter of MAS rotor determines maximum rotation frequency: 6 mm - 8 kHz, 4 mm 
- 15 kHz, 2.5 mm - 30 kHz, 1.8 mm - 50 kHz, 1.3 mm - 70 kHz, 0.5 mm - 170 kHz.

❏ Sample volume depends on (inner diameter).
❏ Higher MAS frequencies allow the implementation of different types of experiments.
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Magic-Angle Spinning
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rf coil

air bearings

optical fibres

drive air

bearing air

VT air

turbine

1.8 mm MAS probe (50 kHz)
(A. Samoson et al. J. Magn. Reson. 149, 264 (2001))

! Outer diameter of MAS rotor determines maximum rotation frequency: 6 mm - 8 kHz, 4 mm 
- 15 kHz, 2.5 mm - 30 kHz, 1.8 mm - 50 kHz, 1.3 mm - 70 kHz, 0.5 mm - 170 kHz.

! Sample volume depends on (inner diameter).
! Higher MAS frequencies allow the implementation of different types of experiments.

http://www2.warwick.ac.uk/fac/sci/physics/research/condensedmatt/nmr/equipment/
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Magic-Angle Spinning
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rf coil

air bearings

optical fibres

drive air

bearing air

VT air

turbine

1.8 mm MAS probe (50 kHz)
(A. Samoson et al. J. Magn. Reson. 149, 264 (2001))

! Outer diameter of MAS rotor determines maximum rotation frequency: 6 mm - 8 kHz, 4 mm 
- 15 kHz, 2.5 mm - 30 kHz, 1.8 mm - 50 kHz, 1.3 mm - 70 kHz, 0.5 mm - 170 kHz.

! Sample volume depends on (inner diameter).
! Higher MAS frequencies allow the implementation of different types of experiments.

http://www2.warwick.ac.uk/fac/sci/physics/research/condensedmatt/nmr/equipment/

E.R. Andrew, Magic angle spinning in solid state n.m.r. spectroscopy, Philos. Trans. R. Soc. Lond. Ser. A, Math. Phys. Sci. 299 (1981) 505–520. https://doi.org/
10.1098/rsta.1981.0032.
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Solution-State and Solid-State NMR Spectra
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❏ Static solid-state NMR spectra of powdered samples are very broad compared to solution-
state NMR spectra.

❏ This is due to the anisotropic interactions.
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Solution-State and Solid-State NMR Spectra
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❏ Under fast MAS (30 kHz), the proton spectrum is still mostly featureless, while the carbon 
spectrum shows significant improvement in resolution.

❏ Using advanced decoupling methods, one can obtain spectra with narrow lines.
❏ Improving the 1H spectrum is difficult (homonuclear decoupling, isotope dilution using 2H).
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Solution-State and Solid-State NMR Spectra
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❏ Under fast MAS (30 kHz), the proton spectrum is still mostly featureless, while the carbon 
spectrum shows significant improvement in resolution.

❏ Using advanced decoupling methods, one can obtain spectra with narrow lines.
❏ Improving the 1H spectrum is difficult (homonuclear decoupling, isotope dilution using 2H).
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Timeline of MAS Developments
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High-Field Magnet Development
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H. Maeda, Y. Yanagisawa, Future prospects for NMR magnets: A perspective, J. Magn. Reson. 306 (2019) 80–85. doi:10.1016/j.jmr.2019.07.011.
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Proton Spectra at Faster MAS

13

M. Callon, D. Luder, A.A. Malär, T. Wiegand, V. Římal, L. Lecoq, A. Böckmann, A. Samoson, B.H. Meier, High and fast: NMR protein–proton side-chain 
assignments at 160 kHz and 1.2 GHz, Chem. Sci. 14 (2023) 10824–10834. https://doi.org/10.1039/d3sc03539e.
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Time-Dependent Hamiltonians
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*̂ = (−1)q Aℓ,q(i )T̂ℓ,q(i )
q=−ℓ

ℓ

∑
ℓ=0

2

∑
i
∑

❏ The internal spin-system Hamiltonian in the laboratory frame is static if the molecule is static.

❏ Hamiltonian in solid-state NMR is always time dependent!

*̂ t( ) = (−1)q Aℓ,q(i ) t( )T̂ℓ,q(i )
q=−ℓ

ℓ

∑
ℓ=0

2

∑
i
∑ *̂ t( ) = (−1)q Aℓ,q(i )T̂ℓ,q(i ) t( )

q=−ℓ

ℓ

∑
ℓ=0

2

∑
i
∑

sample rotation
interaction-frame

transformation

Sz

SySx

Sz

SySx

Sz’

Sy’
Sx’

θ

ωt

U(t)

laboratory frame interaction frame
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*̂ = (−1)q Aℓ,q(i )T̂ℓ,q(i )
q=−ℓ

ℓ

∑
ℓ=0

2

∑
i
∑

❏ The internal spin-system Hamiltonian in the laboratory frame is static if the molecule is static.

sample rotation
interaction-frame

transformation

Sz

SySx

Sz

SySx

Sz’

Sy’
Sx’

θ

ωt

U(t)

laboratory frame interaction frame

*̂ t( )= (−1)q Aℓ,q(i ) t( )T̂ℓ,q(i ) t( )
q=−ℓ

ℓ

∑
ℓ=0

2

∑
i
∑ = *̂(n,k )einωrte ikωmt

n=−2

2

∑
k=−∞

∞

∑

❏ Hamiltonian in solid-state NMR has often multiple time dependencies!

+
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Time-Dependent and Effective Hamiltonians
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❏ A simple solid-state NMR experiment: Proton-Driven Spin Diffusion under MAS (PDSD)

I

S τm

CP

CP

decoupling decoupling

t1 t2

π/2

π/2 π/2

❏ The time-dependent Hamiltonian with the exception of the radio-frequency part is the same 
during all times of the experiment:
*̂ t( )= Aℓ,0

(i ) t( )T̂ℓ,0
(i )

ℓ=0

2

∑
i
∑ + *̂ rf t( )= *̂D t( )+ *̂ CS t( )+ *̂ J t( )+ *̂ rf t( )
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Time-Dependent and Effective Hamiltonians
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! A simple solid-state NMR experiment: Proton-Driven Spin Diffusion under MAS (PDSD)

I

S τm

CP

CP

decoupling decoupling

t1 t2

π/2

π/2 π/2

! The time-dependent Hamiltonian with the exception of the radio-frequency part is the same 
during all times of the experiment:
*̂ t( )= A!,0

(i ) t( )T̂!,0
(i )

!=0

2

!
i
! + *̂ rf t( )= *̂D t( )+ *̂ CS t( )+ *̂ J t( )+ *̂ rf t( )

CP

CP

2

! Effective Hamiltonian during Hartmann-Hahn cross polarization: heteronuclear zero-quantum 
Hamiltonian: *̂! !IS

(eff) Î +Ŝ"+ Î "Ŝ+( )
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Time-Dependent and Effective Hamiltonians
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! A simple solid-state NMR experiment: Proton-Driven Spin Diffusion under MAS (PDSD)

I

S τm

CP

CP

decoupling decoupling

t1 t2

π/2

π/2 π/2

! The time-dependent Hamiltonian with the exception of the radio-frequency part is the same 
during all times of the experiment:
*̂ t( )= A!,0

(i ) t( )T̂!,0
(i )

!=0

2

!
i
! + *̂ rf t( )= *̂D t( )+ *̂ CS t( )+ *̂ J t( )+ *̂ rf t( )

! Effective Hamiltonian during free evolution (t1 and t2): S-spin isotropic chemical-shift 
Hamiltonian:

decoupling

t1t1t

π/2π/2π

decoupling

t2t2t

/2

*̂! !S
(iso)Ŝz
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Time-Dependent and Effective Hamiltonians

15

! A simple solid-state NMR experiment: Proton-Driven Spin Diffusion under MAS (PDSD)

I

S τm

CP

CP

decoupling decoupling

t1 t2

π/2

π/2 π/2

! The time-dependent Hamiltonian with the exception of the radio-frequency part is the same 
during all times of the experiment:
*̂ t( )= A!,0

(i ) t( )T̂!,0
(i )

!=0

2

!
i
! + *̂ rf t( )= *̂D t( )+ *̂ CS t( )+ *̂ J t( )+ *̂ rf t( )

τmτmτ

/2 π/π/π

! Effective Hamiltonian during spin-diffusion mixing time: homonuclear zero-quantum 
Hamiltonian: *̂! !II

(eff) Ŝ1
+Ŝ2
"+ Ŝ1

"Ŝ2
+( )Î z
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Time-Dependent and Effective Hamiltonians
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❏ A simple solid-state NMR experiment: Proton-Driven Spin Diffusion under MAS (PDSD)

I

S τm

CP

CP

decoupling decoupling

t1 t2

π/2

π/2 π/2

❏ The time-dependent Hamiltonian with the exception of the radio-frequency part is the same 
during all times of the experiment:
*̂ t( )= Aℓ,0

(i ) t( )T̂ℓ,0
(i )

ℓ=0

2

∑
i
∑ + *̂ rf t( )= *̂D t( )+ *̂ CS t( )+ *̂ J t( )+ *̂ rf t( )

❏ The combination of magic-angle spinning and time-dependent radio-frequency irradiation 
allows us to generate different effective Hamiltonians during the course of an experiment.
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Typical NMR Experiments in Biological Solids
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S. Penzel et al., J. Biomol. NMR 63, 165 (2015) R. Linser, J. Biomol. NMR 52, 151 (2011)

❏ All pulse sequences use rf-irradiation schemes that lead to time-dependent Hamiltonians 
for decoupling or recoupling purposes. 
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Instrumentation
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Time-lapse photography by M. Batel and A. Hunkeler

❏ High-field magnets are essential for solid-state NMR - a 1200 MHz standard-bore 
magnet has been available since a few years.

❏ Probes for fast MAS (up to 160 kHz) with multiple rf channels and high sensitivity.
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High-Resolution Solid-State NMR
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A. Torosyan, T. Wiegand, M. Schledorn, D. Klose, P. Güntert, A. 
Böckmann, B.H. Meier, Including Protons in Solid-State NMR 
Resonance Assignment and Secondary Structure Analysis: The 
Example of RNA Polymerase II Subunits Rpo4/7, Front. Mol. 
Biosci. 6 (2019) 36–8. doi:10.3389/fmolb.2019.00100.
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Periodic Table: Quadrupolar Nuclei
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and now text.

MAER 26.6.2003

Th Pa
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U

Nd Pm
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Eu
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Gd
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H

Li Be
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Sr
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*La
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Ru
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Sn
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IIA
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20



Matthias Ernst ETH Zürich

Spin-1/2 vs. Quadrupolar Nuclei
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m = − 1
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ω0

+ 1
2

          − 1
2

❏ Quadrupolar nuclei have more than one transition frequency and, therefore, multiple lines in 
the spectrum.
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Spectra of Quadrupolar Nuclei (Spin 3/2)
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 – 400  – 300  – 200  – 100 0 100 200 300 400
ω/(2π) [kHz]

 – 400  – 300  – 200  – 100 0 100 200 300 400
ω/(2π) [kHz]

no second-order

with second-order

❏ Quadrupolar line shapes are very broad 
because of the satellite transitions that are 
shifted by the quadrupolar coupling.

❏ On the scale of the full line, the second-order 
contribution is not visible.

❏ If we zoom into the central transition, we see 
the line shape generated by the second order.

 – 30  – 20  – 10 0 10 20 30 40 50
ω/(2π) [kHz]

η  = 1.0

η  = 0.75

η  = 0.5

η  = 0.25

η  = 0.0
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Magic-Angle Spinning of Quadrupolar Nuclei
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! MAS does not average the quadrupole lines completely.
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Magic-Angle Spinning of Quadrupolar Nuclei
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! MAS does not average the quadrupole lines completely.

m = 

m = 

m = 

m = 

1
2

1
2

3
2

3
2

-

-

+

+

zeroth-order first-order
quadrupolar

second-order
quadrupolar(Zeeman only)

Line Spectrum for a Single Crystallite:

1
2+3

2+

1
2-1

2+
3
2-1

2-

ν

-4Δ(1)

-1Δ(1)

-4Δ(1)

-1Δ(1)

+5Δ(2)

+4Δ(2)

-4Δ(2)

-5Δ(2)

3Δ(1)+Δ(2) 8Δ(2) -3Δ(1)+Δ(2)

central
transition
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the pages in landscape format and does not rotate them to portrait. It looks like the page
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Table 2.3: Tensor Averaging Under Different Symmetries
sknaR rosneT elbissoPyrtemmyS

Tetragonal
D4 0 2 4 5 6 7 8 9 10

Tetrahedral
T 0 3 4 6 7 8 9 10

Octahedral
O 0 4 6 8 9 10

Icosahedral
I 0 6 10

Spherical
SO(3) 0
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This is white text which is not visible. It is here to make sure that the Acrobat Distiller leaves
the pages in landscape format and does not rotate them to portrait. It looks like the page
orientation depends on the amount of text and it’s orientation. Therefore, I have added some
invisible text here to force the proper orinetation of all pages even if they have only bit images
and now text.

MAER 26.6.2003

θ1

θ2

❏ Simultaneous rotation about two axes 
leads to a complete averaging of the 
quadrupole coupling.

❏ Example 23Na: mixture of sodium 
oxalate and sodium sulfate.

Copied from: Y. Wu, B.Q. Sun, A. Pines, A. Samoson, and E. Lippmaa, “NMR Experiments 
With a New Double Rotor”, Journal of Magnetic Resonance 89, 297-309 (1990).
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stepper motor
(shielded)

actuator
(shielded)

lower pulley

upper pulley

turnbuckles

Spectra™ cord

0º 54.73º 90º(b)

(a)

R.W. Martin, J.E. Kelly, K.A. Collier, Spatial reorientation 
experiments for NMR of solids and partially oriented liquids, 
Prog. NMR Spectr. 90-91 (2015) 92–122. doi:10.1016/
j.pnmrs.2015.10.001.

❏ Dynamic-angle spinning (DAS) allows a fast reorientation 
of the spinning axis during the experiment.
π/2 π/2 π/2

t1 t2τhop

θ1

θ2

This is white text which is not visible. It is here to make sure that the Acrobat Distiller leaves
the pages in landscape format and does not rotate them to portrait. It looks like the page
orientation depends on the amount of text and it’s orientation. Therefore, I have added some
invisible text here to force the proper orinetation of all pages even if they have only bit images
and now text.

MAER 26.6.2003

M.A. Eastman, P.J. Grandinetti, Y.K. Lee, and A. Pines “Double-Tuned Hopping-Coil Probe
for Dynamic-Angle Spinning NMR”, Journal of Magnetic Resonance 98, 333-341 (1992)
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A. Medek, L. Frydman, Multiple - quantum magic - angle spinning NMR: a new technique for probing 
quadrupolar nuclei in solids, J. Braz. Chem. Soc. 10 (1999) 1–16. doi:10.1590/S0103-50531999000400003.

❏ MQMAS needs only a 
standard MAS probe.

❏ A special echo sequence 
leads to an averaging of 
the residual line 
broadening under MAS.

❏ Like DAS, this is a two-
dimensional method.
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Mamallapuram, 2022
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❏ Cartesian notation for Hamiltonians describing spin-field interactions: 

❏ Cartesian notation for Hamiltonians describing spin-spin interactions: 

❏ All Hamiltonian can be written in this notation.

❏ The coupling matrix  describes the spatial relationship between the two spins or the spin 
and the field.

❏ The coupling matrix  can be decomposed into three components:
- trace of the matrix (isotropic component)
- anti-symmetric part of the matrix (rank-1 component)
- symmetric part of the matrix (rank-2 component)

ℋ̂(k,B) = ̂ ⃗Ik A(k,B) ⃗B = ( ̂Ikx, ̂Iky, ̂Ikz)
axx axy axz
ayx ayy ayz
azx azy azz

Bx

By

Bz

ℋ̂(k,n) = ̂ ⃗Ik A(k,n) ̂⃗In = ( ̂Ikx, ̂Iky, ̂Ikz)
axx axy axz
ayx ayy ayz
azx azy azz

̂Inx

̂Iny

̂Inz

A

A
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A= A 0( )+A 1( )+A 2( )❏ A general matrix A can be decomposed into three parts:

A 0( ) =
a 0 0
0 a 0
0 0 a

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟

A 2( ) =

axx −a
axy +ayx

2
axz +azx

2
axy +ayx

2
ayy −a

ayz +azy
2

axz +azx
2

ayz +azy
2

azz −a

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

A 1( ) =

0
axy −ayx

2
axz −azx

2
ayx −axy

2
0

ayz −azy
2

azx −axz
2

azy −ayz
2

0

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

isotropic component
rank-zero component

first-rank component 
anti-symmetric matrix component

second-rank component
symmetric matrix component

❏ Rotations will not mix the three components!
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A= A 0( )+A 1( )+A 2( )❏ A general matrix A can be decomposed into three parts:

A 0( ) =
a 0 0
0 a 0
0 0 a

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟

A 2( ) =

axx −a
axy +ayx

2
axz +azx

2
axy +ayx

2
ayy −a

ayz +azy
2

axz +azx
2

ayz +azy
2

azz −a

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

A 1( ) =

0
axy −ayx

2
axz −azx

2
ayx −axy

2
0

ayz −azy
2

azx −axz
2

azy −ayz
2

0

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

isotropic component
rank-zero component

first-rank component 
anti-symmetric matrix component

second-rank component
symmetric matrix component

❏ Rotations will not mix the three components!

does not play an important role in MR

Important for solution and solids

Important for solids 
(and relaxation in liquids)
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❏ Cartesian notation for Hamiltonians describing spin-field interactions: 

❏ Cartesian notation for Hamiltonians describing spin-spin interactions: 

❏ The scalar-product notation is equivalent to the vector/matrix/vector notation with the vectors , 

, and  defined by 

ℋ̂(k,B) = ̂ ⃗Ik A(k,B) ⃗B = ( ̂Ikx, ̂Iky, ̂Ikz)
axx axy axz
ayx ayy ayz
azx azy azz

Bx

By

Bz

= ̂ ⃗I(k,B) ⋅ ⃗A (k,B)

ℋ̂(k,n) = ̂ ⃗Ik A(k,n) ̂⃗In = ( ̂Ikx, ̂Iky, ̂Ikz)
axx axy axz
ayx ayy ayz
azx azy azz

̂Inx

̂Iny

̂Inz

= ̂ ⃗I(k,n) ⋅ ⃗A (k,n)

⃗A
̂ ⃗I(k,B) ̂ ⃗I(k,n)
!
A k ,n( ) = axx ,axy ,axz ,ayx ,ayy ,ayz ,azx ,azy ,azz( )
!̂
I k ,n( ) = ÎkxÎnx ,ÎkxÎny ,ÎkxÎnz ,Îky Înx ,Îky Îny ,Îky Înz ,ÎkzÎnx ,ÎkzÎny ,ÎkzÎnz( )
!̂
I k ,B( ) = ÎkxBx ,ÎkxBy ,ÎkxBz ,ÎkyBx ,ÎkyBy ,ÎkyBz ,ÎkzBx ,ÎkzBy ,ÎkzBz( )
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❏ Spatial rotations can be implemented by rotation matrices in both representations.

❏

 
 
 

❏                  with  . 
 
 
 
 
 
 

❏ We can block diagonalize the rotation matrix in the scalar-product representation of the 
Hamiltonian which makes rotations more efficient.

❏ This block diagonalization uses the separation of 

A(new) = R(α, β, γ)A(old)R−1(α, β, γ)

⃗A (new) = R̃(α, β, γ) ⃗A (old) R̃(α, β, γ) = R(α, β, γ) ⊗ R(α, β, γ)

A = A(0) + A(1) + A(2)

= .axx

azzazyazx
ayzayyayx

axzaxy.axx

azzazyazx
ayzayyayx

axzaxy

= .

axx
axy
axz
ayx
ayy
ayz
azx
azy
azz

= .

(axx+ayy+azz)/3
(axy-ayx)/2
(axz-azx)/2
(ayz-azy)/2
(2axx-ayy-azz)/3
(-axx+2ayy-azz)/3
(axy+ayx)/2
(axz+azx)/2
(ayz+azy)/2
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❏ Spherical tensors are a special symmetry adapted basis where the different ranks are 
separated and the rotations are described by the Wigner rotation matrices.

❏ A spherical tensor of rank ℓ has 2ℓ+1 elements and can be written as a vector: 

❏ The rotation of spherical tensors is given by 
 
or written for the Wigner rotation matrix 
elements: 
 

❏ Note: The       are matrices of dimension 2ℓ+1, the         are complex numbers.

❏ The Wigner rotation matrix elements are given by: 

❏ The reduced Wigner rotation matrix elements           are tabulated or can be calculated 
using Mathematica or Matlab.

= .

S0,0
S1,-1
S1,0
S1,1
S2,-2
S2,-1
S2,0
S2,1
S2,2

S ℓ = S ℓ,−ℓ,S ℓ,−ℓ+1,…,S ℓ,0,…,S ℓ,ℓ−1,S ℓ,ℓ( )

S ℓ
(new) =Dℓ α,β,γ( )S ℓ

(old)

S ℓ,m
(new) = D ′m ,m

ℓ α,β,γ( )S ℓ, ′m
(old)

′m =−ℓ

ℓ

∑

S ℓ,mS ℓ

D ′m ,m
ℓ α,β,γ( )=e−i ′m αd ′m ,m

ℓ β( )e−imγ

d ′m ,m
ℓ β( )
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❏ Cartesian representation of a pure second-rank tensor: a symmetric traceless 3x3 matrix: 
                    PAS                                                          Laboratory Frame

APAS =

axx 0 0
0 ayy 0
0 0 azz

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

ALAB =R α,β,γ( )APASR−1 α,β,γ( )=
axx axy axz
axy ayy ayz
axz ayz azz

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

tr{APAS} = axx +ayy +azz = 0 tr{ALAB } = axx +ayy +azz = 0

❏ Number of independent parameters: 5 
2 tensor values and 3 Euler angles                     5 tensor values (2 diagonal, 3 off diagonal)

❏ For an axially symmetric tensor, we have axx=ayy, i.e. only a single tensor value in the PAS.

❏ Spherical Representation of a pure second-rank tensor:

A2,0(PAS) =
3
2
δ =

3
2
azz

A2,±1(PAS) = 0 δ
2

A2,±2(PAS) =−
1
2
δη=

1
2
axx −ayy( )

A20 =
3
8
δ 3cos2 β −1( )−ηsin2 β cos 2α( )⎡⎣ ⎤⎦

A2±1 = ± δ
2
sinβe ± iγ 3+η cos 2α( )( )cosβ ∓ iηsin 2α( )⎡⎣ ⎤⎦

A2±2 =
δ
2
e ±2iγ 3

2
sin2 β − η

2
1+ cos2 β( )cos 2α( ) ± iη cosβ sin 2α( )⎡

⎣⎢
⎤
⎦⎥
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A2,0 =
1
6
3azz − axx +ayy +azz( )( )

A2,±1=∓
1
2
axz +azx ± i azy +ayz( )( )

A2,±2 =
1
2
axx −ayy ± i axy −axz( )( )

❏ Relationship between Cartesian and spherical representation of a second-rank tensor:

❏ In the PAS, all off-diagonal elements of the Cartesian matrix are zero, in the laboratory 
frame all tensor elements are non zero:

A2,0(PAS) =
1
6
3azz − axx +ayy +azz( )( )= 3

2
δ

A2,±1(PAS) = 0 1
2

A2,±2(PAS) =
1
2
axx −ayy( )=− 12

δη

A2,0(LAB) =
1
6
3azz − axx +ayy +azz( )( )

A2,±1(LAB) =∓
1
2
axz +azx ± i azy +ayz( )( )

A2,±2(LAB) =
1
2
axx −ayy ± i axy −axz( )( )

δ = azz −a η=
ayy −axx
δ

azz −a ≥ axx −a ≥ ayy −a

❏ Most common parametrisation of second-rank tensors in PAS:
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❏ Examples from solution-state NMR:
- Zeeman Hamiltonian:  

- Chemical-shift Hamiltonian: 

- J-coupling Hamiltonian: 

❏ All coupling matrices A are multiples of the identity matrix and, therefore, invariant under 
rotations.

❏ All interactions are isotropic because the molecules tumble fast in solution.

ℋ̂Z = − γ ⃗B 0 ⋅ ̂ ⃗I = ̂ ⃗I
−γ 0 0
0 −γ 0
0 0 −γ

⃗B 0 = − γB0
̂Iz = ω0

̂Iz

ℋ̂CS = − γσiso
⃗B 0 ⋅ ̂ ⃗I = ̂ ⃗I

−γσiso 0 0
0 −γσiso 0
0 0 −γσiso

⃗B 0 = − γσisoB0
̂Iz = Ω ̂Iz

ℋ̂J = 2πJ12
̂ ⃗I1 ⋅ ̂ ⃗I2 = ̂ ⃗I1

2πJ12 0 0
0 2πJ12 0
0 0 2πJ12

̂ ⃗I2 = 2πJ12 [ ̂I1x
̂I2x + ̂I1y

̂I2y + ̂I1z
̂I2z]
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Bs,x

Bs,y

Bs,z

= −
σxx σxy σxz
σyx σyy σyz
σzx σzy σzz

0
0
B0

ℋ̂(k,B) = ̂ ⃗Ik (−γ) ⃗B s = ̂ ⃗Ik γσ(k,B) ⃗B = ( ̂Ikx, ̂Iky, ̂Ikz) γ
σxx σxy σxz
σyx σyy σyz
σzx σzy σzz

0
0
B0

= γB0(σxz
̂Ix+σyz

̂Iy+σzz
̂Iz)

❏ The induced field  due the electronic environment has an arbitrary 
orientation and is proportional to the external field .

⃗B s ⃗B 0

❏ The chemical-shielding matrix (tensor) is a full 3x3 matrix.
❏ The chemical-shielding Hamiltonian is given by:

❏ In the rotating frame, we get only the z-term:  

❏ The value of the chemical shielding depends on the orientation of the molecule relative to 
the static magnetic field.

❏ The isotropic chemical shielding that we see in solution-state NMR is given by: 

ℋ̂(k,B) = γB0σzz
̂Iz

σiso =
1
3

σ =
1
3 (σxx + σyy + σzz)
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❏ The dipolar coupling is the direct through-space interaction 
between two spins.

❏ The dipolar coupling is anisotropic without an isotropic part. 
Therefore it is averaged to zero in solution.

❏ The laboratory-frame Hamiltonian is given by: 

❏ The matrix  is a symmetric and traceless matrix and the 
elements are given by: 

 with 

❏ The are the components of a unit vector along the 
internuclear vector . 

ℋ̂(k,n) = ̂ ⃗Ik D(k,n) ̂ ⃗In = ( ̂Ikx, ̂Iky, ̂Ikz)
Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

̂Inx

̂Iny

̂Inz

D(k,n)

(D(k,n))α,β
=

μ0

4π
γkγnℏ
r3
kn

(δαβ − 3eαeβ) α, β ∈ {x, y, z}

eα
⃗rkn
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❏ The dipolar coupling is the direct through-space interaction between two spins.

❏ The dipolar Hamiltonian can be written as: 

❏ This is sometimes called the dipolar alphabet:

*̂D = − µ0

4π
!γ 1γ 2

r123
Â + B̂ +Ĉ + D̂ + Ê + F̂⎡⎣ ⎤⎦

Â = 2Î1zÎ2z
3cos2θ −1

2

B̂ = − 1
2
Î1+Î2− + Î1−Î2+( ) 3cos

2θ −1
2

Ĉ = − Î1+Î2z + Î1zÎ2+( ) 3cosθ sinθe
− iφ

2

D̂ = − Î1−Î2z + Î1zÎ2+( ) 3cosθ sinθe
iφ

2

Ê = −Î1+Î2+
3sin2θe −2iφ

4

F̂ = −Î1−Î2−
3sin2θe 2iφ

4

ZQ term - flip-flop term

DQ terms

SQ terms
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❏ The dipolar coupling is the direct through-space interaction between two spins.
❏ The dipolar coupling is anisotropic without an isotropic part. Therefore it is averaged to zero 

in solution.

❏ The laboratory-frame Hamiltonian is given by: 

❏ In the rotating frame we have:

- for a homonuclear spin pair

-       for a heteronuclear spin pair

❏ This is fully analogous to the J coupling where we also had different rotating-frame 
Hamiltonians for homonuclear and heteronuclear couplings.

❏ The constant  is often called the dipolar coupling constant.

*̂D = − µ0

4π
!γ 1γ 2

r123
Â + B̂ +Ĉ + D̂ + Ê + F̂⎡⎣ ⎤⎦

*̂D = − µ0

4π
!γ 1γ 2

r123
3cos2θ −1

2
2Î1zÎ2z −

1
2
Î1+Î2− + Î1−Î2+( )⎛

⎝⎜
⎞
⎠⎟

*̂D = − µ0

4π
!γ 1γ 2

r123
3cos2θ −1

2
2Î1zÎ2z( )

d = − µ0

4π
!γ 1γ 2

r123
3cos2θ −1

2
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*̂ k ,B( ) =
!̂
IkA

k ,B( )
!
B = Îkx Îky Îkz
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟⎟

axx axy axz
ayx ayy ayz
azx azy azz

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

Bx

By

Bz

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

*̂ k ,n( ) =
!̂
IkA

k ,n( )
!̂
In = Îkx Îky Îkz
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟⎟

axx axy axz
ayx ayy ayz
azx azy azz

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

Înx
Îny
Înz

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

❏ Cartesian Representation:
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*̂ k ,B( ) =
!̂
IkA

k ,B( )
!
B = Îkx Îky Îkz
!
"
##

$
%
&&&

axx axy axz
ayx ayy ayz
azx azy azz

!

"

##########

$

%

&&&&&&&&&&&

Bx

By

Bz

!

"
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"
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"
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%

&$&$&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&%&%&&&

axx axy axz
ayx ayy ayz
azx azy azz

!

"

#!#!################################"#"###"#"#"#"

$

%

&$&$&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&%&%&&&
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"
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"
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"
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laboratory frame (LAB):
full matrix

principal axes system (PAS):
diagonal matrix

R(α, β, γ)

R−1(α, β, γ)

! Spatial Matrix:

required for the Hamiltonian
simple, known from spectra

or calculations
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! Spin or Magnetic Field Vector:

⃗ ̂I =

̂Ix

̂Iy

̂Iz

typically a Cartesian vector: other single-spin bases are possible:

⃗ ̂I =
̂I+

̂I−

̂Iz

R = (
1 i 0
1 −i 0
0 0 1)

R−1 = (
1/2 1/2 0

−i /2 i /2 0
0 0 1)

such a change of the basis will
also change the A matrix!

Representation of Hamiltonians

41
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"
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"
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"
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❏ Spherical-Tensor Representation:

*= Aℓ1
i( )⊗7̂ ℓ2

i( )

ℓ2=0

2

∑
ℓ1=0

2

∑
i
∑
⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪0,0
= −1( )q Aℓ,qi

( )
7̂ ℓ,−q

i( )

q=−ℓ

ℓ

∑
ℓ=0

2

∑
i
∑ = A

!"
ℓ
i( )
⋅7̂
!"
ℓ

i( )

ℓ=0

2

∑
i
∑
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❏ Spherical-Tensor Representation:

*= Aℓ1
i( )⊗7̂ ℓ2

i( )

ℓ2=0

2

∑
ℓ1=0

2

∑
i
∑
⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪0,0
= −1( )q Aℓ,qi

( )
7̂ ℓ,−q

i( )

q=−ℓ

ℓ

∑
ℓ=0

2

∑
i
∑ = A

!"
ℓ
i( )
⋅7̂
!"
ℓ

i( )

ℓ=0

2

∑
i
∑

ρ0,0 = A0,0(PAS) =− 3a

ρ2,0 = A2,0(PAS) =
3
2
δ

ρ2,±1= A2,±1(PAS) = 0

ρ2,±2 = A2,±2(PAS) =−
1
2
δη

A00 = − 3a

A10 = −i 2 axy cosβ − axz sinα − ayz cosα( )sinβ⎡⎣ ⎤⎦

A1±1 = e ∓ iγ axz ± iayx cosβ( )cosα + ayz ∓ iaxz cosβ( )sinα ∓ iaxy sinβ⎡⎣ ⎤⎦

A20 =
3
8
δ 3cos2 β −1( )−ηsin2 β cos 2α( )⎡⎣ ⎤⎦

A2±1 = ± δ
2
sinβe ± iγ 3+η cos 2α( )( )cosβ ∓ iηsin 2α( )⎡⎣ ⎤⎦

A2±2 =
δ
2
e ±2iγ 3

2
sin2 β − η

2
1+ cos2 β( )cos 2α( ) ± iη cosβ sin 2α( )⎡

⎣⎢
⎤
⎦⎥

A00 = − 3a

A10 = −i 2 axy cosβ − axz sinα − ayz cosα( )sinβ⎡⎣ ⎤⎦

A1±1 = e ∓ iγ axz ± iayx cosβ( )cosα + ayz ∓ iaxz cosβ( )sinα ∓ iaxy sinβ⎡⎣ ⎤⎦

A20 =
3
8
δ 3cos2 β −1( )−ηsin2 β cos 2α( )⎡⎣ ⎤⎦

A2±1 = ± δ
2
sinβe ± iγ 3+η cos 2α( )( )cosβ ∓ iηsin 2α( )⎡⎣ ⎤⎦

A2±2 =
δ
2
e ±2iγ 3

2
sin2 β − η

2
1+ cos2 β( )cos 2α( ) ± iη cosβ sin 2α( )⎡

⎣⎢
⎤
⎦⎥

❏ Spatial Part:

R(α, β, γ) = 𝒟ℓ(α, β, γ)

R−1(α, β, γ)

laboratory frame (LAB): 
full matrix

principal axes system (PAS): 
diagonal matrix

required for the Hamiltonian
simple, known from spectra 

or calculations
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❏ Spherical-Tensor Representation:

*= Aℓ1
i( )⊗7̂ ℓ2

i( )

ℓ2=0

2

∑
ℓ1=0

2

∑
i
∑
⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪0,0
= −1( )q Aℓ,qi

( )
7̂ ℓ,−q

i( )

q=−ℓ

ℓ

∑
ℓ=0

2

∑
i
∑ = A

!"
ℓ
i( )
⋅7̂
!"
ℓ

i( )

ℓ=0

2

∑
i
∑

❏ Spin-Spin or Spin-Field Part:

T̂0,0(k ,n ) =
−1
3

!̂
Ik ⋅
!̂
In

T̂1,0(k ,n ) =
−1
2 2

Îk+În−− Îk−În+( )

T̂1,±1(k ,n ) =
−1
2

Îk±Înz − ÎkzÎn±( )

T̂2,0(k ,n ) =
1
6
3ÎkzÎnz −

!̂
Ik ⋅
!̂
In( )

T̂2,±1(k ,n ) =∓ Îk±Înz + ÎkzÎn±( )

T̂2,±2(k ,n ) =
1
2
Îk±În±( )

T̂0,0(k ,B ) =
−1
3

!̂
Ik ⋅
!
B

T̂1,0(k ,B ) =
−1
2 2

Îk+B−− Îk−B+( )

T̂1,±1(k ,B ) =
−1
2

Îk±Bz − ÎkzB±( )

T̂2,0(k ,B ) =
1
6
3ÎkzBz −

!̂
Ik ⋅
!
Bn( )

T̂2,±1(k ,B ) =∓ Îk±Bz + ÎkzB±( )

T̂2,±2(k ,B ) =
1
2
Îk±B±( )
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❏ Spherical-Tensor Representation:

*= Aℓ1
i( )⊗7̂ ℓ2

i( )

ℓ2=0

2

∑
ℓ1=0

2

∑
i
∑
⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪0,0
= −1( )q Aℓ,qi

( )
7̂ ℓ,−q

i( )

q=−ℓ

ℓ

∑
ℓ=0

2

∑
i
∑ = A

!"
ℓ
i( )
⋅7̂
!"
ℓ

i( )

ℓ=0

2

∑
i
∑

❏ Spin-Spin or Spin-Field Part:

T̂0,0(k ,n ) =
−1
3

!̂
Ik ⋅
!̂
In

T̂1,0(k ,n ) =
−1
2 2

Îk+În−− Îk−În+( )

T̂1,±1(k ,n ) =
−1
2

Îk±Înz − ÎkzÎn±( )

T̂2,0(k ,n ) =
1
6
3ÎkzÎnz −

!̂
Ik ⋅
!̂
In( )

T̂2,±1(k ,n ) =∓ Îk±Înz + ÎkzÎn±( )

T̂2,±2(k ,n ) =
1
2
Îk±În±( )

T̂0,0(k ,B ) =
−1
3

!̂
Ik ⋅
!
B

T̂1,0(k ,B ) =
−1
2 2

Îk+B−− Îk−B+( )

T̂1,±1(k ,B ) =
−1
2

Îk±Bz − ÎkzB±( )

T̂2,0(k ,B ) =
1
6
3ÎkzBz −

!̂
Ik ⋅
!
Bn( )

T̂2,±1(k ,B ) =∓ Îk±Bz + ÎkzB±( )

T̂2,±2(k ,B ) =
1
2
Îk±B±( )



Matthias Ernst ETH Zürich

*(t)ˆRepresentation of Hamiltonians

43

*̂ k ,n( ) =
!̂
IkA

k ,n( )
!̂
In = Îkx Îky Îkz
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟⎟

axx axy axz
ayx ayy ayz
azx azy azz

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

Înx
Îny
Înz

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

*= Aℓ1
i( )⊗7̂ ℓ2

i( )

ℓ2=0

2

∑
ℓ1=0

2

∑
i
∑
⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪0,0
= −1( )q Aℓ,qi

( )
7̂ ℓ,−q

i( )

q=−ℓ

ℓ

∑
ℓ=0

2

∑
i
∑ = A

!"
ℓ
i( )
⋅7̂
!"
ℓ

i( )

ℓ=0

2

∑
i
∑

❏ Cartesian Representation:

❏ Spherical-Tensor Representation:

❏ Both representations are fully equivalent and can be converted into each other.
❏ Certain transformations or operations can be simpler in one or the other representation:

- Rotations are often expressed more concise in the spherical-tensor notation.

- Commutators are much easier calculated using the Cartesian representation.

- Time evolution of the density operator is often simpler when using the Cartesian 
representation (product-operator formalism).

- For quadrupolar nuclei, the spherical-tensors representation offers a simple complete 
basis set.
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Khajuraho, 2018
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x

y

zB0

B1 t( )

! In the laboratory frame of 
reference, the Cartesian 
axes are well defined.

! The B0 field direction 
determines the direction of 
the z axis.

! The B1 field direction 
determines the direction of 
the x axis.

! The y axis points into the 
remaining orthogonal 
direction.

! All measurements are 
done in the laboratory 
frame of reference.

Ŝz

Ŝy

Ŝx
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*̂(t ) = *̂ Z + *̂ CS + *̂D + *̂ J + *̂ rf (t )

*̂ Z = A0,0(Z)T̂0,0(Z)

*̂ CS = A0,0(CS)T̂0,0(CS) + −1( )m Aℓ,m(CS)T̂ℓ,−m(CS)

m=−ℓ

ℓ

∑
ℓ=1

2

∑

*̂D = −1( )m A2,m(D)T̂2,−m(D)

m=−2

2

∑

*̂ J = A0,0(J)T̂0,0(J)

*̂ rf (t ) = −γ k 2B1 t( )Îkx = −2ω1Îkx cos ω rft +φ( )

❏Without any interference from the experimentalist, our Hamiltonian is static.
❏We need radio-frequency fields in order to manipulate the magnetization.

B1(t)

❏The radio-frequency field Hamiltonian is time 
dependent!

❏ It represents a linear-polarized radio-frequency field.
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❏ The spin-system Hamiltonian in the laboratory frame is static and time independent:

*̂= (−1)q Aℓ,q
(i )T̂ℓ,−q

(i )

q=−ℓ

ℓ

∑
ℓ=0

2

∑
i
∑

❏ The radio-frequency Hamiltonian in the laboratory-frame is time dependent:

*̂ rf t( )=−2γB1cos ωrft( )Î x
=−γB1 e

iωrft +e−iωrft( )Î x
solenoid coil

B1(t)

*̂= (−1)q A2,q(1,2)T̂2,−q(1,2)

q=−ℓ

ℓ

∑

T̂2,0(1,2) =
1
6
3Î1zÎ2z −

!̂
I1 ⋅
!̂
I2( ) A2,0(1,2) =

3
8
δD
(1,2) 3cos2 β( )−1( )

T̂2,±1(1,2) =∓ Î1±Î2z + Î1zÎ2±( ) A2,±1(1,2) =±
3
4
δD
(1,2)e∓iγ sin 2β( )

T̂2,±2(1,2) =
1
2
Î1±Î2±( ) A2,±2(1,2) =

3
4
δD
(1,2)e∓i 2γ sin2 β( )

⎧

⎨

⎪⎪⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪⎪⎪

❏ We can write the spin-system Hamiltonian as a product of spherical spatial and spin terms.

❏ Example: homonuclear dipolar Hamiltonian: ℓ = 2, q = -2 … 2, (i) = (1,2)

❏ The linear-polarized field can be split into two circular-polarized fields, one rotating 
clockwise, the other counterclockwise.
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❏ The spin-system Hamiltonian in the laboratory frame is static and time independent:

*̂= (−1)q Aℓ,q
(i )T̂ℓ,−q

(i )

q=−ℓ

ℓ

∑
ℓ=0

2

∑
i
∑

❏ The radio-frequency Hamiltonian in the laboratory-frame is time dependent:

*̂ rf t( )=−2γB1cos ωrft( )Î x
=−γB1 e

iωrft +e−iωrft( )Î x
solenoid coil

B1(t)

*̂= (−1)q A2,q(1,2)T̂2,−q(1,2)

q=−ℓ

ℓ

∑

T̂2,0(1,2) =
1
6
3Î1zÎ2z −

!̂
I1 ⋅
!̂
I2( ) A2,0(1,2) =

3
8
δD
(1,2) 3cos2 β( )−1( )

T̂2,±1(1,2) =∓ Î1±Î2z + Î1zÎ2±( ) A2,±1(1,2) =±
3
4
δD
(1,2)e∓iγ sin 2β( )

T̂2,±2(1,2) =
1
2
Î1±Î2±( ) A2,±2(1,2) =

3
4
δD
(1,2)e∓i 2γ sin2 β( )

⎧

⎨

⎪⎪⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪⎪⎪

❏ We can write the spin-system Hamiltonian as a product of spherical spatial and spin terms.

❏ Example: homonuclear dipolar Hamiltonian: ℓ = 2, q = -2 … 2, (i) = (1,2)

❏ The linear-polarized field can be split into two circular-polarized fields, one rotating 
clockwise, the other counterclockwise.

A+B

C+D

E+F

Dipolar  
Alphabet
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B 1(t
)

❏ Reference is the laboratory frame.
❏ Laboratory frame is static.
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x

y

zB0

B1 t( )

! In the laboratory frame of 
reference, the Cartesian 
axes are well defined.

! The B0 field direction 
determines the direction of 
the z axis.

! The B1 field direction 
determines the direction of 
the x axis.

! The y axis points into the 
remaining orthogonal 
direction.

! All measurements are 
done in the laboratory 
frame of reference.

Ŝz

Ŝy = !̂Sy cos !0t( )
+ !̂Sx sin !0t( )

Ŝx = !̂Sx cos !0t( )
! !̂Sy sin !0t( )
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❏ Rotating-frame transformation: !̂* t( )=e−i*̂ 0t *̂e+i*̂ 0t = (−1)q Aℓ,q
(i )e−i*̂ 0tT̂ℓ,−q

(i ) e+i*̂ 0t

q=−ℓ

ℓ

∑
ℓ=0

2

∑
i
∑

= (−1)q Aℓ,q
(i ) !̂Tℓ,−q

(i ) t( )
q=−ℓ

ℓ

∑
ℓ=0

2

∑
i
∑

❏ In a first-order approximation, we neglect all time-dependent terms and approximate the 
rotating-frame Hamiltonian by the time-independent component (secular approximation):

!̂*≈ Aℓ,0
(i ) !̂Tℓ,0

(i )

ℓ=0

2

∑
i
∑

!̂* t( )= (−1)q A2,q(1,2) !̂T2,−q(1,2) t( )
q=−ℓ

ℓ

∑

!̂T2,0(1,2) t( )=
1
6
3I1zI2z −

#̂
I1 ⋅
#̂
I2( ) A2,0(1,2) =

3
8
δD
(1,2) 3cos2 θ( )−1( )

!̂T2,±1(1,2) t( )=∓ Î1±Î2z + Î1zÎ2±( )e±iω0t A2,±1(1,2) =±
3
4
δD
(1,2)e∓iγ sin 2β( )

!̂T2,±2(1,2) t( )= 1
2
Î1±Î2±( )e±i 2ω0t A2,±2(1,2) =

3
4
δD
(1,2)e∓i 2γ sin2 β( )

⎧

⎨

⎪⎪⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪⎪⎪

❏ The spin-system Hamiltonian becomes time dependent.

❏ Example: homonuclear dipolar Hamiltonian: ℓ = 2, q = -2 … 2, (i) = (1,2)

❏ This is the spin-system Hamiltonian that we typically start from in NMR theory!
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❏ Rotating-frame transformation: !̂* t( )=e−i*̂ 0t *̂e+i*̂ 0t = (−1)q Aℓ,q
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i
∑

= (−1)q Aℓ,q
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(i ) t( )
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∑
ℓ=0

2

∑
i
∑

❏ In a first-order approximation, we neglect all time-dependent terms and approximate the 
rotating-frame Hamiltonian by the time-independent component (secular approximation):

!̂*≈ Aℓ,0
(i ) !̂Tℓ,0

(i )

ℓ=0

2

∑
i
∑

!̂* t( )= (−1)q A2,q(1,2) !̂T2,−q(1,2) t( )
q=−ℓ

ℓ

∑

!̂T2,0(1,2) t( )=
1
6
3I1zI2z −

#̂
I1 ⋅
#̂
I2( ) A2,0(1,2) =

3
8
δD
(1,2) 3cos2 θ( )−1( )

!̂T2,±1(1,2) t( )=∓ Î1±Î2z + Î1zÎ2±( )e±iω0t A2,±1(1,2) =±
3
4
δD
(1,2)e∓iγ sin 2β( )

!̂T2,±2(1,2) t( )= 1
2
Î1±Î2±( )e±i 2ω0t A2,±2(1,2) =

3
4
δD
(1,2)e∓i 2γ sin2 β( )

⎧

⎨

⎪⎪⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪⎪⎪

❏ The spin-system Hamiltonian becomes time dependent.

❏ Example: homonuclear dipolar Hamiltonian: ℓ = 2, q = -2 … 2, (i) = (1,2)

❏ This is the spin-system Hamiltonian that we typically start from in NMR theory!
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❏ Reference is the rotating frame.
❏ Laboratory frame is now rotating.
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❏ Reference is the rotating frame.
❏ Laboratory frame is now rotating.

!̂* rf t( )=e
−i *̂ 0t *̂ rf t( )e

+i *̂ 0t =−2γB1cos ωrft +φ(t )( )e−i *̂ 0tÎ xe+i *̂ 0t

=−γB1 e
i ωrft+φ t( )( )+e−i ωrft+φ t( )( )( )1

2
Î +e+iω0t + Î −e−iω0t( )

=−γB1 cos φ(t )( )!̂Ix +sin φ(t )( )!̂I y( )−γB1 cos 2ωrf +φ(t )( )!̂Ix +sin 2ωrf +φ(t )( )!̂I y( )
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❏ The spin-system Hamiltonian in the laboratory frame is static and time independent except 
for the radio-frequency part. 
 

❏ This is the relevant Hamiltonian for all the physics we do.

❏ We go into a rotating frame with the Zeeman Hamiltonian to:

- get rid of the large Zeeman interaction and terms that do not commute with it. 

- make the rf-field Hamiltonian time independent. 
 

❏ In NMR we almost always start from this truncated rotating-frame Hamiltonian.

❏ This does not work when the interactions are not much smaller than the Zeeman 
interaction (quadrupolar interaction, low static magnetic fields, hyperfine interaction).

❏ Relaxation needs to be calculated in the laboratory frame using the full Hamiltonian.

*̂= (−1)q Aℓ,q
(i )T̂ℓ,−q

(i )

q=−ℓ

ℓ

∑
ℓ=0

2

∑
i
∑ *̂ rf t( )=−2γB1cos ωrft( )Î x

=−γB1 eiωrft +e−iωrft( )Î x solenoid coil
B1(t)

!̂*≈ Aℓ,0
(i ) !̂Tℓ,0

(i )

ℓ=0

2

∑
i
∑ !̂* rf =−γB1 cos φ( )!̂Ix +sin φ( )!̂I y( )
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❏ There are two main reasons to go into the rotating frame:

- The rf-field Hamiltonian has a time-independent component for linear polarized rf which 
makes calculations simple.

- The Zeeman Hamiltonian is eliminated. This makes calculating the effects of smaller 
contributions like chemical shift and J coupling more obvious.

❏ All interactions are truncated by the Zeeman Hamiltonian and only parts that commute with 
the Zeeman Hamiltonian are retained. This truncation introduces the anisotropic nature 
(orientation dependence) of the spin interactions by breaking the symmetry of space.

❏ Spin-Field Interactions:

- RF Hamiltonian:

- CS Hamiltonian:

❏ Spin-Spin Interactions:

- Dipolar-coupling Hamiltonian:

- J-coupling Hamiltonian:

- Quadrupolar-coupling Hamiltonian:

*̂D
k ,n( ) =−

µ0
4π
γkγn!
rkn3

3cos2 θ−1
2

2ÎkzÎnz − ÎkxÎnx + Îky Îny( )( )
*̂ J

k ,n( ) = 2πJiso
k ,n( )
!̂
Ik ⋅
!̂
In

*̂ CS
k ,B( ) =−γB0σzzÎkz

*̂ rf
k ,B( ) =−γB1 Îkx cosφ+ Îky sinφ( )

*̂Q
k( ) =
δQ
(k )

2
3cos2 β−1

2
−
ηQ
(k )

2
sin2 β cos 2α( )

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
3Îkz2 −Ik Ik +1( )( )
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❏ We start most of our calculations from a time-independent high-field truncated rotating-
frame Hamiltonian: 
 

❏ So, why do we need to talk about time-dependent Hamiltonians?

!̂*≈ Aℓ,0
(i ) !̂Tℓ,0

(i )

ℓ=0

2

∑
i
∑ !̂* rf =−γB1 cos φ( )!̂Ix +sin φ( )!̂I y( )
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❏ We start most of our calculations from a time-independent high-field truncated rotating-
frame Hamiltonian: 
 

❏ So, why do we need to talk about time-dependent Hamiltonians?

!̂*≈ Aℓ,0
(i ) !̂Tℓ,0

(i )

ℓ=0

2

∑
i
∑ !̂* rf =−γB1 cos φ( )!̂Ix +sin φ( )!̂I y( )
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❏ We start most of our calculations from a time-independent high-field truncated rotating-
frame Hamiltonian: 
 

❏ So, why do we need to talk about time-dependent Hamiltonians?

!̂*≈ Aℓ,0
(i ) !̂Tℓ,0

(i )

ℓ=0

2

∑
i
∑ !̂* rf =−γB1 cos φ( )!̂Ix +sin φ( )!̂I y( )
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*̂ = Aℓ,0
(i )T̂ℓ,0

(i )

ℓ=0

2

∑
i
∑

❏ The spin-system Hamiltonian in the rotating frame is static if the molecule is static.

❏ Hamiltonian in solid-state NMR is always time dependent!

*̂ t( ) = Aℓ,0
(i ) t( )T̂ℓ,0(i )

ℓ=0

2

∑
i
∑ !̂* t( ) = Aℓ,0

(i ) !̂Tℓ,0
(i ) t( )

ℓ=0

2

∑
i
∑

sample rotation
interaction-frame

transformation

Sz

SySx

Sz

SySx

Sz’

Sy’
Sx’

θ

ωt

U(t)

laboratory frame interaction frame
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*̂ = Aℓ,0
(i )T̂ℓ,0

(i )

ℓ=0

2

∑
i
∑

❏ The spin-system Hamiltonian in the rotating frame is static if the molecule is static.

sample rotation
interaction-frame

transformation

Sz

SySx

Sz

SySx

Sz’

Sy’
Sx’

θ

ωt

U(t)

laboratory frame interaction frame

❏ Hamiltonian in solid-state NMR has often multiple time dependencies!

!̂* t( )= Aℓ,0
(i ) t( ) !̂Tℓ,0

(i ) t( )
ℓ=0

2

∑
i
∑ = !̂*(n,k )einωrteikωmt

n=−2

2

∑
k=−∞

∞

∑

+
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! The spin-system Hamiltonian in the rotating frame is static if the molecule is static.

! Sample rotation modulates the spatial part of the Hamiltonian.

sample rotation
interaction-frame

transformation

Sz

SySx

Sz

SySx

Sz!

Sy!
Sx!

θ

ωt

U(t)

laboratory frame interaction frame

sample rotationsample rotationsample rotation

*̂ t( ) = A!,0
(i ) t( )T̂!,0(i )

!=0

2

!
i
! !̂* t( ) = A",0

(i ) !̂T",0
(i ) t( )

"=0

2

!
i
!

*̂ = A!,0
(i )T̂!,0

(i )

!=0

2

!
i
!
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❏ Transformation of the spatial-tensor parts from the PAS to the laboratory frame:

PAS 
(Molecule fixed)

Rotor
(Rotor fixed)

Lab
(Laboratory frame)

θr
z

y

x

z

x

y

z

x

y

ωrt ωrt ωrt

ωrt

(α,β,γ) (-ωrt,θr,0)

❏ Spatial components of the Hamiltonian become time dependent:

Aℓ, ′′m
(lab) t( ) = $ ′m , ′′m

ℓ −ω rt,−θr,0( ) $m, ′m
ℓ α,β,γ( )ρℓ,m(PAS)

m=−ℓ

ℓ

∑
′m =−ℓ

ℓ

∑

= $ ′m , ′′m
ℓ −ω rt,−θr,0( )Aℓ, ′m

(rot)

′m =−ℓ

ℓ

∑ = ei ′m ωrtd ′m , ′′m
ℓ −θr( )Aℓ, ′m

(rot)

′m =−ℓ

ℓ

∑
❏ Spatial components of the Hamiltonian can be expressed in a Fourier series with ωr as the 

basic frequency.
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! The spin-system Hamiltonian in the rotating frame is static if the molecule is static.

! Interaction-frame transformations modulate the spin part of the Hamiltonian.

sample rotation
interaction-frame

transformation

Sz

SySx

Sz

SySx

Sz!

Sy!
Sx!

θ

ωt

U(t)

laboratory frame interaction frame

*̂ = A!,0
(i )T̂!,0

(i )

!=0

2

!
i
!

!̂* t( ) = A",0
(i ) !̂T",0

(i ) t( )
"=0

2

!
i
!*̂ t( ) = A!,0

(i ) t( )T̂!,0(i )
!=0

2

!
i
!

interaction-frameinteraction-frame
transformationtransformation

Sz

SySx

Sz

SySx

Sz!

Sy!
Sx!

θ

ωt

U(t)t)t

laboratory frame interaction frame

A!,0
(i )T̂!T!T ,0

(i )

!̂* t( ) = A",0
(i ) !̂T"T"T ,0

(i ) t( )
"=0

2

!
i
!

!
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❏ Transformation of the spin-tensor parts from the rotating frame to the interaction frame:

tilted interaction framerotating frame

Sz

Sy

Sx

tilted frame

Sz’

Sy’

Sx’

Sy’’

Sx’’

θθ
Sz’’

ωt

(φ,θ,0) (0,0,ωt)

!̂Tℓ, ′q
(i ) t( ) = $q , ′q

ℓ φ,θ,ωt( )T̂ℓ,q(i )
q=−ℓ

ℓ

∑ = e− i ′q ωt dq , ′q
ℓ θ( )e− iqφT̂ℓ,q

(i )

q=−ℓ

ℓ

∑
❏ Spin part of the Hamiltonian become time dependent:

❏ Spin components of the Hamiltonian can be expressed in a Fourier series with ω as the basic 
frequency.
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! The spin-system Hamiltonian in the rotating frame is static if the molecule is static.

sample rotation
interaction-frame

transformation

Sz

SySx

Sz

SySx

Sz!

Sy!
Sx!

θ

ωt

U(t)

laboratory frame interaction frame

! Hamiltonians in solid-state NMR have often multiple time dependencies!

+

*̂ = A!,0
(i )T̂!,0

(i )

!=0

2

!
i
!

!̂* t( )= A",0
(i ) t( ) !̂T",0

(i ) t( )
"=0

2

!
i
! = !̂*(n,k )ein!rteik!mt

n="2

2

!
k="#

#

!

interaction-frame
transformation

Sz

SySx

Sz

SySx

Sz!

Sy!
Sx!

θ

ωt

U(t)t)t

laboratory frame interaction frame

+

A!,0
(i )T̂!T!T ,0

(i )

0
!

= !̂*(n,k )einini !rteikiki !mt

n="2

2

!
k="#

#

!

+

0
!

sample rotationsample rotation ++

*̂ =
!=0

2

!
i
!

!̂* t( )= A"A"A ,0
(i ) t( ) !̂T"T"T ,0

(i ) t( )
"=0

2

!
i
!

+

0
!

)

++

0
!
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❏ Rotating-frame Hamiltonians in MAS solid-state NMR are usually periodic in time.

❏ MAS:
*̂ t( )= Aℓ,0

(i ) t( )T̂ℓ,0
(i ) = ei ′m ωrtd ′m ,0

ℓ −θr( )Aℓ, ′m
(rot)

′m =−ℓ

ℓ

∑
⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟T̂ℓ,0

(i )

!̂* t( )= Aℓ,0
(i ) !̂Tℓ,0

(i ) t( )= Aℓ,0
(i )e−i ′q ωt dq ,0

ℓ θ( )e−iqφT̂ℓ,q
(i )

q=−ℓ

ℓ

∑

❏ Interaction-frame transformation:

❏ We can write such periodic time-dependent Hamiltonians as a Fourier series:

!̂* t( )= !̂*(n )einωmt

n=−∞

∞

∑                        with  !̂*(n ) = !̂*(−n )( )†

❏ For multiple time dependencies with different frequencies, we can write:
!̂* t( )= !̂*(n1,n2 )ein1ωm1tein2ωm2t

n=−∞

∞

∑           with  !̂*(n1,n2 ) = !̂*(−n1,−n2 )( )†

❏ Piece-wise constant Hamiltonians (toggling frame) can be expressed as periodic 
Hamiltonians using Fourier series. 
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M. Ernst, A. Samoson, B.H. Meier, Decoupling and recoupling using continuous-wave irradiation in magic-angle-spinning solid-
state NMR: A unified description using bimodal Floquet theory, J. Chem. Phys. 123 (2005) 064102. doi:10.1063/1.1944291.

I
S

ω1 ωr

❏ Heteronuclear coupled I-S two-spin system:  
Continuous-wave (cw) irradiation on one spin under MAS.

❏ Examples for such a situation:

- Heteronuclear CW decoupling (non resonant)

- Rotary-resonance recoupling (R3) (n0 ωr, ± ω1 = 0, n0 = ±1, ±2)

- HORROR recoupling (n0 ωr, ± k0 ω1 = 0, n0 = ±1, ±2, k0 = ±2)

- Higher-order R3 experiments (n0 ωr, ± ω1 = 0, n0 = ±3, ±4)

- DARR or MIRROR recoupling (n0 ωr, ± ω1 + ℓ0 ΔΩiso = 0, n0 = ±3, ±4, ℓ0 = ±1)
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*̂(t )= *̂ I(t )+ *̂ IS(t )+ *̂ S(t )+ *̂ II(t )+ *̂ SS(t )= *̂(n )einωrt

n=−2

2

∑

!̂*(t )= !̂* I(t )+ !̂* IS(t )+ !̂* S(t )+ !̂* II(t )+ !̂* SS(t )= !̂*(n,k )einωrteikω1t

k=−2

2

∑
n=−2

2

∑

❏ Spin-system Hamiltonian in the rotating frame is time dependent due to magic-angle 
spinning (MAS). 

interaction-frame transformation:
Sz

SySx

Sz

SySx

Sz’

Sy’
Sx’

θ

ωt

U(t)

laboratory frame interaction frame

Û(t )= T̂ exp −i *̂ rf (t1)dt1
0

t

∫
⎛

⎝
⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
eiπ/2F̂y =e−iω1F̂zteiπ/2F̂y

❏ Interaction-frame transformation with the rf-field introduces a second time-dependence in 
the Hamiltonian. There are now two frequencies: ωr and ω1.

❏ Average Hamiltonian theory requires that 
- the two frequencies are commensurate, i.e., n ωr = k ω1 (simultaneous averaging) or 
- a separation of time scales, i.e., ωr « ω1 or ωr » ω1 (sequential averaging). 

❏ Floquet theory allows a unified description for all values of ωr and ω1.



Matthias Ernst ETH Zürich

-2 -1 0 21

-2

-1

0

2

1Fourier Coefficients Under CW Irradiation

64

I
S

ω1

ωr

❏ Fourier coefficients: !̂*(t )= !̂*(n,k )einωrteikω1t

k=−2

2

∑
n=−2

2

∑

!̂*(0,0) = ωS
(0)Sz + ωℓ,m

(0)
#̂
Iℓ ⋅
#̂
Im( )

ℓ<m
∑

!̂*(n,0) = ωS
(n )Sz − ωℓ,m

(n ) ÎℓzÎmz −
1
2
ÎℓxÎmx + ÎℓyÎmy( )⎛

⎝
⎜⎜

⎞
⎠
⎟⎟⎟

ℓ<m
∑

!̂*(0,±1) =−
1
2

ωm
0( )Îm
∓

m
∑ −

1
2

ωSm
0( )ŜzÎm

∓

m
∑

!̂*(n,±1) =−
1
2

ωm
n( )Îm
∓

m
∑ −

1
2

ωSm
n( )ŜzÎm

∓

m
∑

!̂*(0,±2) = 0

!̂*(n,±2) =
3
4

ωℓ,m
(n )Îℓ

∓Îm
∓

ℓ<m
∑

⎧

⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
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I
S

ω1

ωr

❏ Fourier coefficients: !̂*(t )= !̂*(n,k )einωrteikω1t

k=−2

2

∑
n=−2

2

∑

!̂*(0,0) = ωS
(0)Sz + ωℓ,m

(0)
#̂
Iℓ ⋅
#̂
Im( )

ℓ<m
∑

!̂*(n,0) = ωS
(n )Sz − ωℓ,m

(n ) ÎℓzÎmz −
1
2
ÎℓxÎmx + ÎℓyÎmy( )⎛

⎝
⎜⎜

⎞
⎠
⎟⎟⎟

ℓ<m
∑

!̂*(0,±1) =−
1
2

ωm
0( )Îm
∓

m
∑ −

1
2

ωSm
0( )ŜzÎm

∓

m
∑

!̂*(n,±1) =−
1
2

ωm
n( )Îm
∓

m
∑ −

1
2

ωSm
n( )ŜzÎm

∓

m
∑

!̂*(0,±2) = 0

!̂*(n,±2) =
3
4

ωℓ,m
(n )Îℓ

∓Îm
∓

ℓ<m
∑

⎧

⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

❏ Chemical shift of S spin: *̂ S(t )= Ŝz ωS
n( )einωrt

n=−2

2

∑
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I
S

ω1

ωr

❏ Fourier coefficients: !̂*(t )= !̂*(n,k )einωrteikω1t

k=−2

2

∑
n=−2

2

∑

!̂*(0,0) = ωS
(0)Sz + ωℓ,m

(0)
#̂
Iℓ ⋅
#̂
Im( )

ℓ<m
∑

!̂*(n,0) = ωS
(n )Sz − ωℓ,m

(n ) ÎℓzÎmz −
1
2
ÎℓxÎmx + ÎℓyÎmy( )⎛

⎝
⎜⎜

⎞
⎠
⎟⎟⎟

ℓ<m
∑

!̂*(0,±1) =−
1
2

ωm
0( )Îm
∓

m
∑ −

1
2

ωSm
0( )ŜzÎm

∓

m
∑

!̂*(n,±1) =−
1
2

ωm
n( )Îm
∓

m
∑ −

1
2

ωSm
n( )ŜzÎm

∓

m
∑

!̂*(0,±2) = 0

!̂*(n,±2) =
3
4

ωℓ,m
(n )Îℓ

∓Îm
∓

ℓ<m
∑

⎧

⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

*̂ I(t )= Îmz
m
∑ ωm

n( )einωrt

n=−2

2

∑❏ Chemical shift of I spins:
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I
S

ω1

ωr

❏ Fourier coefficients: !̂*(t )= !̂*(n,k )einωrteikω1t

k=−2

2

∑
n=−2

2

∑

!̂*(0,0) = ωS
(0)Sz + ωℓ,m

(0)
#̂
Iℓ ⋅
#̂
Im( )

ℓ<m
∑

!̂*(n,0) = ωS
(n )Sz − ωℓ,m

(n ) ÎℓzÎmz −
1
2
ÎℓxÎmx + ÎℓyÎmy( )⎛

⎝
⎜⎜

⎞
⎠
⎟⎟⎟

ℓ<m
∑

!̂*(0,±1) =−
1
2

ωm
0( )Îm
∓

m
∑ −

1
2

ωSm
0( )ŜzÎm

∓

m
∑

!̂*(n,±1) =−
1
2

ωm
n( )Îm
∓

m
∑ −

1
2

ωSm
n( )ŜzÎm

∓

m
∑

!̂*(0,±2) = 0

!̂*(n,±2) =
3
4

ωℓ,m
(n )Îℓ

∓Îm
∓

ℓ<m
∑

⎧

⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

*̂ II(t )= ωℓ,m
(0)
"̂
Iℓ ⋅
"̂
Im( )

ℓ<m
∑ + 2ÎℓzÎmz − ÎℓxÎmx + ÎℓyÎmy( )( ) ωℓ,m

(n )einωrt

n=−2
n≠0

2

∑
ℓ<m
∑❏ Homonuclear couplings (I-I):
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I
S

ω1

ωr

❏ Fourier coefficients: !̂*(t )= !̂*(n,k )einωrteikω1t

k=−2

2

∑
n=−2

2

∑

!̂*(0,0) = ωS
(0)Sz + ωℓ,m

(0)
#̂
Iℓ ⋅
#̂
Im( )

ℓ<m
∑

!̂*(n,0) = ωS
(n )Sz − ωℓ,m

(n ) ÎℓzÎmz −
1
2
ÎℓxÎmx + ÎℓyÎmy( )⎛

⎝
⎜⎜

⎞
⎠
⎟⎟⎟

ℓ<m
∑

!̂*(0,±1) =−
1
2

ωm
0( )Îm
∓

m
∑ −

1
2

ωSm
0( )ŜzÎm

∓

m
∑

!̂*(n,±1) =−
1
2

ωm
n( )Îm
∓

m
∑ −

1
2

ωSm
n( )ŜzÎm

∓

m
∑

!̂*(0,±2) = 0

!̂*(n,±2) =
3
4

ωℓ,m
(n )Îℓ

∓Îm
∓

ℓ<m
∑

⎧

⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

*̂ IS(t )= 2ŜzÎmz ωS ,m
(n ) einωrt

n=−2
n≠0

2

∑
m
∑❏ Heteronuclear couplings (I-S):
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Magic-Angle Spinning: Time Slicing

66

❏ We can use time slicing, i.e. we assume that the Hamiltonian can be 
approximated by a constant value for a short time.

*̂ t( )= *̂(n )e−inωrt
n=−2

2

∑ = *̂(n )e−inφ
n=−2

2

∑ = *̂ φ( )

φ = ωrt

Δt = τr/N = 2π/(ωrN)

φi = iωrΔt = i2π/(N)
*̂ i = *̂ i( )

φ1 φ2 φ3
φ4

φ0=φN

*̂ 1 *̂ 2
*̂ 3

*̂ 4

*̂0=*Nˆ
❏ We divide the rotor period into 

N equal time periods of length 
Δt = τr/N = 2π/(ωr N).

❏ The rotor phase for an interval i 
is given by φi = i ωr Δt = i 2π/N.

❏ The Hamiltonian during an 
interval i is given by *(φi).

❏ We have now again a 
piecewise constant 
Hamiltonian and can solve the 
Liouville-von Neumann 
equation.
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φ = ωrt

Δt = τr/N = 2π/(ωrN)

φi = iωrΔt = i2π/(N)

φ1 φ2 φ3
φ4

φ0=φN

Û0 = ÛN Û1 Û2 Û3 Û4

Ûi = Ûi i( )

Magic-Angle Spinning: Time Slicing

67

σ̂ nτr( )= Û τr( )( )n σ̂ 0( ) Û−1 τr( )( )n

❏ We c a n n o w c a l c u l a t e t h e 
propagator for a full rotor cycle:

Û τr( )= Ûi
i=0

N−1

∏ = ÛN−1!Ûi!Û4Û3Û2Û1Û0

❏ The time evolution of the 
density operator at multiples of 
the rotor period is now simply:

❏ This is of course only possible 
if the Hamiltonian is also cyclic 
with the MAS frequency, i.e.:
*̂ t( )= *̂ t +nτr( )

❏ If we have a rotor-synchronized pulse sequence (C7, RFDR, CP, …) this can always be 
achieved over one or multiple rotor cycles.

❏ For asynchronous sequences (most decoupling sequences, DREAM, APHHCP, …) this is 
not the case and one has to calculate all propagators over the full sequence.
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Magic-Angle Spinning: Time Slicing
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σ̂ nτr( )= Û τr( )( )n σ̂ 0( ) Û−1 τr( )( )n

❏ We c a n n o w c a l c u l a t e t h e 
propagator for a full rotor cycle:

Û τr( )= Ûi
i=0

N−1

∏ = ÛN−1!Ûi!Û4Û3Û2Û1Û0

❏ The time evolution of the 
density operator at multiples of 
the rotor period is now simply:

❏ This is of course only possible 
if the Hamiltonian is also cyclic 
with the MAS frequency, i.e.:
*̂ t( )= *̂ t +nτr( )

❏ If we have a rotor-synchronized pulse sequence (C7, RFDR, CP, …) this can always be 
achieved over one or multiple rotor cycles.

❏ For asynchronous sequences (most decoupling sequences, DREAM, APHHCP, …) this is 
not the case and one has to calculate all propagators over the full sequence.

φ = ωrt

Δt = τr/N = 2π/(ωrN)

φi = iωrΔt = i2π/(N)

φ1 φ2 φ3
φ4

φ0=φN

Û0 = ÛN Û1 Û2 Û3 Û4

Ûi = Ûi i( )Û r( )
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Magic-Angle Spinning: Time Slicing

68

❏ Rotor-synchronized sampling limits the spectral width to the value of the spinning 
frequency.

❏ For higher resolution, we can calculate propagators for fractions of the rotor period: 

❏ The spectral width is then given by 
SW = M ωr.

❏ Again this only works for  
Hamiltonians which are 
synchronized with the MAS 
rotation.

❏ We can not only use  
propagators for fractions of the 
rotor period but also propagators 
that cover multiples of a rotor 
period:

Û kτr /M( )

φ = ωrt

Δt = τr/N = 2π/(ωrN)

φi = iωrΔt = i2π/(N)

φ1 φ2 φ3
φ4

φ0=φN

Û0 = ÛN Û1 Û2 Û3 Û4

Ûi = Ûi i( )

Û r / 4( )

Û 2 r / 4( )Û 3 r / 4( )

Û 4 r / 4( )

Û nτr( )
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φ = ωrt

Δt = τr/N = 2π/(ωrN)

φi = iωrΔt = i2π/(N)

φ1 φ2 φ3
φ4

φ0=φN

Û0 = ÛN Û1 Û2 Û3 Û4

Ûi = Ûi i( )Û n r( )

Magic-Angle Spinning: Time Slicing
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φ = ωrt

Δt = τr/N = 2π/(ωrN)

φi = iωrΔt = i2π/(N)
*̂ i = *̂ i( )

Magic-Angle Spinning: Time Slicing

69

❏ How many time slices do we need: N = ????

❏ Check that simulations converge and larger numbers N of time slices do not improve 
the quality of the simulations.

❏ Fewer time slices means faster calculations.

❏ How many detection points 
(propagators) do we need  
to have the desired time 
resolution?

❏ Can we map all pulses onto 
an integer number of time 
slices?

❏ Rule of thumb: N = 100 time 
slices during a MAS rotation  
are sufficient. Often one can 
get away with fewer.
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*(t)ˆ

! Replace time-dependent Hamiltonian by a series expansion of a time-independent 
average Hamiltonian:

Methods to Deal with Time-Dependent Hamiltonians

70

! Average-Hamiltonian Theory (AHT):

*̂ t( )
#c

*̂
#c

AHT

*̂= *̂ 1( )+ *̂ 2( )+ *̂ 3( )+!

! Floquet Theory:
*̂ t( )=!+ *̂(!2)e!2i!mt

+ *̂(!1) e!i!mt

+ *̂(0)

+ *̂(1) ei!mt

+ *̂(2) e2i!mt +!

!

+2

+1

0

!1

!2

!

! Map the finite-dimensional but time-dependent Hilbert-space Hamiltonian onto an infinite 
dimensional but time independent Floquet Hamiltonian.

*̂ F =
Floquet

*̂(0)

*̂(0)

*̂(0)

*̂(0)

*̂(0)

*̂(1)

*̂(1)

*̂(1)

*̂(1)

*̂(-1)

*̂(-1)

*̂(-1)

*̂(-1)

*̂(-2)

*̂(-2)

*̂(-2)

*̂(2)

*̂(2)

*̂(2)
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*(t)ˆAHT: Continuous Time Dependence

71

*̂ t( )
τc

*̂
τc

AHT

❏ Continuous time dependence: Magnus expansion describes the calculation of different 
orders of the average Hamiltonian expansion.

*̂ 1( ) =
1
τc

*̂ t1( )dt1
0

τc

∫

*̂ 2( ) =
−i
2τc

dt2 dt1 *̂ t2( ),*̂ t1( )⎡
⎣⎢

⎤
⎦⎥

0

t2

∫
0

τc

∫

*̂ 3( ) =
−1
6τc

dt3 dt2 dt1
0

t2

∫ *̂ t3( ), *̂ t2( ),*̂ t1( )⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥+ *̂ t3( ),*̂ t2( )⎡
⎣⎢

⎤
⎦⎥ ,*̂ t1( )⎡

⎣⎢
⎤
⎦⎥( )

0

t3

∫
0

τc

∫

*̂ 4( ) =!

❏ Magnus Expansion is also important in other fields of physics and there is a large 
mathematical literature about it.

Review: S. Blanes, F. Casas, J.A. Oteo, and J. Ros “The Magnus Expansion and some of its applications”, Physics Reports 470, 141-238 (2009). 
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*(t)ˆAHT: Some Rules and Special Cases

72

❏ A time dependent Hamiltonian is symmetric if 

- All even orders of        are zero and can be neglected: 

- This feature is often used in liquid-state NMR decoupling sequences to cancel the 
second-order average Hamiltonian term.

- In solid-state NMR it is not often used, because the MAS rotation cannot be reversed.

❏ A time dependent Hamiltonian is antisymmetric if 

- All terms in the average Hamiltonian expansion are zero.

- Not very useful unless one wants to eliminate the Hamiltonian.

❏ A time dependent Hamiltonian under MAS is called  inhomogeneous if

- All orders with n > 1 are zero since all commutator terms vanish.

- The exact average Hamiltonian is given by              .

- Important in solid-state NMR to discuss the properties of Hamiltonians under MAS.

*̂ n( )

*̂ t( )= *̂ τc−t( )

*̂ 2( ) = *̂ 4( ) =!= 0

*̂ t( )=−*̂ τc−t( )

*̂ t2( ),*̂ t1( )⎡
⎣⎢

⎤
⎦⎥ = 0

*̂= *̂ 1( )
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AHT Example: Magic-Angle Spinning - CSA

73

*̂ t( )= Aℓ,0
(i ) t( )T̂ℓ,0

(i ) = ei ′m ωrtd ′m ,0
ℓ −θr( )Aℓ, ′m

(rot)

′m =−ℓ

ℓ

∑
⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟T̂ℓ,0

(i ) = "̂*(n )einωrt

n=−2

2

∑
❏ MAS modulates the spatial part of the Hamiltonian:

❏ Chemical-shift Hamiltonian: *̂ t( )= !̂*(n )einωrt

n=−2

2

∑ = Î1z ωcs
n( )einωrt

n=−2

2

∑

❏ Apply average Hamiltonian expansion:

*̂ 1( ) =
1
τr

*̂ t1( )dt1
0

τr

∫ =
ωr
2π

Î1z ωcs
n( )einωrt

n=−2

2

∑
⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟dt1

0

2π/ωr

∫ = ωcs
0( )Î1z

*̂ 2( ) =
−i
2τr

dt2 dt1
0

t2

∫ *̂ t2( ),*̂ t1( )⎡
⎣⎢

⎤
⎦⎥

0

τr

∫ =
−i
2τr

dt2 dt1
0

t2

∫ Î1z ωcs
n( )einωrt2

n=−2

2

∑ ,Î1z ωcs
n( )einωrt1

n=−2

2

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

0

τr

∫

=
−i
2τr

Î1z ,Î1z⎡
⎣

⎤
⎦ dt2 dt1

0

t2

∫ ωcs
n( )einωrt2

n=−2

2

∑ ωcs
n( )einωrt1

n=−2

2

∑
0

τr

∫ = 0

isotropic chemical shift

Hamiltonian is inhomogeneous

❏ All higher orders of the average Hamiltonian expansion are zero because

❏ Spectrum consists of a single (infinitely) sharp line at the isotropic chemical-shift frequency.

❏  No spinning side bands can be observed because of stroboscopic detection with ωr.

*̂ t2( ),*̂ t1( )⎡
⎣⎢

⎤
⎦⎥ = 0
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AHT Example: MAS - Dipolar Coupling

74

*̂ t( )= Aℓ,0
(i ) t( )T̂ℓ,0

(i ) = ei ′m ωrtd ′m ,0
ℓ −θr( )Aℓ, ′m

(rot)

′m =−ℓ

ℓ

∑
⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟T̂ℓ,0

(i ) = "̂*(n )einωrt

n=−2

2

∑
❏ MAS modulates the spatial part of the Hamiltonian:

❏ Dipolar-coupling Hamiltonian: *̂D t( )= !̂*(n )einωrt

n=−2

2

∑ = 3Î1zÎ2z − ˆ
!
I1 ⋅ ˆ
!
I2( ) ωD

n( )einωrt

n=−2

2

∑

❏ Apply average Hamiltonian expansion:

*̂ 1( ) =
1
τr

*̂D t1( )dt1
0

τr

∫ =
ωr
2π

3Î1zÎ2z − ˆ
!
I1 ⋅ ˆ
!
I2( ) ωD

n( )einωrt

n=−2

2

∑
⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟dt1

0

2π/ωr

∫ = 0

*̂ 2( ) =
−i
2τr

dt2 dt1
0

t2

∫ *̂D t2( ),*̂D t1( )⎡
⎣⎢

⎤
⎦⎥

0

τr

∫

=
−i
2τr

dt2 dt1
0

t2

∫ 3Î1zÎ2z − ˆ
!
I1 ⋅ ˆ
!
I2( ) ωD

n( )einωrt2

n=−2

2

∑ , 3Î1zÎ2z − ˆ
!
I1 ⋅ ˆ
!
I2( ) ωD

n( )einωrt1

n=−2

2

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

0

τr

∫

=
−i
2τr

3Î1zÎ2z − ˆ
!
I1 ⋅ ˆ
!
I2,3Î1zÎ2z − ˆ

!
I1 ⋅ ˆ
!
I2

⎡
⎣⎢

⎤
⎦⎥ dt2 dt1

0

t2

∫ ωD
n( )einωrt2

n=−2

2

∑ ωD
n( )einωrt1

n=−2

2

∑
0

τr

∫ = 0

no isotropic component

Hamiltonian is  
inhomogeneous

❏ All higher orders of the average Hamiltonian expansion are zero because

❏ The total average Hamiltonian under MAS is zero.

*̂ t2( ),*̂ t1( )⎡
⎣⎢

⎤
⎦⎥ = 0
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AHT Example: MAS - CSA and Dipolar Coupling
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*̂ t( )= Aℓ,0
(i ) t( )T̂ℓ,0

(i ) = ei ′m ωrtd ′m ,0
ℓ −θr( )Aℓ, ′m

(rot)

′m =−ℓ

ℓ

∑
⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟T̂ℓ,0

(i ) = "̂*(n )einωrt

n=−2

2

∑
❏ MAS modulates the spatial part of the Hamiltonian:

❏ CS and D Hamiltonian: *̂ t( )= !̂*(n )einωrt

n=−2

2

∑ = 3Î1zÎ2z − ˆ
!
I1 ⋅ ˆ
!
I2( ) ωD

n( )einωrt

n=−2

2

∑ + Î1z ωcs
n( )einωrt

n=−2

2

∑

❏ Apply average Hamiltonian expansion:

*̂ 1( ) =
1
τr

*̂D t1( )+ *̂ CS t1( )( )dt1
0

τr

∫ = ωcs
0( )Î1z

*̂ 2( ) =
−i
2τr

dt2 dt1
0

t2

∫ *̂ D t2( )+ *̂ CS t2( ),*̂ D t1( )+ *̂ CS t1( )⎡
⎣⎢

⎤
⎦⎥

0

τr

∫ =
−i
2τr

3Î1zÎ2z − ˆ
!
I1 ⋅ ˆ
!
I2,Î1z

⎡
⎣⎢

⎤
⎦⎥

            × dt2 dt1
0

t2

∫ ωD
n( )einωrt2

n=−2

2

∑ ωCS
n( )einωrt1

n=−2

2

∑
0

τr

∫ − dt2 dt1
0

t2

∫ ωCS
n( )einωrt2

n=−2

2

∑ ωD
n( )einωrt1

n=−2

2

∑
0

τr

∫
⎧
⎨
⎪⎪

⎩⎪⎪

⎫
⎬
⎪⎪

⎭⎪⎪
≠ 0

only isotropic chemical shift

Hamiltonian is  
homogeneous

❏ All higher orders of the average Hamiltonian are in general non zero:

❏ Spectrum consists of a broad line due to higher-order average Hamiltonian contributions.

❏  No spinning side bands can be observed because of stroboscopic detection with ωr.

*̂D t2( ),*̂ CS t1( )⎡
⎣⎢

⎤
⎦⎥ ≠ 0
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❏ Under MAS a Hamiltonian is called  inhomogeneous if the Hamiltonian commutes with 
itself at all times:

❏ Under MAS a Hamiltonian is called  homogeneous if the Hamiltonian does not commute 
with itself at all times:

*̂ t2( ),*̂ t1( )⎡
⎣⎢

⎤
⎦⎥ = 0

*̂ t2( ),*̂ t1( )⎡
⎣⎢

⎤
⎦⎥ ≠ 0

❏ Inhomogeneous Hamiltonians 
(e.g., a single interactions, 
multiple chemical shifts, 
multiple heteronuclear 
couplings) give rise to spectra 
with infinitely sharp lines.

❏ Homogeneous Hamiltonians 
(e.g., one homonuclear dipolar 
coupling and one other 
interaction) give rise to spectra 
with broad lines due to higher-
order AHT terms.

inhomogeneous

homogeneous
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AHT and Multiple Time Dependencies
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❏ We have often multiple (incommensurate) basic frequencies:

- Heteronuclear decoupling under MAS (CW, TPPM, XiX, …)

- Homonuclear decoupling under MAS: Lee-Goldburg irradiation

- Decoupling during recoupling sequences under MAS

- Double rotation for quadrupolar nuclei

t [s]
0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

t [s]
0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

sin2(ωA t)sin2(ωB t)

sin2
At( )

A
sin2

Bt( )
A

τA τB

❏ Use time-scale separation:  
assume ωA ≫ ωB and τA ≪ τB: 

- Averaging over the short cycle time τA will 
not affect the slow oscillation significantly.

- We can then average over the long cycle 
time τB in a second step.

❏ Use synchronization conditions: nAωA = nBωB

- Use cycle time τc = 2π/(nAωA) that 
averages both frequencies.
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❏ Not applicable to Hamiltonians with multiple basic frequencies. No single cycle time can be 
defined if the two frequencies are incommensurate:

- MAS and rf irradiation must be synchronized or time-scale separated.

- Multiple rf irradiations must be synchronized or time-scale separated. 

❏ Only stroboscopic observation is allowed after a full cycle time. Nyquist frequency equals 
the basic frequency while side bands appear at integer multiples of the basic frequency. 

- Sidebands in MAS spectra cannot be described and are folded back onto the center band.

- Sidebands in rf-irradiation schemes are neglected and folded back onto the center band.

❏ Convergence of the series expansion of the Hamiltonian can be a problem. Usually the 
basic frequency has to be larger than the transition frequencies in the Hamiltonian.

- This is one of the reasons why we use interaction-frame transformations to eliminate large 
terms in the Hamiltonian.

- The convergence of the AHT series (Magnus expansion) is not yet fully understood. 

Review: S. Blanes, F. Casas, J.A. Oteo, and J. Ros “The Magnus Expansion and some of its applications”, Physics Reports 470, 141-238 (2009). 
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! Floquet theory maps the time-dependent finite-dimensional Hilbert (or Liouville) space onto 
an time-independent infinite-dimensional Floquet space.
*̂ t( )=!

+ *̂(!2) e!2i!mt

+ *̂(!1) e!i!mt

+ *̂(0)

+ *̂(1) ei!mt

+ *̂(2) e2i!mt

+!

!

+2

+1

0

!1

!2

!

*̂ F =

*̂(0)

*̂(0)

*̂(0)

*̂(0)

*̂(0)

*̂(1)

*̂(1)

*̂(1)

*̂(1)

*̂(-1)

*̂(-1)

*̂(-1)

*̂(-1)

*̂(-2)

*̂(-2)

*̂(-2)

*̂(2)

*̂(2)

*̂(2)

! T",t is a homomorphism: mapping (projection) from Floquet space to Hilbert space is 
unique but mapping from Hilbert space to Floquet space is not.

! Floquet description needs an additional Fourier space to describe the “quantization” of the 
motional process.

! Floquet theory is an exact method and does not imply any assumptions or approximations. 

T",t
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1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

+2

+1

0

1

2

! Floquet theory tells us how to 
build the matrix 
representation of the Floquet 
operators from the time-
dependent Fourier 
coefficients.

! This can be formally written 
as a direct product of the 
spin-Hilbert space with the 
basis                             and a 
Fourier space with the basis 

that describes the time-
dependent process.

! Can we define operators on 
this space?

*̂(0) *̂(1)

*̂(-1)

*̂(-2)

*̂(2)

!1 , !2 ,!, !N{ }

!" ,!,!1 , 0 ,+1 ,!,"{ }
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*̂ t( )=!

+ *̂(!2) e!2i!mt

+ *̂(!1) e!i!mt

+ *̂(0)

+ *̂(1) ei!mt

+ *̂(2) e2i!mt

+!

*̂= *̂(1)+

*̂(2)+

*̂(3)+!

!

+2

+1

0

!1

!2

!

*̂ F =

*̂(0)

*̂(0)

*̂(0)

*̂(0)

*̂(0)

*̂(1)

*̂(1)

*̂(1)

*̂(1)

*̂(-1)

*̂(-1)

*̂(-1)

*̂(-1)

*̂(-2)

*̂(-2)

*̂(-2)

*̂(2)

*̂(2)

*̂(2)

Construction of
Floquet Hamiltonian

!̂F =

!

+2

+1

0

!1

!2

!

*̂

*̂

*̂

*̂

*̂

Projection back
into Hilbert space

Block diago nalization
using van Vle ck method
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*̂ t( )=!

+ *̂(!2) e!2i!mt

+ *̂(!1) e!i!mt

+ *̂(0)

+ *̂(1) ei!mt

+ *̂(2) e2i!mt

+!

*̂= *̂(1)+

*̂(2)+

*̂(3)+!

!!

+2

+1

0

!1

!2

!

*̂ F =

*̂(0)

*̂(0)

*̂(0)

*̂(0)

*̂(0)

*̂(1)

*̂(1)

*̂(1)

*̂(1)

*̂(-1)

*̂(-1)

*̂(-1)

*̂(-1)

*̂(-2)

*̂(-2)

*̂(-2)

*̂(2)

*̂(2)

*̂(2)

Construction of
Floquet Hamiltonian

!̂F =

!

+2

+1

0

!1

!2

!

*̂

*̂

*̂

*̂

*̂

Projection back
into Hilbert space

Block diago nalization
using van Vle ck methodEffective Hamiltonians
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*̂ t( )=!

+ *̂(!2) e!2i!mt

+ *̂(!1) e!i!mt

+ *̂(0)

+ *̂(1) ei!mt

+ *̂(2) e2i!mt

+!

*̂= *̂(1)+

*̂(2)+

*̂(3)+!

!!

+2

+1

0

!1

!2

!

*̂ F =

*̂(0)

*̂(0)

*̂(0)

*̂(0)

*̂(0)

*̂(1)

*̂(1)

*̂(1)

*̂(1)

*̂(-1)

*̂(-1)

*̂(-1)

*̂(-1)

*̂(-2)

*̂(-2)

*̂(-2)

*̂(2)

*̂(2)

*̂(2)

Construction of
Floquet Hamiltonian

!̂F =

!

+2

+1

0

!1

!2

!

*̂

*̂

*̂

*̂

*̂

Projection back
into Hilbert space

Block diago nalization
using van Vle ck methodEffective Hamiltonians

! Calculation is independent of the detailed structure of the 
spin-Hilbert space blocks.

! We can do the perturbation treatment once and calculate the 
effective Hamiltonians for arbitrary problems.

! We only need to know the Fourier series of the Hamiltonian.
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*̂ t( )=!

+ *̂(!2) e!2i!mt

+ *̂(!1) e!i!mt

+ *̂(0)

+ *̂(1) ei!mt

+ *̂(2) e2i!mt

+!

*̂= *̂(1)+

*̂(2)+

*̂(3)+!

Effective Hamiltonians

! Calculation is independent of the detailed structure of the 
spin-Hilbert space blocks.

! We can do the perturbation treatment once and calculate the 
effective Hamiltonians for arbitrary problems.

! We only need to know the Fourier series of the Hamiltonian.

*̂= *̂ 1( )+ *̂ 2( )+!= *̂ 0( )!
1
2

*̂(n ),*̂(!n )"# $%
n!m

+!
n&0
'

*̂= *̂ 1( )+ *̂ 2( )+!= *̂ n0 ,k0( )

n0 ,k0
! "

1
2

*̂(n0"!,k0"! ),*̂(",! )#$ %&
"#r +!#m",!

!
n0 ,k0
! +!

*̂ t( )= *̂(n )ein!mt

n=!"

"

#

*̂ t( )= *̂(n,k )ein!rteik!mt

n=!"

"

#

!"r +#"m ! 0n0!r +k0!m = 0
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❏ We can calculate effective Hamiltonians for Hamiltonians with multiple time dependencies 
in a way very similar to AHT.

❏ Appearance of resonance conditions for more than one frequency: 

    
*̂ = !̂*(n0 ,k0 )

n0 ,k0
∑ −

1
2

!̂*(n0−ν,k0−κ ), !̂*(ν,κ )⎡
⎣⎢

⎤
⎦⎥

νωr +κωmν,κ
∑

n0 ,k0
∑ +"*̂= !̂*(0)−

1
2

!̂*(−n ), !̂*(n )⎡
⎣⎢

⎤
⎦⎥

nωm
+!

n≠0
∑

single frequency: two frequencies:

resonance conditions
❏ With multiple frequencies we have resonant and non-resonant contributions to the effective 

Hamiltonian in different orders: 

    

*≈ !̂*(0,0) + !̂* (2)
(0,0) +…

non-resonant: n0 = k0 = 0
" #$$$$$$$ %$$$$$$$

+ !̂*(n0 ,k0 )

n0 ,k0

∑ + !̂* (2)
(n0 ,k0 )

n0 ,k0

∑ +…

resonant: n0ωr +k0ωm = 0
" #$$$$$$$$$$$ %$$$$$$$$$$$

!̂* (2)
(n0 ,k0 ) =−

1
2

!̂*(n0−ν,k0−κ ), !̂*(ν,κ )⎡
⎣⎢

⎤
⎦⎥

νωr +κωmν,κ
∑

❏ At these resonance conditions, certain Fourier coefficients of the time-dependent 
interaction-frame Hamiltonian are time independent.

n0ωr +k0ωm = 0



Matthias Ernst ETH Zürich

-2 -1 0 21

-2

-1

0

2

1(Dis-)Advantages of Operator-Based Floquet Theory

84

❏ Can easily be expanded to multiple incommensurate frequencies.

❏ Expressions are independent of the detailed structure of the spin-Hilbert-space 
Hamiltonian.

❏ Leads to an effective Hamiltonian that can be written as an analytical operator expression. 

❏ Can be used to treat systems with many spins as long as the commutators can be 
calculated.

❏ Projection back into Hilbert space eliminates the side bands at integer multiples of the 
Fourier frequencies. What is the cycle time in multi-mode Floquet theory?

❏ Resonance conditions that involve simultaneous transitions in Fourier space and spin 
space can not be treated.



Matthias Ernst ETH Zürich

Building Blocks in Solid-State NMR

85

Undavalli, 2022
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Cross PolarizationS. Penzel, … , B.H. Meier, J. Biomol. NMR. 63 (2015) 165–186. 
https://doi.org/10.1007/s10858-015-9975-y.

A. Marchetti, …, G. Pintacuda, Angew. Chem. Int. Ed. Engl. 51 
(2012) 10756–10759. https://doi.org/10.1002/anie.201203124.
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! Proton-Driven Spin Diffusion under MAS (PDSD)/DARR

I

S τm

CP

CP

decoupling decoupling

t1 t2

π/2

π/2 π/2

! The time-dependent Hamiltonian with the exception of the radio-frequency part is the same 
during all times of the experiment:
*̂ t( )= A!,0

(i ) t( )T̂!,0
(i )

!=0

2

!
i
! + *̂ rf t( )= *̂D t( )+ *̂ CS t( )+ *̂ J t( )+ *̂ rf t( )

CP

CP

2

! Effective Hamiltonian during Hartmann-Hahn cross polarization: heteronuclear zero-quantum 
Hamiltonian: *̂! !IS

(eff) Î +Ŝ"+ Î "Ŝ+( )
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ω1S

I
S

ω1I ωr

❏ Heteronuclear coupled I-S two-spin system:  
Continuous-wave (cw) irradiation on both spins under MAS.

❏ Examples for such a situation:

- Hartmann-Hahn cross polarization (high-power and low-power CP).

- HORROR or rotary-resonance recoupling (R3) with simultaneous heteronuclear 
decoupling.

- Proton-assisted recoupling (PAR) polarization transfer.
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*̂(t )= *̂ I(t )+ *̂ IS(t )+ *̂ S(t )+ *̂ II(t )+ *̂ SS(t )= *̂(n )einωrt

n=−2

2

∑

!̂*(t )= !̂* I(t )+ !̂* IS(t )+ !̂* S(t )+ !̂* II(t )+ !̂* SS(t )= !̂*(n,k ,ℓ)einωrteikω1Iteiℓω1St

k=−2

2

∑
n=−2

2

∑

❏ Spin-system Hamiltonian in the rotating frame is time dependent due to magic-angle 
spinning (MAS). 

Sz

SySx

Sz

SySx

Sz’

Sy’
Sx’

θ

ωt

U(t)

laboratory frame interaction frame

ÛI (t )= T̂ exp −i *̂ rf (t1)dt1
0

t

∫
⎛

⎝
⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
eiπ/2F̂y =e−iω1IF̂zteiπ/2F̂y

ÛS (t )= T̂ exp −i *̂ rf (t1)dt1
0

t

∫
⎛

⎝
⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
eiπ/2F̂y =e−iω1SF̂zteiπ/2F̂y

❏ Interaction-frame transformation with the two rf fields introduces a two more time-
dependencies in the Hamiltonian. There are now three frequencies: ωr and ω1I and ω1S.

❏ Average Hamiltonian theory requires that 
- the three frequencies are commensurate, i.e., n ωr + k ω1 + l ω1S = 0 or 
- a separation of time scales, i.e., ωr « ω1I « ω1S  or ωr » ω1I » ω1S (sequential averaging). 

❏ Floquet theory allows a unified description for all values of ωr and ω1I and ω1S.
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ω1S

I
S

ω1I

ωr

❏ Fourier coefficients: !̂*(t )= !̂*(n,k ,ℓ)einωrteikω1Iteikω1St

k=−2

2

∑
n=−2

2

∑

!̂*(0,0,0) = ωℓ,m
(0)
#̂
Iℓ ⋅
#̂
Im( )+ ωp,q

(0)
#̂
Sp ⋅
#̂
Sq( )

p<q
∑

ℓ<m
∑

!̂*(n,0,0) =− ωℓ,m
(n ) ÎℓzÎmz −

1
2
ÎℓxÎmx + ÎℓyÎmy( )⎛

⎝
⎜⎜

⎞
⎠
⎟⎟⎟

ℓ<m
∑

− ωp,q
(n ) ŜpzŜqz −

1
2
ŜpxŜqx + ŜpyŜqy( )⎛

⎝
⎜⎜

⎞
⎠
⎟⎟⎟

p<q
∑

!̂*(n,±1,0) =−
1
2

ωm
n( )Îm
∓

m
∑

!̂*(n,0,±1) =−
1
2

ωp
n( )Ŝp

∓

p
∑

!̂*(n,±1,±1) =−
1
2

ωm,p
n( ) Îm

∓Ŝp
∓

m,p
∑

!̂*(n,±2,0) =
3
4

ωℓ,m
(n )Îℓ

∓Îm
∓

ℓ<m
∑

!̂*(n,0,±2) =
3
4

ωp,q
(n )Ŝp

∓Ŝq
∓

p<q
∑

⎧

⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪



Matthias Ernst ETH Zürich

-2 -1 0 21

-2

-1

0

2

1Fourier Coefficients Under CW Irradiation

90

ω1S

I
S

ω1I

ωr
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⎟⎟⎟
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∓
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∓

m,p
∑

!̂*(n,±2,0) =
3
4

ωℓ,m
(n )Îℓ
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∓
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∑
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(n )Ŝp

∓Ŝq
∓
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∑

⎧

⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
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High-Power Cross Polarization
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❏ The resonance condition at the Hartmann-Hahn conditions under MAS is:
n0ωr +k0ω1I + ℓ 0ω1S = 0 ⇒ n0,k0,ℓ 0( )= ±1,±1,±1( ), ±2,±1,±1( )

❏ Zero-quantum polarization transfer: n0ωr = ω1I - ω1S

❏ Hamiltonian at n = n0 (n0 = 1,2) zero-quantum HHCP condition:

*̂ 1( ) = !̂*(n0 ,k0 ,ℓ0 )

n0 ,k0 ,ℓ0
∑ = !̂*(−n0 ,1,−1)+ !̂*(n0 ,−1,1) =−

1
2

ωm,p
−n0( )Îm

+Ŝp
−+ωm,p

n0( )Îm
−Ŝp
+( )

m,p
∑

❏ Double-quantum polarization transfer: n0ωr = ω1I + ω1S

❏ Hamiltonian at n = n0 (n0 = 1,2) double-quantum HHCP condition:

*̂ 1( ) = !̂*(n0 ,k0 ,ℓ0 )

n0 ,k0 ,ℓ0
∑ = !̂*(−n0 ,1,1)+ !̂*(n0 ,−1,−1) =−

1
2

ωm,p
−n0( )Îm

+Ŝp
+ +ωm,p

n0( )Îm
−Ŝp
−( )

m,p
∑
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Simulation of Cross Polarization
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Low-Power CP at n = 0 Hartmann-Hahn Condition
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❏ At very high MAS frequencies, high-power ZQ cross polarization is 
difficult because it requires very high rf fields.

❏ Low-power CP at the n = 0 Hartmann-Hahn condition:
0ωr +k0ω1I + ℓ 0ω1S = 0 ⇒ 0,k0,ℓ 0( )= 0,±1,±1( )

*̂ 1( ) = !̂*(0,k0 ,ℓ0 )

n0 ,k0 ,ℓ0
∑ = !̂*(0,1,−1)+ !̂*(0,−1,1) =−

1
2

ωm,p
0( ) Îm

+Ŝp
−+ Îm

−Ŝp
+( )

m,p
∑ =−

1
2

πJm,p Îm
+Ŝp
−+ Îm

−Ŝp
+( )

m,p
∑

❏ First-order Hamiltonian at n = 0 zero-quantum HHCP condition:

0 1 2 3 4 5
τCP [ms]

3.5

3

2.5

2

1.5

1

0.5

0

I/I
0

low-power CP

high-power CP

❏ Polarization transfer is too fast for a J-
coupling mediated polarization transfer.

❏ Other higher-order terms have to be 
considered for a full explanation.
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Low-Power CP at n = 0 Hartmann-Hahn Condition
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❏ At very high MAS frequencies, high-power ZQ cross polarization is 
difficult because it requires very high rf fields.

❏ Low-power CP at the n = 0 Hartmann-Hahn condition:
0ωr +k0ω1I + ℓ 0ω1S = 0 ⇒ 0,k0,ℓ 0( )= 0,±1,±1( )

*̂ 2( ) = !̂* (2)
(0,k0 ,ℓ0 )

n0 ,k0 ,ℓ0
∑ = !̂* (2)

(0,1,−1)+ !̂* (2)
(0,−1,1) =−

1
2

!̂*(0−ν,1−κ,−1−λ), !̂*(ν,κ,λ)⎡
⎣⎢

⎤
⎦⎥

νωr +κω1I +λω1Sν,κ,λ
∑ −

1
2

!̂*(0−ν,−1−κ,1−λ), !̂*(ν,κ,λ)⎡
⎣⎢

⎤
⎦⎥

νωr +κω1I +λω1Sν,κ,λ
∑

=−
1
2

ωm,n,p Îm
+Ŝp
−Înz + Îm

−Ŝp
+Înz( )

m,n,p
∑

❏ Second-order Hamiltonian at n = 0 zero-quantum HHCP condition:

0 1 2 3 4 5
τCP [ms]
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between theory 
and experiment
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Practical Aspects of Cross Polarization

95

❏ Experimentally optimize the length of the cross-polarization time .
❏ Polarization transfer on the n = 1 condition is faster than on the n = 2 condition.

τcp

❏ Select a spinning frequency that does not match a 
chemical-shift difference.

❏ Experimentally optimize the two rf-field amplitudes 
such that the polarization transfer is maximized.
- Avoid rf-field amplitudes  to avoid fast decay 

of magnetization due to homonuclear recoupling.
ω1 ≈ nωr
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Practical Aspects of Cross Polarization
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❏ Experimentally optimize the length of the cross-polarization time .
❏ Polarization transfer on the n = 1 condition is faster than on the n = 2 condition.

τcp

❏ Select a spinning frequency that does not match a 
chemical-shift difference.

❏ Experimentally optimize the two rf-field amplitudes 
such that the polarization transfer is maximized.
- Avoid rf-field amplitudes  to avoid fast decay 

of magnetization due to homonuclear recoupling.
ω1 ≈ nωr

❏ Implement a linear ramp or even better a tangential sweep of the amplitude to compensate 
for rf-field inhomogeneity over the rotor and to get higher (adiabatic) transfer efficiency.

❏ The shape of the sweep needs to be optimized. For hints how to do this, see: 
M. Ernst, B.H. Meier, Adiabatic Polarization‐Transfer Methods in MAS Spectroscopy, John 
Wiley & Sons, Ltd, 2010. https://doi.org/10.1002/9780470034590.emrstm0004.pub2.

❏ Typical gain in sensitivity are a factor of 2-10 depending on the ratio of the Larmor 
frequencies.

❏ Additional gain in sensitivity stems from the faster possible repetition rate due to faster 
relaxation of proton spins.

❏ At fast MAS the DQ Hartmann Hahn condition  is more advantageous 
and should be used.

ω1I + ω1S = nωr
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Numerical Pulse Sequence Optimization
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σ(0) = ̂S1z σ(T ) = ̂S2z

ℋ̂rf(t) = ω1(t)( ̂Fx cos(ϕ(t)) + ̂Fy sin(ϕ(t)))
Radio-frequency
irradiation:

ℋ̂(t) = ωS1
̂S1z + ωS2

̂S2z+ω12(t)(2 ̂S1z
̂S2z − ( ̂S1x

̂S2x + ̂S1y
̂S2y))

Spin-system
Hamiltonian:

ωS1
/(2π) ∈ [−10,10] kHz

ωS2
/(2π) ∈ [−10,10] kHz

δ12/(2π) ∈ [2,10] kHz
ω1/(2π) ∈ [0,50] kHz

Parameter
ranges:

ETH Zürich

! Full quantum-mechanical simulation 
required.

! Numerical pulse-sequence 
optimization in Simpson, Spinach or 
any other program of your choice.
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Computer Optimization of Pulse Sequences
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❏ This is often done using optimal control theory 
where we do a state-to-state optimization.

❏ Initial and final state are propagated forward and 
backward to give the most efficient transfer by 
modifying the amplitude and phases of pulses.

❏ In solid-state NMR, this has mostly been 
implemented for heteronuclear polarization 
transfer as an alternative to the cross polarization 
experiment.

❏ Sequences can be designed to compensate 
typical rf-field inhomogeneity better than standard 
CP sequences.

❏ There are also some homonuclear sequences 
but they are more complex to optimize. One can 
also implement directed transfer which would not 
be so simple with effective Hamiltonians.
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Computer Optimization of Pulse Sequences

98

❏ Optimal control pulse sequences often look like 
“noise”.

❏ Early implementations showed a quite erratic behavior 
and would work some places and not in other places.

❏ Newer sequences seem to be more stable due to the 
inclusion of MAS modulations of the rf-field 
inhomogeneity.

❏ If one uses mixing of transverse components, one can 
gain an additional factor of  for each indirect 
dimension. In higher-dimensional experiments this can 
be an important factor!

❏ One has to make sure that the sine and cosine 
modulated signal are not mixed up (echo/anti-echo 
processing) which can be achieved by an additional 
180° pulse before the transfer.

2

J. Blahut, Z. Tošner, …, Solid State Nucl. Magn. Reson. 135 (2025) 101984. https://doi.org/
10.1016/j.ssnmr.2024.101984.
Alexander Klein, …, Rasmus Linser, High-dimensional solid-state NMR facilitated by transverse-
mixing optimal control, https://doi.org/10.21203/rs.3.rs-8003957/v1
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Important Building Blocks in MAS NMR
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Heteronuclear DecouplingS. Penzel, … , B.H. Meier, J. Biomol. NMR. 63 (2015) 165–186. 
https://doi.org/10.1007/s10858-015-9975-y.

A. Marchetti, …, G. Pintacuda, Angew. Chem. Int. Ed. Engl. 51 
(2012) 10756–10759. https://doi.org/10.1002/anie.201203124.
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Heteronuclear Decoupling
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! Proton-Driven Spin Diffusion under MAS (PDSD)/DARR

I

S τm

CP

CP

decoupling decoupling

t1 t2

π/2

π/2 π/2

! The time-dependent Hamiltonian with the exception of the radio-frequency part is the same 
during all times of the experiment:
*̂ t( )= A!,0

(i ) t( )T̂!,0
(i )

!=0

2

!
i
! + *̂ rf t( )= *̂D t( )+ *̂ CS t( )+ *̂ J t( )+ *̂ rf t( )

! Effective Hamiltonian during free evolution (t1 and t2): S-spin isotropic chemical-shift 
Hamiltonian:

decoupling

t1t1t

π/2π/2π

decoupling

t2t2t

/2

*̂! !S
(iso)Ŝz
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Do We Need Decoupling Under Fast MAS?
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❏ MAS will average in first-order all the second-rank spatial tensors but ... 

020406080100120140160180200
13C chemical shift [ppm]
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νr
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with XiX

decoupling

Vγ Vγ’VβVα Fα FβFγ Fδ Fε,ζF’ V’
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0
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1000

1500

2000

Δ
ν 1

/2
 [H

z]

νr [kHz]

CH

CH2

❏ Higher-orders will lead to a residual line width due to cross terms between heteronuclear 
and homonuclear dipolar couplings: Δω½ ∝ 1/ωr

❏ Faster MAS (~ 250 kHz) will lead to a liquid-like NMR spectrum.

❏ Isotropic J couplings are not averaged.

❏ I-spin spin diffusion will lead to a line broadening of the J multiplet lines.  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I
S

ω1

ωr

❏ Fourier coefficients: !̂*(t )= !̂*(n,k )einωrteikω1t

k=−2

2

∑
n=−2

2

∑

!̂*(0,0) = ωS
(0)Sz + ωℓ,m

(0)
#̂
Iℓ ⋅
#̂
Im( )

ℓ<m
∑

!̂*(n,0) = ωS
(n )Sz − ωℓ,m

(n ) ÎℓzÎmz −
1
2
ÎℓxÎmx + ÎℓyÎmy( )⎛

⎝
⎜⎜

⎞
⎠
⎟⎟⎟

ℓ<m
∑

!̂*(0,±1) =−
1
2

ωm
0( )Îm
∓

m
∑ −

1
2

ωSm
0( )ŜzÎm

∓

m
∑

!̂*(n,±1) =−
1
2

ωm
n( )Îm
∓

m
∑ −

1
2

ωSm
n( )ŜzÎm

∓

m
∑

!̂*(0,±2) = 0

!̂*(n,±2) =
3
4

ωℓ,m
(n )Îℓ

∓Îm
∓

ℓ<m
∑

⎧

⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
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*(t)ˆ

❏ Factors determining the observed line width:
- Residual coupling is given by the non-resonant (        ) second-order commutator term 

because the interaction-frame Hamiltonian is not “symmetric” due to the MAS rotation. 
- Resonance conditions (                        ) between the two modulation frequencies can lead 

to large terms which can be beneficial or detrimental to the decoupling process. 
- I-spin spin diffusion (resulting from resonant or non-resonant terms) leads to an additional 

averaging of the residual couplings.
❏ Only the interaction between these three effects will explain the decoupling behavior in 

rotating solids. 

Theoretical Description of Decoupling in Rotating Solids

103

    
!̂* t( ) = !̂*(n,k )einωrteikωmt

k=−∞

∞

∑
n=−2

2

∑

    
*̂ = !̂*(n0 ,k0 )

n0 ,k0
∑ −

1
2

!̂*(n0−ν,k0−κ ), !̂*(ν,κ )⎡
⎣⎢

⎤
⎦⎥

νωr +κωmν,κ
∑

n0 ,k0
∑ +"

Sz

SySx

Sz’

Sy’
Sx’

θ

ωt

interaction frame

❏ Time-dependent interaction-frame Hamiltonian under decoupling in rotating solids has (at 
least) two modulation frequencies: 

Floquet Theory

  
!̂* (2)

(0,0)

  
!̂*(n0 ,k0 )or !̂* (2)

(n0 ,k0 )
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CW Decoupling in Rotating Solids
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! The second-order non-resonant effective Hamiltonian:

! In first order we have the isotropic chemical shift 
of the S spin and the J couplings of the I spins:

Outside Resonance Conditions: Decoupling

105

!̂*(0,0) = !S
(0)Sz + !",m
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I" !
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! Outside the resonance conditions, the non-resonant contributions are important:
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! In second order we have cross terms between 
the heteronuclear dipolar coupling and the I-spin 
CSA tensor.

! There are no homonuclear/heteronuclear dipolar-
coupling cross terms.
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Continuous-Wave Decoupling in Rotating Solids
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❏ Continuous-wave decoupling is a terrible decoupling 
sequence with a large residual coupling.

❏ Residual coupling increases with increasing B0 field 
strength (CSA term!). 

❏ Rotary-resonance conditions have to be avoided:

- High-power decoupling: ω1  > 3ωr.

- Low-power decoupling: ω1 < ωr/2 for high MAS 
frequencies.

❏ I-spin spin diffusion averages the residual coupling: 

- Observable line width increases with increasing 
spinning frequency: spin diffusion is slowed down. 

- Low-power decoupling at the HORROR condition 
leads to a narrower line width.

❏ High-power decoupling: Δω½ decreases with ω1.

❏ Low-power decoupling: Δω½ decreases with ωr.  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 ωr,ω1  ωr,ωm,ωα  ωr,ωm

❏ All sequences have at least two frequencies in the interaction frame.

❏ There are many modifications of the TPPM sequence: 
- frequency-modulated and phase-modulated (FMPM) TPPM 
- small phase angle rapid cycling (SPARC) small phase incremental alternation (SPINAL) 
- CPM m-n; amplitude-modulated TPPM (AM-TPPM); GT-n  
- continuous modulation (CM) TPPM 
- swept-frequency TPPM (SWf-TPPM)  

TPPM: A. E. Bennett, et al., J. Chem. Phys. 103 (1995) 6951. XiX: A. Detken, et al., Chem. Phys. Lett. 356 (2002) 298. 
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CW TPPM XiX

 ωr,ω1  ωr,ωm,ωα  ωr,ωm

❏ All sequences have at least two frequencies in the interaction frame.

❏ There are many modifications of the TPPM sequence: 
- frequency-modulated and phase-modulated (FMPM) TPPM 
- small phase angle rapid cycling (SPARC) small phase incremental alternation (SPINAL) 
- CPM m-n; amplitude-modulated TPPM (AM-TPPM); GT-n  
- continuous modulation (CM) TPPM 
- swept-frequency TPPM (SWf-TPPM)  

History: 1950                              1995                                 2001

TPPM: A. E. Bennett, et al., J. Chem. Phys. 103 (1995) 6951. XiX: A. Detken, et al., Chem. Phys. Lett. 356 (2002) 298. 
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❏ All sequences have at least two frequencies in the interaction frame.

❏ There are many modifications of the TPPM sequence: 
- frequency-modulated and phase-modulated (FMPM) TPPM 
- small phase angle rapid cycling (SPARC) small phase incremental alternation (SPINAL) 
- CPM m-n; amplitude-modulated TPPM (AM-TPPM); GT-n  
- continuous modulation (CM) TPPM 
- swept-frequency TPPM (SWf-TPPM)  

History: 1950                              1995                                 2001

TPPM: A. E. Bennett, et al., J. Chem. Phys. 103 (1995) 6951. XiX: A. Detken, et al., Chem. Phys. Lett. 356 (2002) 298. 
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SPINAL-64

❏ SPINAL-64: φ=10°, α=5°, β=2α, super cycle QQQQ QQQQ

❏ Phase angles and pulse lengths have to be optimized. 

SPINAL-64: B. A. Fung, et al., J. Magn. Reson. 142 (2000) 97. G. Comellas et al., J. Magn. Reson. 
209 (2011) 131.
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 ωr,ω1  ωr,ωm,ωα  ωr,ωm

❏ All sequences have at least two frequencies in the interaction frame.

❏ There are many modifications of the TPPM sequence: 
- frequency-modulated and phase-modulated (FMPM) TPPM 
- small phase angle rapid cycling (SPARC) small phase incremental alternation (SPINAL) 
- CPM m-n; amplitude-modulated TPPM (AM-TPPM); GT-n  
- continuous modulation (CM) TPPM 
- swept-frequency TPPM (SWf-TPPM)  

History: 1950                              1995                                 2001

TPPM: A. E. Bennett, et al., J. Chem. Phys. 103 (1995) 6951. XiX: A. Detken, et al., Chem. Phys. Lett. 356 (2002) 298. 

SWf-TPPM

❏ Frequency-Swept-TPPM (SWf-TPPM): pulse length is varied during the 
decoupling period.

SWf-TPPM: R. Thakur et al., Chem. Phys. Lett. 426 (2006) 459.

-φ

n
ω1/(2π)

+φ

τp

2π/ωm

-φ
+φ

-φ
+φ

… …



Matthias Ernst ETH Zürich

π

n
ω1/(2π)

0

τp
2π/ωm

-φ

n
ω1/(2π)

+φ

τp
2π/ωm

Asynchronous Decoupling Sequences

107

ω1/(2π)

CW TPPM XiX

 ωr,ω1  ωr,ωm,ωα  ωr,ωm

❏ All sequences have at least two frequencies in the interaction frame.

❏ There are many modifications of the TPPM sequence: 
- frequency-modulated and phase-modulated (FMPM) TPPM 
- small phase angle rapid cycling (SPARC) small phase incremental alternation (SPINAL) 
- CPM m-n; amplitude-modulated TPPM (AM-TPPM); GT-n  
- continuous modulation (CM) TPPM 
- swept-frequency TPPM (SWf-TPPM)  

History: 1950                              1995                                 2001

TPPM: A. E. Bennett, et al., J. Chem. Phys. 103 (1995) 6951. XiX: A. Detken, et al., Chem. Phys. Lett. 356 (2002) 298. 
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❏ Residual coupling is given by a non-resonant second-order cross term between the I-spin 
homonuclear and the heteronuclear dipolar coupling: 

    
!̂* (2)

(0,0) =−
3
8

ωIℓIm
(ν )ωIℓS

(−ν ) +ωIℓS
(ν )ωIℓIm

(−ν )

νωr +κωm
ax(κ )bx(κ ) +ay(κ )by(κ )( )4SzIℓz

ℓ≠m
∑

ν,κ
∑ Imz

❏ First-order resonance conditions at n0 = ±1,±2: τp/τr = -k0/2  and τp/τr = -k0/4. 
- Very strong and rf-field and spinning frequency independent. 
- Heteronuclear dipolar coupling is directly recoupled. Strength is determined by a(k). 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*̂ = !̂*(n0 ,k0 ) + !̂*(−n0 ,−k0 ) = 2 Re ωIℓS

(n0 )( ) ax(k0 )2SzIℓx +ay(k0 )2SzIℓy( )
ℓ
∑
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❏ Residual coupling is given by a non-resonant second-order cross term between the I-spin 
homonuclear and the heteronuclear dipolar coupling: 

    
!̂* (2)

(0,0) =−
3
8

ωIℓIm
(ν )ωIℓS

(−ν ) +ωIℓS
(ν )ωIℓIm

(−ν )

νωr +κωm
ax(κ )bx(κ ) +ay(κ )by(κ )( )4SzIℓz

ℓ≠m
∑

ν,κ
∑ Imz

❏ Second-order resonance conditions at n0 = ±3,±4: τp/τr = -k0/6  and τp/τr = -k0/8. 
- Decreases with increasing rf-field amplitude and increasing MAS frequency. 
- Cross term between I-spin CSA and heteronuclear dipolar coupling.. 

    
*̂ = !̂* (2)

(n0 ,k0 ) + !̂* (2)
(−n0 ,−k0 ) = 2 Im ωIℓS

(+2)ωIℓ
(+2)( )

ax(k0−κ )ay(κ )−ax(κ )ay(k0−κ )( )
νωr +κωm

2SzIℓz
κ
∑

ℓ
∑
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νr 12 kHz= ν1 100 kHz= νr 25 kHz= ν1 150 kHz=

νr 35 kHz= ν1 150 kHz= νr 48 kHz= ν1 190 kHz=

! TPPM decoupling consists of two pulses with a phase shift of 2%. 

! Flip-angle of the pulses is roughly a 180° pulse.

! Phase angle and flip angle (pulse length) have to be optimized.

A. E. Bennett, et al., J. Chem. Phys. 103 (1995) 6951.  

!1
kHz

!r
kHz

!p
(max)

µs
!(max)

°

!p
(max)

!"

I (max)

I(cw)
!1
kHz

!r
kHz

!p
(max)

µs
!(max)

°

!p
(max)

!"

I (max)

I(cw)

100 12 5.2 7 1.03 1.4

150 25 3.6 10.5 1.08 2.4

150 35 3.4 16.4 1.02 2.6

190 48 3 16.5 1.14 2.6

! Optimum phase angle 
changes significantly with 
experimental parameters.

! Optimum pulse length is 
always close to a 180° pulse. 
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❏ There is no analytical solution for the interaction-frame transformation 
under TPPM.

❏ Interaction-frame transformation has more than one frequency 
because the basic TPPM element has an effective nutation frequency: 

Ŝx → Ŝxaxx (t )+ Ŝyaxy (t )+ Ŝzaxz (t )= Ŝxaxx(k ,ℓ)+ Ŝxyaxy(k ,ℓ)+ Ŝzaxz(k ,ℓ)( )eikωmteiℓωefft

ℓ=−2

2

∑
k=−∞

∞

∑

❏ Interaction-frame Hamiltonian has now three frequencies: ωr, ωm, ωα 

!̂*(t )= !̂*(n,k ,ℓ)einωrteikωmteiℓωefft

ℓ=−2

2

∑
k=−∞

∞

∑
n=−2

2

∑

*̂= !̂*(n0 ,k0 ,ℓ0 )

n0 ,k0
∑ −

1
2

"̂*(n0−ν,k0−κ,ℓ0−λ), !̂*(ν,κ,λ)⎡
⎣⎢

⎤
⎦⎥

νωr +κωm+λωeffν,κ
∑

n0 ,k0
∑ +!

Floquet Theory

Sz

SySx

Sz’

Sy’
Sx’

θ

ωt

interaction frame

❏ Triple-mode Floquet theory is required to describe TPPM decoupling properly.

❏ There are additional and more complex resonance conditions possible. 

-φ

n
ω1/(2π)

+φ

τp
2π/ωm
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❏ TPPM decoupling is a sequence that has small residual 
couplings that originate from cross term between I-spin 
CSA and heteronuclear dipolar-coupling tensors. Cross 
terms between the heteronuclear and the homonuclear 
dipolar couplings are only important for φ = 90° (XiX!).

❏ Some resonance conditions reintroduce the 
heteronuclear dipolar coupling (n0ωr = ωm, n0ωr = ωeff) and 
have to be avoided. Others reintroduce the homonuclear 
dipolar couplings of the I spins (n0ωr = ±(ωm-ωeff) and are 
beneficial for the decoupling process by increasing the I-
spin spin diffusion process.

❏ I-spin spin diffusion is present everywhere but is 
emphasized on the homonuclear resonance conditions. 

❏ Numerical simulations with different contributions to the 
Hamiltonian support this picture. 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! XiX gives about 10-15% higher line intensities but at $p/$r = 3.88 and 4.88.
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νr = 60 kHz, ν1 = 196 kHz, B0 = 16 Tνr = 10 kHz, ν1 = 115 kHz, B0 = 10.7 T

νr = 22 kHz, ν1 = 130 kHz, B0 = 10.7 T νr = 22 kHz, ν1 = 130 kHz, B0 = 16 T

V.S. Mithu, S. Pratihar, S. Paul, P.K. Madhu, “Efficiency of heteronuclear dipolar decoupling schemes in solid-state NMR: Investigation of 
effective transverse relaxation times”, Journal of Magnetic Resonance. 220 (2012) 8–17.

❏ SWf-TPPM broadens the area of good decoupling and makes optimization simpler.
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low-power 
decoupling

high-power 
decoupling

! In cw decoupling we have two possible regimes:
- high-power decoupling with !1 > 3!r.
- low-power decoupling with !1 < 0.5!r.

! Decoupling with rf-field amplitudes in between is inefficient.

ω1/(2π)

! At fast MAS ("r > 50 kHz), high-
power decoupling becomes 
difficult.

! Can we improve over low-power 
cw decoupling?

! At what spinning frequencies 
does low-power decoupling 
become comparable/better than 
high-power decoupling?

! What is the best sequence for 
low-power decoupling? 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50
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❏ TPPM and XiXCW give about the same line width and line height.
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Low-Power WALTZ-64 Decoupling
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! Low-power WALTZ decoupling is mostly avoiding resonance conditions!
! Line intensity (simulation) at 100 kHz MAS as a function of the pulse length .τ90

L. Thomas, M. Ernst, Low-power WALTZ decoupling under magic-angle spinning NMR, Magn. Reson. 5 (2024) 153–166. https://doi.org/10.5194/mr-5-153-2024.

10 kHz 5 kHz25 kHz ν1 = 1/(4 * τ90)

25 kHz10 kHz There are narrow 
ranges of pulse 
lengths where we 
have no resonance 
conditions.
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Low-Power WALTZ-64 Decoupling

119

! Low-power WALTZ decoupling is mostly avoiding resonance conditions!
! Line intensity (experiments) at 100 kHz MAS as a function of the pulse length .τ90

L. Thomas, M. Ernst, Low-power WALTZ decoupling under magic-angle spinning NMR, Magn. Reson. 5 (2024) 153–166. https://doi.org/10.5194/mr-5-153-2024.

10 kHz 5 kHz25 kHz ν1 = 1/(4 * τ90)

25 kHz10 kHz There are narrow 
ranges of pulse 
lengths where we 
have no resonance 
conditions.

CH2 group in 1,2-13C 
glycine ethyl ester
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Low-Power WALTZ-64 Decoupling
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❏ B1-field and pulse-length dependence

❏ Offset and pulse-length dependence
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Practical Aspects of Heteronuclear Decoupling
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❏ At MAS frequencies 40 kHz and below use high-power decoupling with as high  as 
possible.

❏ At MAS frequencies 60 kHz and above use low-power decoupling with .
❏ In between there are no clear rules and the choice might depend on the available rf-field 

strength. Experimental comparison of high- and low-power decoupling is important in this 
regime.

❏ For high-power decoupling SWf-TPPM and SPINAL-64 seem to be the most stable variants. 
At MAS frequency above 30 kHz and high enough rf fields, XiX can be a simple to optimize 
alternative.

❏ For low-power decoupling, WALTZ-64 with  or  needs almost no 
optimization. SWf-TPPM also works quite well with  and optimizing the pulse 
length (roughly a π pulse).

❏ For samples with diluted proton density, low-power decoupling might also work for lower 
MAS frequencies.

❏ Decoupling of spins with large CSA tensors and large chemical-shift ranges (e.g., 19F) is 
often difficult.

ω1

ω1 < ωr /4

ω1 = ωr /10 ω1 = ωr /4
ω1 < ωr /4
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Important Building Blocks in MAS NMR
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Dipolar RecouplingS. Penzel, … , B.H. Meier, J. Biomol. NMR. 63 (2015) 165–186. 
https://doi.org/10.1007/s10858-015-9975-y.

A. Marchetti, …, G. Pintacuda, Angew. Chem. Int. Ed. Engl. 51 
(2012) 10756–10759. https://doi.org/10.1002/anie.201203124.
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DARR - R3 Recoupling
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! Proton-Driven Spin Diffusion under MAS (PDSD)/DARR

I

S τm

CP

CP

decoupling decoupling

t1 t2

π/2

π/2 π/2

! The time-dependent Hamiltonian with the exception of the radio-frequency part is the same 
during all times of the experiment:
*̂ t( )= A!,0

(i ) t( )T̂!,0
(i )

!=0

2

!
i
! + *̂ rf t( )= *̂D t( )+ *̂ CS t( )+ *̂ J t( )+ *̂ rf t( )

τmτmτ

/2 π/π/π

! Effective Hamiltonian during spin-diffusion mixing time: homonuclear zero-quantum 
Hamiltonian: *̂! !II

(eff) Ŝ1
+Ŝ2
"+ Ŝ1

"Ŝ2
+( )Î z
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Origin of Time-Dependent Hamiltonians
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! The spin-system Hamiltonian in the rotating frame is static if the molecule is static.

sample rotation
interaction-frame

transformation

Sz

SySx

Sz

SySx

Sz!

Sy!
Sx!

θ

ωt

U(t)

laboratory frame interaction frame

! Hamiltonians in solid-state NMR have often multiple time dependencies!

+

*̂ = A!,0
(i )T̂!,0

(i )

!=0

2

!
i
!

!̂* t( )= A",0
(i ) t( ) !̂T",0

(i ) t( )
"=0

2

!
i
! = !̂*(n,k )ein!rteik!mt

n="2

2

!
k="#

#

!

interaction-frame
transformation

Sz

SySx

Sz

SySx

Sz!

Sy!
Sx!

θ

ωt

U(t)t)t

laboratory frame interaction frame

+

A!,0
(i )T̂!T!T ,0

(i )

0
!

= !̂*(n,k )einini !rteikiki !mt

n="2

2

!
k="#

#

!

+

0
!

sample rotationsample rotation ++

*̂ =
!=0

2

!
i
!

!̂* t( )= A"A"A ,0
(i ) t( ) !̂T"T"T ,0

(i ) t( )
"=0

2

!
i
!

+

0
!

)

++

0
!
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1Effective Hamiltonians from Floquet Theory
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❏ We can calculate effective Hamiltonians for Hamiltonians with multiple time dependencies 
in a way very similar to AHT.

❏ Appearance of resonance conditions for more than one frequency: 

    
*̂ = !̂*(n0 ,k0 )

n0 ,k0
∑ −

1
2

!̂*(n0−ν,k0−κ ), !̂*(ν,κ )⎡
⎣⎢

⎤
⎦⎥

νωr +κωmν,κ
∑

n0 ,k0
∑ +"*̂= !̂*(0)−

1
2

!̂*(−n ), !̂*(n )⎡
⎣⎢

⎤
⎦⎥

nωm
+!

n≠0
∑

single frequency: two frequencies:

resonance conditions
❏ With multiple frequencies we have resonant and non-resonant contributions to the effective 

Hamiltonian in different orders: 

    

*≈ !̂*(0,0) + !̂* (2)
(0,0) +…

non-resonant: n0 = k0 = 0
" #$$$$$$$ %$$$$$$$

+ !̂*(n0 ,k0 )

n0 ,k0

∑ + !̂* (2)
(n0 ,k0 )

n0 ,k0

∑ +…

resonant: n0ωr +k0ωm = 0
" #$$$$$$$$$$$ %$$$$$$$$$$$

!̂* (2)
(n0 ,k0 ) =−

1
2

!̂*(n0−ν,k0−κ ), !̂*(ν,κ )⎡
⎣⎢

⎤
⎦⎥

νωr +κωmν,κ
∑

❏ At these resonance conditions, certain Fourier coefficients of the time-dependent 
interaction-frame Hamiltonian are time independent.

n0ωr +k0ωm = 0
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Example: MAS and CW Irradiation
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M. Ernst, A. Samoson, B.H. Meier, Decoupling and recoupling using continuous-wave irradiation in magic-angle-spinning solid-
state NMR: A unified description using bimodal Floquet theory, J. Chem. Phys. 123 (2005) 064102. doi:10.1063/1.1944291.

I
S

ω1 ωr

❏ Heteronuclear coupled I-S two-spin system:  
Continuous-wave (cw) irradiation on one spin under MAS.

❏ Examples for such a situation:

- Heteronuclear CW decoupling (non resonant)

- Rotary-resonance recoupling (R3) (n0 ωr, ± ω1 = 0, n0 = ±1, ±2)

- HORROR recoupling (n0 ωr, ± k0 ω1 = 0, n0 = ±1, ±2, k0 = ±2)

- Higher-order R3 experiments (n0 ωr, ± ω1 = 0, n0 = ±3, ±4)

- DARR or MIRROR recoupling (n0 ωr, ± ω1 + ℓ0 ΔΩiso = 0, n0 = ±3, ±4, ℓ0 = ±1)
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CW Irradiation in Rotating Solids: S-Spin Detection
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decoupling

ω1/(2π)

Glycine
H2N-CH2-COOH
νr = 68.5 kHz 
1.3 mm Samoson 
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❏ 13C line intensity under 1H CW decoupling.

I
S

ω1
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CW Irradiation in Rotating Solids: I-Spin Detection
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ω1/(2π)

Glycine  ethylester
H2N-CH2-COOC2H5
νr = 65 kHz 
1.3 mm Bruker 
probe

0 0.5 1 1.5 2 2.5ω1/ωr

ω1/(2π) [kHz]
0 32.5 65 97.5 130 162.5
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ity
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(ω1 = 3ωr/2)

higher-order
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❏ 1H line intensity under 1H spin lock of 2.5 ms length.

I
S

ω1



Matthias Ernst ETH Zürich

*(t)ˆTheoretical Description of CW Irradiation in Rotating Solids
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*̂(t )= *̂ I(t )+ *̂ IS(t )+ *̂ S(t )+ *̂ II(t )+ *̂ SS(t )= *̂(n )einωrt

n=−2

2

∑

!̂*(t )= !̂* I(t )+ !̂* IS(t )+ !̂* S(t )+ !̂* II(t )+ !̂* SS(t )= !̂*(n,k )einωrteikω1t

k=−2

2

∑
n=−2

2

∑

❏ Spin-system Hamiltonian in the rotating frame is time dependent due to magic-angle 
spinning (MAS). 

interaction-frame transformation:
Sz

SySx

Sz

SySx

Sz’

Sy’
Sx’

θ

ωt

U(t)

laboratory frame interaction frame

Û(t )= T̂ exp −i *̂ rf (t1)dt1
0

t

∫
⎛

⎝
⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
eiπ/2F̂y =e−iω1F̂zteiπ/2F̂y

❏ Interaction-frame transformation with the rf-field introduces a second time-dependence in 
the Hamiltonian. There are now two frequencies: ωr and ω1.

❏ Average Hamiltonian theory requires that 
- the two frequencies are commensurate, i.e., n ωr = k ω1 (simultaneous averaging) or 
- a separation of time scales, i.e., ωr « ω1 or ωr » ω1 (sequential averaging). 

❏ Floquet theory allows a unified description for all values of ωr and ω1.
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I
S

ω1

ωr

❏ Fourier coefficients: !̂*(t )= !̂*(n,k )einωrteikω1t

k=−2

2

∑
n=−2

2

∑

!̂*(0,0) = ωS
(0)Sz + ωℓ,m

(0)
#̂
Iℓ ⋅
#̂
Im( )

ℓ<m
∑

!̂*(n,0) = ωS
(n )Sz − ωℓ,m

(n ) ÎℓzÎmz −
1
2
ÎℓxÎmx + ÎℓyÎmy( )⎛

⎝
⎜⎜

⎞
⎠
⎟⎟⎟

ℓ<m
∑

!̂*(0,±1) =−
1
2

ωm
0( )Îm
∓

m
∑ −

1
2

ωSm
0( )ŜzÎm

∓

m
∑

!̂*(n,±1) =−
1
2

ωm
n( )Îm
∓

m
∑ −

1
2

ωSm
n( )ŜzÎm

∓

m
∑

!̂*(0,±2) = 0

!̂*(n,±2) =
3
4

ωℓ,m
(n )Îℓ

∓Îm
∓

ℓ<m
∑

⎧

⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪



Matthias Ernst ETH Zürich

-2 -1 0 21

-2

-1

0

2

1Fourier Coefficients Under CW Irradiation

130

I
S

ω1

ωr

❏ Fourier coefficients: !̂*(t )= !̂*(n,k )einωrteikω1t

k=−2

2

∑
n=−2

2

∑

!̂*(0,0) = ωS
(0)Sz + ωℓ,m

(0)
#̂
Iℓ ⋅
#̂
Im( )

ℓ<m
∑

!̂*(n,0) = ωS
(n )Sz − ωℓ,m

(n ) ÎℓzÎmz −
1
2
ÎℓxÎmx + ÎℓyÎmy( )⎛

⎝
⎜⎜

⎞
⎠
⎟⎟⎟

ℓ<m
∑

!̂*(0,±1) =−
1
2

ωm
0( )Îm
∓

m
∑ −

1
2

ωSm
0( )ŜzÎm

∓

m
∑

!̂*(n,±1) =−
1
2

ωm
n( )Îm
∓

m
∑ −

1
2

ωSm
n( )ŜzÎm

∓

m
∑

!̂*(0,±2) = 0

!̂*(n,±2) =
3
4

ωℓ,m
(n )Îℓ

∓Îm
∓

ℓ<m
∑

⎧

⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

❏ Chemical shift of S spin: *̂ S(t )= Ŝz ωS
n( )einωrt

n=−2

2

∑
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I
S

ω1

ωr

❏ Fourier coefficients: !̂*(t )= !̂*(n,k )einωrteikω1t

k=−2

2

∑
n=−2

2

∑

!̂*(0,0) = ωS
(0)Sz + ωℓ,m

(0)
#̂
Iℓ ⋅
#̂
Im( )

ℓ<m
∑

!̂*(n,0) = ωS
(n )Sz − ωℓ,m

(n ) ÎℓzÎmz −
1
2
ÎℓxÎmx + ÎℓyÎmy( )⎛

⎝
⎜⎜

⎞
⎠
⎟⎟⎟

ℓ<m
∑

!̂*(0,±1) =−
1
2

ωm
0( )Îm
∓

m
∑ −

1
2

ωSm
0( )ŜzÎm

∓

m
∑

!̂*(n,±1) =−
1
2

ωm
n( )Îm
∓

m
∑ −

1
2

ωSm
n( )ŜzÎm

∓

m
∑

!̂*(0,±2) = 0

!̂*(n,±2) =
3
4

ωℓ,m
(n )Îℓ

∓Îm
∓

ℓ<m
∑

⎧

⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

*̂ I(t )= Îmz
m
∑ ωm

n( )einωrt

n=−2

2

∑❏ Chemical shift of I spins:
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I
S

ω1

ωr

❏ Fourier coefficients: !̂*(t )= !̂*(n,k )einωrteikω1t

k=−2

2

∑
n=−2

2

∑
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(n )einωrt

n=−2
n≠0

2

∑
ℓ<m
∑❏ Homonuclear couplings (I-I):
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❏ The resonance condition at the rotary-resonance conditions is ω1/ωr = 1 or ω1/ωr = 2.
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❏ n = 1 rotary-resonance condition:
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❏ At the n = 1 rotary-resonance condition, we recouple 
the I-spin CSA tensor, the heteronuclear dipolar 
coupling and the homonuclear dipolar coupling.
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❏ At the n = 2 rotary-resonance condition, we recouple 
the I-spin CSA tensor, the heteronuclear dipolar 
coupling but not the homonuclear dipolar coupling.

❏ n = 2 rotary-resonance condition:

Rotary-Resonance Conditions
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❏ At the rotary-resonance conditions the S-spin line is 
broadened because the heteronuclear coupling is 
reintroduced.
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❏ The resonance condition at the HORROR conditions is ω1/ωr = 1/2.
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HORROR
condition

n0ωr +k0ω1= 0 : ω1 / ωr =−n0 / k0 =1/ 2 ⇒ n0,k0( )= 1,−2( ), −1,2( )
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❏ The resonance condition at the HORROR conditions is ω1/ωr = 1/2.
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❏ HORROR condition:

*̂ 1( ) = !̂*(n0 ,k0 )

n0 ,k0
∑ = !̂*(1,−2)+ !̂*(−1,2)+ !̂*(2,−2)+ !̂*(−2,2)
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(1) Îℓ

+Îm
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❏ At the HORROR condition, we recouple only the 
homonuclear dipolar coupling.

❏ Reintroducing the homonuclear coupling leads to 
faster spin diffusion.

❏ This leads to “self decoupling” and narrower lines in 
the S-spin spectrum.

❏ The Floquet formalism is for all three resonance 
conditions the same.
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HORROR and DREAM Recoupling: ωr = 2 ω1
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❏ DREAM (adiabatic version of HORROR) can be used for two-dimensional correlation 
spectra with DQ polarization transfer.

❏ DREAM has the advantage that the match condition is much broader and easier to 
implement in a broadband (large chemical-shift range) fashion.

❏ DREAM polarization transfer is very efficient at fast MAS where the rf-field amplitude is high 
enough to cover (part of) the interesting spectral range.

❏ At intermediate MAS frequencies the polarization transfer becomes strongly dependent on 
the chemical shifts of the spin pairs.
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DREAM DQ Filtering
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❏ Using different sweep profiles, DREAM can also be 
used as an efficient DQ filter to select 13C 
neighboring spins.

❏ In a mixture of 1-13C alanine, nat. abundance 
methionine and iso-leucine, the efficiency is about 
61% and the suppression of natural abundance 
peaks very good.

61%



Matthias Ernst ETH Zürich

❏ RFDR is a homonuclear recoupling sequence where one π pulse per rotor cycle prevents 
the averaging of the homonuclear dipolar coupling. 

❏ An xy-4 phase cycle compensates the effects of finite pulses.

❏ RFDR is simple to implement and quite robust method.

❏ It has seen renewed interest in recoupling protons under fast MAS.

Radio-Frequency-Driven Recoupling (RFDR)

135

A.E. Bennett, … R.G. Griffin, Homonuclear radio frequency-driven recoupling in rotating solids, J. Chem. Phys. 108 (1998) 9463–9479.
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Radio-Frequency-Driven recoupling (RFDR)
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τr τr
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n

t1 t2τcp

ππ/2 π π/2

π/2❏ In RFDR, recoupling is achieved by adding a 
180° pulse during each rotor period.

❏ We can transform the ZQ part of the 
Hamiltonian into a toggling frame with the rf 
pulses (instantaneous rotations): 
 
 
 

❏ Transforming into an interaction frame with the 
chemical-shift part of the Hamiltonian leads to 
an effective Hamiltonian of the form: 
 

❏ The recoupling depends strongly on the 
chemical-shift difference.

❏ RFDR is very stable and robust. 0 0.5 1 1.5 2
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Δ −ω12 t( )Ŝx
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Examples of RFDR Spectra
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S. Bahri, …, R.G. Griffin, Proc. Natl. Acad. Sci. 119 (2022) e2114413119. 
https://doi.org/10.1073/pnas.2114413119.

A. Ramamoorthy, J. Xu, J. Phys. Chem. B 117 (2013) 6693–6700. 
https://doi.org/10.1021/jp4034003.

13C RFDR, 40 kHz MAS, DNP Conditions 1H RFDR, 3 kHz MAS, Micelle Sample
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Examples of RFDR Spectra
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L.B. Andreas, …, G. Pintacuda, Structure of fully protonated proteins by proton-detected magic-angle spinning NMR, Proc. Natl. Acad. Sci. USA 113 (2016) 9187–
9192. https://doi.org/10.1073/pnas.1602248113.

1H RFDR, 100 kHz MAS, GB1, Structural Restraints from 1H-1H Contacts
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Rotational-Echo Double Resonance (REDOR)
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! REDOR (Rotational-Echo Double Resonance) is a periodic !-pulse sequence with two *
pulses per rotor cycle.

! It recouples the heteronuclear dipolar coupling and leads to a dephasing of the 
magnetization under this coupling.

! Chemical shifts are refocused by the central * pulse.
! REDOR is typically measured with a reference experiment where all the pulses on one of 

the two spins are omitted.
! There are variants with shifted pulses to scale the dipolar coupling for measuring large 

couplings since sampling is only possible at multiples of .2τr
T. Gullion, J. Schaefer, Rotational-Echo Double-Resonance NMR, J. Magn. Reson. 81 (1989) 196–200.
T. Gullion, J. Schaefer, Detection of weak heteronuclear dipolar coupling by rotational-echo double-resonance NMR, Adv. Magn. Reson. 13 (1989) 57–83.
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Rotational-Echo Double Resonance (REDOR)

140

❏ This prevents the averaging of the n = 1 Fourier component of the dipolar coupling leading 

to a dephasing under the Hamiltonian: 
❏ The REDOR curve is universal since it scales with the anisotropy of the coupling.
❏ The Ising-type effective Hamiltonian distinguishes REDOR from most other recoupling 

sequences that have either a DQ or ZQ Hamiltonian.

*̂(1) = ωeff β,γ( )2Î z Ŝz
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1
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2πt( ) δD
IS( )nτr( )⁄

∆S S 0-----
---

❏ REDOR is a heteronuclear dipolar 
recoupling sequence that uses two 
rotor-synchronized 180° pulses to 
prevent averaging of the dipolar 
coupling.

❏ REDOR is a robust sequence in isolated 
two-spin systems and can be used to 
measure relatively precise distances.

❏ The theoretical description uses again a 
toggling frame but here the 180° pulses 
changes the sign of the dipolar coupling.
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REDOR Examples
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O. Toke, Int. J. Mol. Sci. 24 (2023) 13637. https://doi.org/10.3390/ijms241713637.
V.S. Mandala, …, M. Hong, Nat. Struct. Mol. Biol. 27 (2020) 1202–1208. https://
doi.org/10.1038/s41594-020-00536-8.

P. Schanda, …, M. Ernst, J. Am. Chem. Soc. 132 (2010) 15957–
15967. https://doi.org/10.1021/ja100726a.

Distance Measurements: Domain Architecture of the 
SARS-CoV-2 Envelope Protein

Dynamics Characterization in Ubiquitin
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Transferred Rotational-Echo Double Resonance (TEDOR)

142

❏ Including REDOR recoupling in an refocused INEPT-type pulse scheme allows us to use it 
for polarization transfer.

❏ The polarization transfer is less efficient than CP (56% vs 73% maximum efficiency) but it 
can sometimes be more robust and easier to set up.
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Dipolar Truncation
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❏ Most first-order dipolar recoupling sequences generate either a DQ (HORROR, DREAM, 
C7, …) or ZQ (RFDR, R2, …) effective Hamiltonian of the form: 

                       ̂ℋ̄(1) = ω(12)
eff (S+

1 S+
2 + S−

1 S−
2 ) ̂ℋ̄(1) = ω(12)

eff (S+
1 S−

2 + S−
1 S+

2 )
❏ Such recoupling 

sequences show 
dipolar truncation, 
i.e., large dipolar 
couplings truncate 
smaller dipolar 
couplings and we 
observe only 
transfer across the 
large coupling.

❏ REDOR is the 
exception with an 
Ising-type 
Hamiltonian 

.̂ℋ̄(1) = ω(12)
eff 2S1zS2z
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Second-Order Recoupling Sequences
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3.0 Å❏ Second-order recoupling sequences are important 
because they are less susceptible to dipolar 
truncation than first-order recoupling sequences.

❏ While first-order recoupling sequences directly lead 
to time-independent Fourier coefficients           , 
the second-order sequences lead to second-order 
contributions: 
 

❏ The most widely used sequence is proton-driven 
spin diffusion where the incompletely averaged 
dipolar coupling by MAS is used for the 
polarization transfer.

❏Second-order recoupling sequences use three-spin terms that are the result of the 
commutator. This leads to an averaging of large and small couplings leading to smaller 
differences in the effective Hamiltonian.
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Such a three-spin Hamiltonian also promotes polarization transfer between the I and

the S spins in a similar way as the normal zero-quantum dipolar-coupling

Hamiltonian. Polarization transfer can be mediated either by cross terms between two

homonuclear dipolar couplings or by cross terms between a homonuclear and a

heteronuclear dipolar coupling.

Figure 9.36 shows the time evolution under such a second-order average

Hamiltonian in a S-spin homonuclear dipolar-coupled three-spin system for a single

crystallite orientation. One can clearly see that we obtain a oscillatory polarization

transfer in much the same way as it is obtained under a regular dipolar-coupling

Hamiltonian. The main difference to the case with a static dipolar coupling is the

much smaller magnitude of the second-order average Hamiltonian especially at

higher MAS frequencies due to the scaling by . For a directly bonded C-C-C

three-spin system we find a maximum transfer of the magnetization in a powder

within roughly 10 ms at a spinning frequency of 10 kHz (Figure 9.37) while at 30 kHz

MAS frequency the polarization transfer is much slower and the maximum transfer is

only reached after approximately 30 ms. For short times the first-order average

Hamiltonian dominates the time evolution which scales under this condition with
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! The second-order effective Hamiltonian contains 
cross terms between two homonuclear couplings 
and between homo- and heteronuclear couplings.

! Both promote spin diffusion on the S spins.

! The magnitude of the effective couplings scales by 
1/#r.

! Small chemical-shift differences can lead to a 
truncation of the coupling term.

! The chemical-shift differences on the S spins can 
be compensated by the densely coupled I-spin 
network.

! In other words: If the proton SQ lines overlap, the 
spin-diffusion process is possible.

! One can improve the overlap by irradiating the 
protons at the n = 1 R3 condition.
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τm

π/2

decouplingI

S

π/2

π/2

dec.

t1 t2

CP

CP

(cw irradiation)

❏ Proton-driven spin diffusion is one of the methods 
to obtain long-range correlations in proteins.

❏ Such methods can be used to generate distance 
restraints in order to calculate structures in solids 
by NMR.

T. Manolikas, T. Herrmann, B.H. Meier, …, J. Am. Chem. Soc. 130 (2008) 3959–3966.
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❏ There are many more sequences than I have discussed here.
❏ Use a robust, easy to implement, low-power, and well-characterized sequence.
❏ First-order recoupling sequences generate polarization transfer that is independent of the 

spinning frequency but show dipolar truncation.
❏ For distance measurements, REDOR is the best sequence available.
❏ For a large number of distance restraints in (bio-)molecules, use second-order sequences 

like PDSD, DARR, PAR, …
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J-Coupling Based TransferS. Penzel, … , B.H. Meier, J. Biomol. NMR. 63 (2015) 165–186. 
https://doi.org/10.1007/s10858-015-9975-y.

A. Marchetti, …, G. Pintacuda, Angew. Chem. Int. Ed. Engl. 51 
(2012) 10756–10759. https://doi.org/10.1002/anie.201203124.
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*̂ J = 2πJ12Î1zÎ2z *̂ J = 2πJ12 ˆ
!
I1 ⋅ ˆ
!
I2weak coupling: strong coupling:

❏ Hamiltonian allows dephasing of 
magnetization.

❏ Polarization transfer achieved by pulses.

❏ Hamiltonian allows polarization transfer.

❏ Suppression of chemical shift is required.
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Multiple Pulse Sequences: 
- WALTZ 
- MLEV 
- DIPSI 
- FLOPSY
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*̂ J = 2πJ12Î1zÎ2zweak coupling:

❏ J-coupling experiments in solids require that dipolar couplings are partially averaged.
❏ This can be achieved by:

- fast MAS: for fully protonated samples at least 100 kHz.

- partial deuteration of the sample plus fast MAS of about 40 kHz.

- homonuclear decoupling and MAS.

- fast dynamics in the molecule.
❏ If the dephasing time of the magnetization under a spin-echo sequence (T2’) is slower 

than 1/2J, pulsed polarization transfer is possible.
❏ Under such conditions, all INEPT-based 

experiments can be implemented.
❏ It is of advantage to use experiments 

that implement in-phase detection due 
to cancellation of the multiplet lines.

❏ INEPT vs. CP can be used to  
characterize dynamic vs. static parts 
of the molecule.
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*̂ J = 2πJ12 ˆ
!
I1 ⋅ ˆ
!
I2strong coupling:

❏ To implement TOCSY-like experiments, all interactions except the homonucler J coupling 
have to be suppressed.

❏ This can be achieved by symmetry-based C9 sequences.
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❏ One can also use adiabatic pulses to implement the rotations in the TOBSY sequence.

❏ this leads to a higher bandwidth and to a higher efficiency of the sequence.

❏ TOBSY sequences can be used to record correlation spectra that show through bond 
connectivities.

❏ TOBSY spectra are not as strongly affected by dynamics in the molecule that can average 
out dipolar couplings.
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❏ J coupling sequences are mostly used to get signal from highly dynamic areas of molecules 
where the dipolar coupling is averaged out.

❏ Heteronuclear J coupling polarization transfer is an efficient alternative to CP at the highest 
MAS frequencies (> 100 kHz) or in samples with diluted proton networks (deuterated 
samples).

❏ Carefully optimize the length of the dephasing delays for optimum signal-to-noise ratio 
under short T2’ relaxation times.
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Amritsar, 2015
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❏ Divide pulse sequences into their basic building blocks for better understanding how they 
work.

❏ Each building block represents a different effective Hamiltonian that tells you what it does.
❏ If you want to implement efficient and good experiments, it is important to understand how 

pulse sequence building blocks work.
❏ Choose the best (high efficiency, easy to implement, low rf-field requirement, …) building 

blocks available.
❏ The theory of solid-state NMR is complex.
❏ Know about experimental imperfections: phase transients, rf-field inhomogeneity, MAS 

modulations of rf-field inhomogeneity, amplifier droop, …
❏ There is much more to solid-state NMR that I have not discussed or only mentioned in 

passing:
- homonuclear dipolar decoupling
- quadrupolar nuclei are an even bigger challenge
- characterization of dynamics
- sample preparation can have a big influence on the quality of spectra
- DNP

❏ Remember that sensitivity is the most important issue in NMR.
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