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] Static solid-state NMR spectra of powdered samples are very broad compared to solution-
state NMR spectra.

[ This is due to the anisotropic interactions.
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Source of Anisotropy

Without an external field, the
dipolar-coupling Hamiltonian
IS Isotropic.

The static magnetic field Bo
truncates the dipolar-coupling
Hamiltonian.

An applied rf field B4 truncates
the dipolar-coupling
Hamiltonian again.

ll'l nl\\\\\\

Matthias Ernst

ETH Zirich




Averaging of Anisotropic Interactions Qé
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. The spatial part of the anisotropic part of the Hamiltonian is a second-rank tensor and has
an orientation dependence of (3 cos2(6)-1)/2.

] Rotation of the sample about an axis 6; leads to a scaling of the tensor by (3 cos2(6,)-1)/2.
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Isotropic and Anisotropic Interactions ( _________ )

Interaction

Liquid-State NMR

Solid-State NMR

chemical shift

differentiation

differentiation

(20000 Hz) between between
different atoms ‘ ‘ ‘ ‘ different atoms ‘ ‘ ‘ ‘
J-coupling splittings splittings
(100 Hz) H
chemical-shift |relaxation: line
tensor broadening
(20000 Hz)

dipolar coupling
(50000 Hz)

relaxation: line

broadening i

anisotropic
powder line
(Pake pattern)

anisotropic
powder line “/\k
shape

.1 Broad powder lines are the source of many technical difficulties in solid-state NMR.
.d High spectral resolution is important to distinguish different lines and match them to atoms

in the molecule.



Isotropic and Anisotropic Interactions ( )

Interaction tenend MDA . ML

chemical shift
(20000 Hz)

J-coupling
(100 Hz)

chemical-shift
tensor
(20000 Hz) 0 -5 10 15 -20 -25

-10 -15
o [kHZ]

dipolar couplin

(50000 Hz) Molecular tumbling leads to an averaging of the anisotropic

Interaction.

Anisotropy is only manifest through line broadening by relaxation
.1 Broad powder processes.

. High spectral re$e
in the molecule.
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Isotropic and Anisotropic Interactions ( )

Interaction henten MLALAL . R

chemical shift
(20000 Hz)

J-coupling
(100 Hz)

chemical-shift
tensor
(20000 Hz) ——

-10 -15 -20 -25

0 [kHZz]
dipolar couplin

(50000 Hz) .1 Different crystallite orientations contribute to different positions in

the powder line shape.

. Anisotropy is manifest through broad lines.

.1 Broad powder

. High spectral re$e
in the molecule.
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Magic-Angle Spinning Qé
1.8 mm MAS probe (50 kHz

(A. Samoson et al. J. Magn. Reson. 149, 264 (2001))

VT air

rf coil
e

drive air

air bearings
bearing air
optical fibres

. Outer diameter of MAS rotor determines maximum rotation frequency: 6 mm - 8 kHz, 4 mm
- 15 kHz, 2.5 mm - 30 kHz, 1.8 mm - 50 kHz, 1.3 mm - 70 kHz, 0.5 mm - 170 kHz.

. Sample volume depends on (inner diameter).

. Higher MAS frequencies allow the implementation of different types of experiments.

Matthias Ernst ETH Zirich



Magic-Angle Spinning ¢

http://www2.warwick.ac.uk/fac/sci/physics/research/condensedmatt/nmr/equipment/

Max. v (kHz)
OD (mm) ' '

turbine

drive

air bearings
bearing air
optical fibres

. Outer diameter of MAS rotor determines maximum rotation frequency: 6 mm - 8 kHz, 4 mm
- 15 kHz, 2.5 mm - 30 kHz, 1.8 mm - 50 kHz, 1.3 mm - 70 kHz, 0.5 mm - 170 kHz.

. Sample volume depends on (inner diameter).

. Higher MAS frequencies allow the implementation of different types of experiments.
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Magic-Angle Spinning ¢ »

http://www2.warwick.ac.uk/fac/sci/physics/research/condensedmatt/nmr/equipment/

Max. v (kHz)
OD (mm) '

turbine

drive

air bearings
bearing air
optical fibres

T It was at the Ampere Congress in Pisa in 1960, where we presented some of our results, that the late
Professor C. J. Gorter of Leiden asked a question about the ‘magic’ properties of this angle which led us to use
this terminology thereafter.

E.R. Andrew, Magic angle spinning in solid state n.m.r. spectroscopy, Philos. Trans. R. Soc. Lond. Ser. A, Math. Phys. Sci. 299 (1981) 505-520. https://doi.org/
10.1098/rsta.1981.0032.
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] Static solid-state NMR spectra of powdered samples are very broad compared to solution-
state NMR spectra.

[ This is due to the anisotropic interactions.
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Solution-State and Solid-State NMR Spectra Qé

p I I
HoON— H—C N CH—C——OH
| H
| H_CH3 H2
| , CH3 /
< \
1 H N
20 15 10 5 0 58 [ppm] 10
H
13
’ C U“ . , oy J ) ' , PR et "J ™ \» ;
200 150 100 50 S[ppm] 0

. Under fast MAS (30 kHz), the proton spectrum is still mostly featureless, while the carbon
spectrum shows significant improvement in resolution.

. Using advanced decoupling methods, one can obtain spectra with narrow lines.

EEEEEEEEE



Solution-State and Solid-State NMR Spectra 3

n ﬁ [
HoN— H—C N—CH—C—OH
| H
|H—CH3 Ho
P CH,
H d =
— L U A L)M
; T T 1 ! -5 3[ppm] -10

13 I

A VY

200 150 100 50 o [ppm] 0
. Under fast MAS (30 kHz), the proton spectrum is still mostly featureless, while the carbon

spectrum shows significant improvement in resolution.
. Using advanced decoupling methods, one can obtain spectra with narrow lines.
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Timeline of MAS Developments
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H. Maeda, Y. Yanagisawa, Future prospects for NMR magnets: A perspective, J. Magn. Reson. 306 (2019) 80—-85. doi:10.1016/j.jmr.2019.07.011.
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M. Callon, D. Luder, A.A. Malér, T. Wiegand, V. Rimal, L. Lecog, A. Béckmann, A. Samoson, B.H. Meier, High and fast: NMR protein—proton side-chain
assignments at 160 kHz and 1.2 GHz, Chem. Sci. 14 (2023) 10824—10834. https://doi.org/10.1039/d3sc03539%e.




Time-Dependent Hamiltonians <

.1 The internal spin-system Hamiltonian in the laboratory frame is static if the molecule is static.

n | 21 61 H N
‘_B(_) 7€ = ZZ Z (—1)q Aégn(;) AS. sz,,?,_‘sz

I (=0 g=—/

laboratory frame interaction frame

interacti
transfor

rotation

»
n ~ 21 éw : N n ~ 21 gw AN
H(t)=22 2 VAT ()= > N AT (1)

i (=0 q=—/ I (=0 g=—/

[ Hamiltonian in solid-state NMR is always time dependent!
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Time-Dependent Hamiltonians Q@

.1 The internal spin-system Hamiltonian in the laboratory frame is static if the molecule is static.

n \ 21 61 ; sl
‘_B(_) HH = ZZ Z (—1)7 Aégn(;) 4S. S 2 As.

I (=0 g=—/
]
U(?)
S/ \év
' laboratory frame inte:action frame
_ interaction-frame
sample rotation == ;.0 <f0rmation

©.9)

n o ' A | |
%U):ijy(q) AD(HTS (1) = x%‘”’k)e’”“’f’e”‘wm’

(=0 g=—( k=—o00 n=—2

1 Hamiltonian in solid-state NMR has often multiple time dependencies!

Matthias Ernst ETH Ztirich 14



Time-Dependent and Effective Hamiltonians >

\

. A simple solid-state NMR experiment: Proton-Driven Spin Diffusion under MAS (PDSD)
/2

| || CP | decoupling decoupling
/2 /2
[
S | CP i m ﬂ M | \[\Vf\vﬂvnvnvnv:\v/\vﬂ\/é% AAAAAAAAAAAAAAAA
(HW |

. The time-dependent Hamiltonian with the exception of the radio-frequency part is the same
during all times of the experiment:

5= S5 AN OTY 43¢, () = Ty (B)+ 5 o (0 + 56, (D) + 5., (D)

i ¢=0



Time-Dependent and Effective Hamiltonians

%
A\

. A simple solid-state NMR experiment: Proton-Driven Spin Diffusion under MAS (PDSD)

/2

1| CP

decoupling

decoupling

S | CP

iy

| I

. The time-dependent Hamiltonian with the exception of the radio-frequency part is the same

during all times of the experiment:

5= S5 AN OTY 43¢, () = Ty (B)+ 5 o (0 + 56, (D4 5., (D)

i {=0

.1 Effective Hamiltonian during Hartmann-Hahn cross polarization: heteronuclear zero-quantum

Hamiltonian: % ~ W (*S +1-8*)



W\

'\\\
. A simple solid-state NMR experiment: Proton-Driven Spin Diffusion under MAS (PDSD)
/2

|| CP

S | CP

. The time-dependent Hamiltonian with the exception of the radio-frequency part is the same
during all times of the experiment:
2

Ge(t) =SS TAD (DT 456, (1) = T o (0 + 9 s (O + T, () + T, (1

i (=0
.1 Effective Hamiltonian during free evolution (# and t): S-spin isotropic chemical-shift

Hamiltonian: 5 ~ w®S

V4



Time-Dependent and Effective Hamiltonians >

\

. A simple solid-state NMR experiment: Proton-Driven Spin Diffusion under MAS (PDSD)
/2

| || CP | decoupling decoupling
/2 /2
|
S CP t1 i MM” H “\f\f\nn:\nm{Z
Il [T

. The time-dependent Hamiltonian with the exception of the radio-frequency part is the same
during all times of the experiment:

5= S5 AN OTY 43¢, () = Ty (B)+ 5 o (0 + 56, (D4 5., (D)

i (=0
. Effective Hamiltonian during spin-diffusion mixing time: homonuclear zero-quantum

Hamiltonian: 7 ~ o (878, +8,8;)i.



Time-Dependent and Effective Hamiltonians >

\

. A simple solid-state NMR experiment: Proton-Driven Spin Diffusion under MAS (PDSD)
/2

| || CP | decoupling decoupling

/2 /2

S | CP L, ™ "MM”\[\AA VAWWV{% vvvvvvvv
(LK

. The time-dependent Hamiltonian with the exception of the radio-frequency part is the same
during all times of the experiment:

5= S5 AN OTY 43¢, () = Ty (B)+ 5 o (0 + 56, (D) + 5., (D)

i (=0
. The combination of magic-angle spinning and time-dependent radio-frequency irradiation

allows us to generate different effective Hamiltonians during the course of an experiment.
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Typical NMR Experiments in Biological Solids !
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S. Penzel et al., J. Biomol. NMR 63, 165 (2015) R. Linser, J. Biomol. NMR 52, 151 (2011)

.1 All pulse sequences use rf-irradiation schemes that lead to time-dependent Hamiltonians
for decoupling or recoupling purposes.
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Instrumentation

-}
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; I '*'“—r” ==
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\\"- | "* Pl 3-171'

’n—

magnet has been available since a few years.
.1 Probes for fast MAS (up to 160 kHz) with multiple rf channels and high sensitivity.
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Periodic Table: Quadrupolar Nuclei &

A

Ra

IIIB IVB VB VIBVIIB  VIIIB

W
Rf | Ha| Sg| Ns

Fe
Rh

Hs | Mt

S=1/2

Pt

VIIIA
IIIA IVA VA VIAVIIA He
C F
IB IIB Si| P Ar
Se

Ag | Cd Sn Te
Tl | Pb Po Rn

o S>1/2



Periodic Table

< O www.pascal-man.com/periodic-table/periodictable.shtml ) w7 C o Y, e i] !' C) @ @ L 4 =
D Comics D CH D ETH [:] Books C] Kinder & Google _ softfactors Recruiti... o map.geo.admin.ch T Texolit - Erzeugnisse E] Block SSH Brute For... » D Other Bookmarks

About P. Man ¥ FAQ ¥ Periodic Table ¥ Related site ¥ I-Ching ¥

pascal-man.com
X

Standard Periodic Table for quadrupole nuclei with half-integer spins

Download source code ¥ Phase cycling as Cogwheel | Pulse program ¥ Pulse sequence ¥ Quadrupole interaction ¥ Search NMR reference

Home and Applets > Standard Periodic Table

In the Periodic Table, negative NMR frequency describes positive gyromagnetic ratio:

Nucleus Isotope Spin Natural (agtz;mdance Quadrupole I::::;lent (10e-30 “R:L?ttll:;y s‘:g:?tli‘\::g' NMR freguse“na%yr (MHz) at

1 18

H 2 13 14 16 17 He

Li Be B B (0] (0] E Ne

Na Mg 3 4 5 6 7 8 9 10 11 12 Al Si S Cl|Cl Ar

K| K Ca Sc n|Ti(v|V Cr Mn Fe Co | Ni | Cu | Cu Zn Ga | Ga Ge As Se Br | Br Kr
Rb | Rb Sr Y Zr Nb | Mo [ Mo Te Ru [Ru | Rh [ Pd | Ag [ Ag Cd|In|In|Sn|Sn|Sb|Sb|Te|Te | Xe | Xe

Cs Ba | Ba | La | La | Hf | Hf | Ta W Re | Re | Os | Os |Ir|lIr| Pt | Pb Bi
Spin: 1/2 3/2 5/2 712 3 5 6
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Spin-1/2 vs. Quadrupolar Nuclei
Spin I>1/2

Spin I=1/2

3
I

S
I
1
Nl Nlon

3
I
No|—

3

[

+
N|—

S

I

+
Dl Nleo

3
I
+

o\

_ (2)
w 15A
1AM +5A)
AN
L +4A®
central
4A() "
—— _AA2) transition
1A 5A(2)
50 +15A)
zeroth-order first-order second-order

(Zeeman only)

quadrupolar

Line Spectrum for a Single Crystallite:

Noleo

_%4_»_

1.

Nolco

+i 4-»‘1

2 2

+

3 i
2<—>+2

quadrupolar

1
M=% 71
' AE = ho,
m=+t —X
1 1
+——>——
2 2
<
600

6A(1)-20A) 3A(1)4AR)

8A®)

3A4A@ 6A1-20A2)

]/

. Quadrupolar nuclei have more than one transition frequency and, therefore, multiple lines in

the spectrum.
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21



Spectra of Quadrupolar Nuclei (Spin 3/2)

. Quadrupolar line shapes are very broad
because of the satellite transitions that are

shifted by the quadrupolar coupling.

i d-ord
1 On the scale of the full line, the second-order no second-order

contribution is not visible.

1 If we zoom into the central transition, we see
the line shape generated by the second order.

-400 -300 -200 -100 0 100 200 300 400
n=1.0 wl(27) [kHz]
N

with second-order

L n =0.0

| | | | | | | | |
-30 -20 -10 0 10 20 30 40 50

wi(2m) [kHz]

| | | | | | | | |
-400 -300 -200 -100 0 100 200 300 400

wl(27) [kHZ]
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Magic-Angle Spinning of Quadrupolar Nuclei Q@

m =- %—Lﬂ—
-1 4A(0)
m 5 4A +4A2)
1 0 central
m=+5 4A A2 ytransition
m=+3 1AM -5A()

J L TI - OO zeroth-order first-order second-order

(Zeeman only) quadrupolar  quadrupolar

Line Spectrum for a Single Crystallite:

-30  -20 -10 0 10 20 30 40 50 ey
w/(2m) [kHZ] 33 G
. MAS does not average the quadrupole lines completely. . L

]/
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Magic-Angle Spinning of Quadrupolar Nuclei Q@
ke

3

=3 1AM +5A3)
2
=1 _AA(1)
m=-3 44 +4A@
1 ") central
m=+3 4a 4N transition
m =+% 1A 50
P — J \\ iy - TI_ — O . O zeroth-order first-order second-order

(Zeeman only) quadrupolar  quadrupolar

Line Spectrum for a Single Crystallite:

-30  -20 -10 0 10 20 30 40 50 ey
w/(2m) [kHZ] 33 G
. MAS does not average the quadrupole lines completely. . L

]/
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Symmetry Possible Tensor Ranks

Tetragonal

@ D4

Tetrahedral
AN
Octahedral
g O
lcosahedral
3 |

Spherical

SO(3)




Averaging Quadrupolar Couplings: Double Rotation

"

A . Simultaneous rotation about two axes

% quadrupole coupling.

R — oxalate and sodium sulfate.

v leads to a complete averaging of the

[ Example 23Na: mixture of sodium

DOR (v, = 970 Hz)

8000 6000 4000 2000 0 —2000 4000 6000 —8000
Frequency (Hertz)

Static
(©
V1 =
]
8000 6000 4000 2000 O -2000 —4000 —6000 -8000
, Frequency (Hertz)
MAS / 1\
‘ Sulfate
Oxalate

Frequency (ppm)

Copied from: Y. Wu, B.Q. Sun, A. Pines, A. Samoson, and E. Lippmaa, “NMR Experiments

With a New Double Rotor”, Journal of Magnetic Resonance 89, 297-309 (1990).

Matthias Ernst ETH Zirich
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Averaging Quadrupolar Couplings: DAS \

fﬁ ” . Dynamic-angle spinning (DAS) allows a fast reorientation
P ©p) |upperpuliey C : : :
: of the spinning axis during the experiment.
/2 /2 /2
3: E turnbuckles J I I M”
Al
Spectra™ cord - > V V -
t4 Thop 0 to
2
lower pulley

actuator stepper motor Static
(shielded) 1 ieided)

/
©
11B spectra of boric acid

DAS
R.W. Martin, J.E. Kelly, K.A. Collier, Spatial reorientation
experiments for NMR of solids and partially oriented liquids, — '3(1)0 00 160 SER—T 1
Prog. NMR Spectr. 90-91 (2015) 92—122. doi:10.1016/ P -100 200
J.pnmrs.2015.10.001. M.A. Eastman, P.J. Grandinetti, Y.K. Lee, and A. Pines “Double-Tuned Hopping-Coil Probe

for Dynamic-Angle Spinning NMR”, Journal of Magnetic Resonance 98, 333-341 (1992)

Matthias Ernst ETH Ztirich 26



P

Averaging Quadrupolar Couplings: MQMAS o

1 MQMAS needs only a
standard MAS probe.

.1 A special echo sequence
leads to an averaging of

the residual line

broadening under MAS.

. Like DAS, this is a two-
dimensional method.

Matthias Ernst

N32§O3 Na 2T€O3 NazHPO4

% A

! i
{ \

[ ; : P
i ' :’ . ‘1 \‘
f )

Static | | Static | | Static | \
-\ -____,/ __ J —

-10 kHz | 10 -20 = kHz 20 20 kHz 20
| : |
. if
[! [V
‘ | | j. |
N w
MAS | MAS Ay MAS |
Al / Ve A/
I - —:/ = S A _ - A.....—J// e
-5 kHz 5 -5 kHz 5 -5 kHz 5
4 - 10 - . ST
N Site 2 l l l l Sltcgll ,
= .. Site 3 g § l N Site 3
i Site 1 l 0 B T
—~~ QI il y r’i‘{__ > & A
;(\1 g % TSilc 2 \Z/}}L}« &
$ Site | :
ol MQMAS 0 MQMAS P MQMAS
0 ' 8 o 10 0 ' 15
Vio / kHzZ Viso / kHZ Vieo / kHZ

A. Medek, L. Frydman, Multiple - quantum magic - angle spinning NMR: a new technique for probing
quadrupolar nuclei in solids, J. Braz. Chem. Soc. 10 (1999) 1-16. doi:10.1590/S0103-50531999000400003.

27

ETH Zirich



Hamiltonians for Solid-State NMR
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Representation of Hamiltonians F(f)

. Cartesian notation for Hamiltonians describing spin-field interactions:
(a. a. a.)(B,)

. XX Xy Xz
g k.B) — I, A&B B — < I, ]ky, Ikz) Ay Ay Ay, By

\azx d,, d ) B

. Cartesian notation for Hamiltonians describing spin-spin interactions:

(%)

A ) (4 Gy, ag) |
a,. a, a.ll|-

\ X ]y << y \InZ}

. All Hamiltonian can be written in this notation.

1 The coupling matrix A describes the spatial relationship between the two spins or the spin
and the field.

1 The coupling matrix A can be decomposed into three components:
- trace of the matrix (isotropic component)
- anti-symmetric part of the matrix (rank-1 component)

- symmetric part of the matrix (rank-2 component)

Matthias Ernst ETH Zirich



Coupling Matrix A

H(D)

1 A general matrix A can be decomposed into three parts: A= A% + A" + A®

A0 —

. Rotations will not mix the three components!

Matthias Ernst

a 0 o0
O a 0
O 0 a
0 aXy B ayX axz B azx
2 2
a,, —4d, 0 a,, — 8,
2 2
azx B axz aZ}/ B ayz 0
2 2
a, — 5 axy ™ ayx aXZ T azx
XX
2 2
4y T8y 2 _13 4,, T4,
2 Y 2
axz —|_ azx ayZ _|_ aZy A
o o azz —da

iIsotropic component
rank-zero component

first-rank component
anti-symmetric matrix component

second-rank component
symmetric matrix component

30



A0 —

Qv O

Coupling Matrix A %(t)

1 A general matrix A can be decomposed into three parts: A= A% + A" + A®

. Rotations will not mix the three components!

Matthias Ernst

ETH Zirich

isotropic component

rank-zero component
Important for solution and solids

first-rank component
anti-symmetric matrix component

does not play an important role in MR

second-rank component
symmetric matrix component

Important for solids
(and relaxation in liquids)

30



Representation of Hamiltonians

.1 Cartesian notation for Hamiltonians describing spin-field interactions:

(a

a

XX

-

a

xy “xz

kB _ TACBT — (7 7 3
B = T ACDE = <1kx, I, Ikz> a,. a, ay.||B,

a.) (B,

_ JkB)

. A &B)

. Cartesian notation for Hamiltonians describing spin-spin interactions:

[J The scalar-product notation is equivalent to the vector/matrix/vector notation with the vectors A,

i B) and 1% defined by

(a

XX

e

d,, azz} \BZ)
(A~ )
ayy A\ [
a
d d A
zy Yz, \Inz/

)

n n

kz" nx?

n

/B

id Qi )

kz ny’ kz nz

Altkn)

A (axx,axy,axzjayxjayy!ayz!azxiazy’a

l — (/kxlnx’/kxlny’lkxlnz’/kylnx’lky/ny’lkyan’

l — (lkXijlkay1/kazilkyBX’lkyBy’/kyBZ’ kz=" x"" kz yI kz™="z

Matthias Ernst

iB/B)
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_ Jkn)

A k)

H(D)
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Rotation of Spatial Tensors %(t)

] Spatial rotations can be implemented by rotation matrices in both representations.
A AT = R(a, 5, AR (a, B, 7)

Ayx axy
a,, a

Ay azy

aXZ

aZZ

0 AT = R(a, §,7)A©D with R(a, B,7) = R(a, ,7) @ R(a, B, 7).

HEEEEEEEE By
HEEEEEENE By
HEEEEEENE Ay
HEEEEEEEE Ay
HEEEEEEEE - ayy
HEEEEEENE ay,
HEEEEEENE Az
HEEEEEENE 2y
HEEEEEEEE 8z

aXX+ayy+aZZ)/3

(

(

(

(ay azy)/2
(Zaxx Ayy~ az7)/3
(-

(

(

(

aXX+2ayy a,,)/3
axy+ayx)
aXZ+aZX)
ayz+azy)

. We can block diagonalize the rotation matrix in the scalar-product representation of the
Hamiltonian which makes rotations more efficient.

1 This block diagonalization uses the separation of A = A® + AD + A®

Matthias Ernst ETH Zurich



Spherical Spatial Tensors %(t)

. Spherical tensors are a special symmetry adapted basis where the different ranks are
separated and the rotations are described by the Wigner rotation matrices.

. A spherical tensor of rank £ has 2£2+1 elements and can be written as a vector:

©,=(6, 8, 1S G i ®yy) 0,0

©
I The rotation of spherical tensors is given by @1’01
@ new) @E <Oé 6 ’Y) oId 21’1
or written for the Wigner rotation matrix - @2?
elements: G20
o 1

new l oId) ’
= 3 Dy (087)8 HEEEER S22
m'=—/¢

- Note: The &, are matrices of dimension 22+1, the ©,, are complex numbers.

.1 The Wigner rotation matrix elements are given by:
€©gm’,m <Oé,6,’7) — e_lm/ad/i’,m <6> e—”‘m

. The reduced Wigner rotation matrix elements d,, (3) are tabulated or can be calculated
using Mathematica or Matlab.



N

Spatial Tensors: PAS and Lab Frame %(t)
.1 Cartesian representation of a pure second-rank tensor: a symmetric traceless 3x3 matrix:
PAS Laboratory Frame
a, 0 O Ay Gy Gy
A®= 0 g, O A"® =R(a,3,7)AR(a,B,v)=]| a, a, a,
O aZZ aXZ ayz aZZ
tr{A"*°}=a,,+a,+a, =0 tr{A"*}=a, +a,+a,, =0

. Number of independent parameters: 5
2 tensor values and 3 Euler angles 5 tensor values (2 diagonal, 3 off diagonal)

. For an axially symmetric tensor, we have ax=ayy, i.e. only a single tensor value in the PAS.

. Spherical Representation of a pure second-rank tensor:

PAS) \/7 \/7 a A, = \/%5[(30032 B—1)-nsin® ,Bcos(Za)]

o . +j N <
PAS) _ A, = iEsmﬁe- y [(3 +ncos(2a))cos BFin S'”(Z‘X)]

PAS) _%577 — %(axx — ayy) A, = geﬁ” B sin® 3 — 2(1 +COoS° ,B)cos(Za) +in cos,Bsin(Zoc)}

Matthias Ernst



Spatial Tensors: PAS and Lab Frame %(t)

.1 Relationship between Cartesian and spherical representation of a second-rank tensor:
1

Az,o:%

1 :
Az,jﬂ — :F§<axz T a,, +/ (azy T ayz))

(Sazz o (axx T ayy T azz))

Az,i2 — %(axx o ayy + i<axy o axz))

. In the PAS, all off-diagonal elements of the Cartesian matrix are zero, in the laboratory

frame all tensor elements are non zero:

1

%AS) - %(3&22 B (axx +a,, + azz)) - \/%5 (,L(?B) - %(3322 B (aXX T, azz>)

PAS) oy = $%<axz ta,ti(a, +a,)
1 .

o = (@, -a,) =16 2= plae—a, il —a)

. Most common parametrisation of second-rank tensors in PAS:

S—a —a - a, 3 >|a, —3>|a, -2

4 5

Matthias Ernst



1 Examples from solution-state NMR:

- Zeeman Hamiltonian:

Solution-State NMR Hamiltonians F (@)
ﬁo = = VBOiz — a)OIAZ
0 0 )
Oiso 0 E)O - = UisoBOiz — sz
O _}/Uisoj
0 )

=y 0 0
Hy,=—yBy-I=110 —y O
\ 0O O -7,
- Chemical-shift Hamiltonian:
o (_ygiso
%cs=— Giso_)0°7=7 0 ~
\ 0
- J-coupling Hamiltonian:
(27z112 0
=2l L =1 | 0

\ 0

271']12 O 12 — 271']12 [j\lxizx + j\lyizy + ilzsz]

0

27[]12)

.1 All coupling matrices A are multiples of the identity matrix and, therefore, invariant under

rotations.

. All interactions are isotropic because the molecules tumble fast in solution.

Matthias Ernst

ETH Zirich



Anisotropic-Chemical Shift %(t)
[ The induced field ﬁs due the electronic environment has an arbitrary
— —
orientation and is proportional to the external field B, B
(Bs,x\ (0 Oyy Oy ) (0) B%O
B,=—]%x %y 06z|]|0
B \GZX Ozy O-ZZ) \BO)

Wy
. The chemical-shielding matrix (tensor) is a full 3x3 matrix.

1 The chemical-shielding Hamiltonian is given by:
(6., 0. O0.) (0)

A Xy XZ
%(k,B) — Ik(_y)BS = Ik }/G(k,B)B j— <Ikx7 Iky’ IkZ) }/ ny ny Gyz O

\GZX Gzy 022) \BO

A

= yBy(o,.1 +0yZIAy+0 IA)

XZ™X e

A

. In the rotating frame, we get only the z-term: F*-B) = yBgo. 1,

.1 The value of the chemical shielding depends on the orientation of the molecule relative to
the static magnetic field.

. The isotropic chemical shielding that we see in solution-state NMR is given by:

Matthias Ernst ETH Ziirich 37



The Dipolar Interaction

. The dipolar coupling is the direct through-space interaction A
between two spins.

. The dipolar coupling is anisotropic without an isotropic part.
Therefore it is averaged to zero in solution.

o)

[ The laboratory-frame Hamiltonian is given by:

(% )

A n (Dxx ny DXZ\ nx

%(k,n) — IkD(k,’”l)]n — <Ikx’ Iky’ Ikz) Dyx Dyy D)’Z ny
P Doy D) (1,

1 The matrix D®? is a symmetric and traceless matrix and the
elements are given by:
(D(k’n)> _ Ho ykynh(

af  Ag 1}

Sqp — 3e,ep) With a, p € {x,,7}

Jd The e, are the components of a unit vector along the
internuclear vector 7.

Matthias Ernst




The Dipolar Interaction %(t)

.1 The dipolar coupling is the direct through-space interaction between two spins.

1 The dipolar Hamiltonian can be written as: %, = — fo h{;ﬁ [2\+é+é+[5+ I:i+l-1
/4 12

. This is sometimes called the dipolar alphabet:

2 —
A:2/121223003 0—1

2
A 1/a~ o~ ~3C08°0—1 T
B:_E(/1 ) 2) : ZQ term - flip-flop term
n n A A i 19
o :_(/1+l22 +/1Z/2+)300395|n99

2 SQ terms
- ~ ~ ~ ~\3c0os@singe”
D=—\I71,,+1_ 1
(1 27 122) 2
R o 2 =2
E:_ﬁGBQnHe
DQ terms

- _3sin®ge*"

F=-I1




The Dipolar Interaction %(t)

.1 The dipolar coupling is the direct through-space interaction between two spins.

.1 The dipolar coupling is anisotropic without an isotropic part. Therefore it is averaged to zero
In solution.

n

[ The laboratory-frame Hamiltonian is given by:

e hy;yz [,2\+B+C:‘+DA+I:2+/-1
4T 1,

[ In the rotating frame we have:

o, Mg by, 3cosTO—1( _aa Aas a s o
- dty =— P > 21 ,1,, — 2(l1 l, +171, ) for a homonuclear spin pair

U hyyy, 3cos®O—-1/ =~ -

- gty = yP— > (2/1zl22) for a heteronuclear spin pair

d This is fully analogous to the J coupling where we also had different rotating-frame
Hamiltonians for homonuclear and heteronuclear couplings.

U, hyy, 3cos’6 -1
Am 1,

d The constant d = - IS often called the dipolar coupling constant.



[ Cartesian Representation:

Jekn)

XX

2.4

zX

>

—




1 Cartesian Representation: o [y a
’ a

vector X matrix x vector




Representation of Hamiltonians %(t)
.1 Cartesian Representation: a, a, a. | B,
%“B):/kA“’B)é:[ I 1, I ] ~ 4, a, | B,
a, a, a B,
( ~
. . axx axy axz nx
ek — I AR :{ Pod i ] a, a, a, | |
“ " S e T yector X matrix X vector
] azx azy azz inz

. Spatial Matrix:

Uyx axy axz 5 Uyx 0 0
R(a, p,7)
Ay dyy Oy | &—— | 0 a, 0
q a. . a R (a,p.7)
X Zy 2z 0 0 aZZ
laboratory frame (LAB): principal axes system (PAS):
full matrix diagonal matrix

simple, known from spectra
required for the Hamiltonian or calculations



[ Cartesian Representation:

Selkn) _ fk Akn)] |
vector x matrix x vector

[ Spin or Magnetic Field Vector:
typically a Cartesian vector: other single-spin bases are possible:

\ 1 ¢ O
( . R={1 —-i O (j+\
0O 0 1

— e =|]
1/2 1/2 0 7
J RM'=|=i/2 i/2 0 \ "¢

0 0 1

>

>

~o
[

>

\

such a change of the basis will
also change the A matrix!



1 Spherical-Tensor Representation:

%_<> > >‘ G"(I > :y‘ yg:( 1)qA(I)G~(I q_zzz




Representation of Hamiltonians F(f)

.1 Spherical-Tensor Representation:

2

K= S AT = ALT =S AT

| i 04=00,=0 Joo i (=0 qg=—¢ i (=0

.1 Spatial Part:

A, =—/3a poo = AT = /37
3 .
A, =\g5[(3c052 B—1)-nsin? Bcos (20) | R, B,7) = D% (a, B, 7) by = APRS) _ 34
—— 207720 Ty
o . Ny P ~1
Ariy = *sinfe 7| (8+ncos(2a))cos B F insin(2c) | R (e, B,7) Py = AP — 0
—é 27y § 'n2 ﬂ(1_|_ 2 ) (2 )-l-' I (2 (PAS) 1
AZiZ—Ze 5 S ,8—2 cos® §)cos(2a) £ incos Bsin(2a) oo = ATl :_5577
laboratory frame (LAB): principal axes system (PAS):
full matrix diagonal matrix

simple, known from spectra

required for the Hamiltonian or calculations

ETH Zirich



Representation of Hamiltonians

.1 Spherical-Tensor Representation:

[ 2 2 ] 2 ¢
K= S AT =3

i ,=0(,=0 Joo i (=0 g=—t

.1 Spin-Spin or Spin-Field Part:

n n
_1—) —

7-()(,/C(),n) — \/5 /k °/n
I
(k,n) + - — [+
7-10 2\/§(lk ln / ln)
n 1/sin 17
7-1(::(1 )= o (/ki/nz_lkz ni)
Ly 1 A A 4 5
7-2(,/(()’ ! :%(Slkzlnz_lk ln)
7-2(/;?) T :F(ikiinz —|_ ikzini>

ETH Zirich
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Representation of Hamiltonians

.1 Spherical-Tensor Representation:

=SS AT =S S AT =305 AT

| i 6,=00,=0 Joo i (=0 qg=—¢ i (=0

.1 Spin-Spin or Spin-Field Part:

Ao 13 3
Too" :ﬁ/k -,
1 /o
(k,n) + 71— —J+
7-10 2\/§(lk ln / ln)
n 1/sin 17
7-1(11 )= o (/ki/nz_lkzlni)
Ly 1 A A 5 5
7-2(,/(()’ ! :%(Slkzlnz_lk ln)
7-2(/;?) T :F(ikiinz —|_ ikzini>
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Representation of Hamiltonians F(f)
. Cartesian Representation:
A A axx axy axz i”X
%Um) :Z(AU(’”)Z‘I :[ ikx iky ikz ] ayX ayy ayz i”y
Ay aZy 4, inz

. SphericaI-Tensor Representation:

= 222A<' —zzz< S D I

| i (4=00,=0 J i (=0 g=—t i

— (i)

.1 Both representations are fully equivalent and can be converted into each other.
. Certain transformations or operations can be simpler in one or the other representation:
- Rotations are often expressed more concise in the spherical-tensor notation.
- Commutators are much easier calculated using the Cartesian representation.
- Time evolution of the density operator is often simpler when using the Cartesian
representation (product-operator formalism).
- For quadrupolar nuclei, the spherical-tensors representation offers a simple complete
basis set.
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Reference Frames and Time Dependence

o e

e

\
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[ In the laboratory frame of
reference, the Cartesian
axes are well defined.

. The By field direction
determines the direction of
the z axis.

. The B field direction
determines the direction of

the x axis.

. The y axis points into the
remaining orthogonal
direction.

[ All measurements are
done in the laboratory
frame of reference.




L

. Without any interference from the experimentalist, our Hamiltonian is static.
.JJWe need radio-frequency fields in order to manipulate the magnetization.

3 Z)1(Z
%z — Ac(),o)To(,o)
5 CS CS) SR A(CS)T(CS)
Hos = ASITC Y N (1) ACIT (S
/=1 m=—1 eon, [

,\ 2 m oo/ N\ 1
Hp= Z (_1) Aén)sz(—zn

m=-2
% AOJ)T(J)

n

¥ ()= —y,.2B,(t)],, = 2w/, cos(w

JAThe radio-frequency field Hamiltonian is time
dependent!

.1t represents a linear-polarized radio-frequency field.




The Laboratory-Frame Hamiltonian %(t)

.1 The spin-system Hamiltonian in the laboratory frame is static and time independent:

=353 (AN,

i (=0 g=—"

. We can write the spin-system Hamiltonian as a product of spherical spatial and spin terms.

. Example: homonuclear dipolar Hamiltonian: £ =2, g=-2 ... 2, (/) = (1,2)

it = ol 1) A= S (acos (o)1
n E n n ~n n ~n n .
= Z (AT TE = :F(/1i/22 T /12/;) i = i%@(;’z)e;W sin(23)
g=—r/
=2 {i) (4 = 2 667 s ()
.1 The radio-frequency Hamiltonian in the laboratory-frame is time dependent:
¥, (t) = —24B, cos (w,t)l, ‘""""""""""‘"""'"“""""""'
:_,YB1<eiwﬁt_|_ )I“X ,~::.-:,~'.-.-.~.-.,~'.-.-.~.-.,-'.-:.~' B1(t)
solenoid coil

. The linear-polarized field can be split into two circular-polarized fields, one rotating
clockwise, the other

Matthias Ernst ETH Zirich



The Laboratory-Frame Hamiltonian %(t)

.1 The spin-system Hamiltonian in the laboratory frame is static and time independent:

=353 (AN,

i (=0 g=—"

. We can write the spin-system Hamiltonian as a product of spherical spatial and spin terms.

. Example: homonuclear dipolar Hamiltonian: £ =2, g=-2 ... 2, (/) = (1,2)

it = ol 1) A= S (acos (o)1
n E n n ~n n ~n n .
= Z (AT TE = :F(/1i/22 T /12/;) i = i%@(;’z)e;W sin(23)
g=—r/
=2 {i) (4 = 2 667 s ()
.1 The radio-frequency Hamiltonian in the laboratory-frame is time dependent:
¥, (t) = —24B, cos (w,t)l, ‘"""""""‘""""""'"“""""'""
:_,YB1<eiwﬁt_|_ )I“X ,~.-:.-:,~'.-.-.~.-.,~'.-.-.~.-.,-'.-:.~' B1(t)
solenoid coil

. The linear-polarized field can be split into two circular-polarized fields, one rotating
clockwise, the other

Matthias Ernst ETH Zirich



x106

1.2 1.4 1.6 1.8

time [us]

0.8

0.4

. Reference is the laboratory frame.

[ Laboratory frame is static.




[ In the laboratory frame of
reference, the Cartesian
axes are well defined.

n
~

1 The B, field direction S, cos(w,t)

determines the direction of

‘$‘v y Sy

+§X sin(w,t)

the z axis.

. The B field direction
determines the direction of

the x axis.

. The y axis points into the

remaining orthogonal
direction.

[ All measurements are
done in the laboratory
frame of reference.




The Rotating-Frame Hamiltonian

H(D)

1 Rotating-frame transformation: 9¢(t) = e ¢! §¢ g*/e! — S‘S‘S‘ g Mo T gtito!
i (=0 g=—/
=Y S AT
i (=0 qg=—/¢
[J The spin-system Hamiltonian becomes time dependent.
. Example: homonuclear dipolar Hamiltonian: £ =2, g=-2 ... 2, ()) = (1,2)
702 (1) = (3/ / 77) o) = \Eé“’z)(Scosz(H)—ﬂ
2,0 T \/E 1272z 1 72 0 8 D
2 ¢ 2 2 A I_ 3 .
H(t) =Y (—NTART2 ()] T, () = (I, +105 )™ A2 = izég’z)e”sm(Zﬁ)
qg=—"
= (12) (f) _ (i ij:)eii2w0t 12) Eé 12) 97127 gin (ﬂ)
2i2 A2 4

. In a first-order approximation, we neglect all time-dependent terms and approximate the

rotating-frame Hamiltonian by the time-independent component (secular approximation):

%NZZAmf

i (=0

. This is the spin-system Hamiltonian that we typically start from in

ETH Zirich

NMR theory!



The Rotating-Frame Hamiltonian

. Rotating-frame transformation: §6(t) _ g ot Jp g+idot ;‘Y ;w

i (=0 g=—/

n

=3T3 S AT 0

i (=0 qg=—/¢

\l

[J The spin-system Hamiltonian becomes time dependent.

. Example: homonuclear dipolar Hamiltonian: £ =2, g=-2 ... 2, ()) = (1,2)

_ \/%651’2)(30032 (6) —1)

= 1 505

Ti2(t) = \/E(SIVIZZ /1./2) (12
2 14 A .
0= 30 AT 0] TT=

= (12)

j:/i)eii2woz‘

H(D)

I%OtT +I%Ot

. In a first-order approximation, we neglect all time-dependent terms and approximate the

rotating-frame Hamiltonian by the time-independent component (secular approximation):

%NZZAJ

i (=0

.1 This is the spin-system Hamiltonian that we typically start from in NMR theory!
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1 Reference is the rotating frame.
[J Laboratory frame is now rotating.




Lo

1 1 1 1 1 1 1 1 1
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

time [1s] %108
1F
0.5 —
& O e o s o e e e
0.5 - ~—
-1 i i i N i i § i i -
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
time [s] %108
1
0.5

L®
o

[ Reference is the rotating frame.

. Laboratory frame is now rotating.

% . (t)

—e "G (e o' = —2+B, cos(w,t + ¢(t))e "o et

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

[ T T T T T T T T T ]
//‘ ”\ o= //\
/ \ / \ £ . 4 \
I / \ / 3 "y \ \ , g
\ / X ' \ / . 4
\ 4 \ A\
_ _\\/ / N e \‘/ .

time [us] %108

_ —VB1< gileit+olt)) | e—i(wﬁt+¢(f)))l(i+e+iwof 4 g )
2

— B, (cos((1)

n

n
~

n
~

I+ sin(gb(t))ly) —~B. (cos(2<,urf + o(t))/, +sin(2w, + qb(t))fy)




N

Hamiltonians and Reference Frames %(t)

.1 The spin-system Hamiltonian in the laboratory frame is static and time independent except
for the radio-frequency part.

=SS S (CPANTO e, () = 2B, cos (wit)], WEUERMUMERURAEAE
222 AL ot e
= —B,(e"" + &)l S5,

solenoid coil

. This is the relevant Hamiltonian for all the physics we do.
.1 We go into a rotating frame with the Zeeman Hamiltonian to:
- get rid of the large Zeeman interaction and terms that do not commute with it.

- make the rf-field Hamiltonian time independent.

A 2 LA 2 A 2
oSS ANTY 4 =—B(cos(s)], +sin(6)],

i {=0

. In NMR we almost always start from this truncated rotating-frame Hamiltonian.

. This does not work when the interactions are not much smaller than the Zeeman
interaction (quadrupolar interaction, low static magnetic fields, hyperfine interaction).

] Relaxation needs to be calculated in the laboratory frame using the full Hamiltonian.

Matthias Ernst



N

Hamiltonians in the Rotating Frame %(t)

.1 There are two main reasons to go into the rotating frame:

- The rf-field Hamiltonian has a time-independent component for linear polarized rf which
makes calculations simple.

- The Zeeman Hamiltonian is eliminated. This makes calculating the effects of smaller
contributions like chemical shift and J coupling more obvious.

. All interactions are truncated by the Zeeman Hamiltonian and only parts that commute with
the Zeeman Hamiltonian are retained. This truncation introduces the anisotropic nature
(orientation dependence) of the spin interactions by breaking the symmetry of space.

.1 Spin-Field Interactions:

- RF Hamiltonian: ¥ = —B,(I cosp + I, sing)

n n

- CS Hamiltonian: HYE) = _~Bo I

zZ" kz

.1 Spin-Spin Interactions:

2
- Dipolar-coupling Hamiltonian: el — — Z:T Vkrznh 30082 01 (2/,(2/,,Z - (/kxl,,x -~ lky/ny))
- J-coupling Hamiltonian: et — 27rJ,.<s"O’”)7k 1
8y [3cos®3—1 ny’

- Quadrupolar-coupling Hamiltonian: 5% =

2 > 2-sin’ ﬁcos(za)](w“ki ~ 1 (I +1))

Matthias Ernst ETH Zurich



The Rotating-Frame Hamiltonian %(t)

. We start most of our calculations from a time-independent high-field truncated rotating-
frame Hamiltonian:

n
~

2 2 LA 2 2 n
o S AUTY ¥, =—B,(cos(¢)], +sin(s)], |

. So, why do we need to talk about time-dependent Hamiltonians?

Matthias Ernst



The Rotating-Frame Hamiltonian %(t)

. We start most of our calculations from a time-independent high-field truncated rotating-
frame Hamiltonian:

n

o S AUTY ¥, =—B,(cos(¢)], +sin(s)], |

n

. So, why do we need to talk about time-dependent Hamiltonians?

‘__8_0____
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The Rotating-Frame Hamiltonian %(t)

. We start most of our calculations from a time-independent high-field truncated rotating-
frame Hamiltonian:

n

o S AUTY ¥, =—B,(cos(¢)], +sin(s)], |

n

. So, why do we need to talk about time-dependent Hamiltonians?

‘E"____
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Origin of Time-Dependent Hamiltonians Q@

.1 The spin-system Hamiltonian in the rotating frame is static if the molecule is static.

2
he. H=2 2 AT 1

i (=0

laboratory frame interaction frame

interacti
transfor

rotation

n 2 "l 2 2 A
H(t)=2 > ANTSH H(t)=2 > ALTH (1)

i (=0 i (=0

[ Hamiltonian in solid-state NMR is always time dependent!
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Origin of Time-Dependent Hamiltonians Q@

.1 The spin-system Hamiltonian in the rotating frame is static if the molecule is static.
2

ks, =3 DAY

i (=0
. / \éy

' laboratory frame inte:action frame
_ interaction-frame
sample rotation == ;.. cformation
\ /
g 5~ A 0) {4\ E0) N Epn) pint ik
i i n, inwt ~iKwmt
Ht)=) > AsBTI(t)= D > #"e™e
i (=0 K=—ocon=—2

. Hamiltonian in solid-state NMR has often multiple time dependencies!
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Time-Dependent Hamiltonians: Sample Rotation

.1 The spin-system Hamiltonian in the rotating frame is static if the molecule is static.
2

A&, ¥=33% AT As.

e i (=0

laboratory frame interaction frame

interacti
transfor

rotation

1
Mr\)
>
o=
N/'\
o=
SN
~
N

R 2. " A
()= 3 3 AL (07T (1
0

I (=

. Sample rotation modulates the spatial part of the Hamiltonian.

Matthias Ernst ETH Zirich



Sample Rotation

. Transformation of the spatial-tensor parts from the PAS to the laboratory frame:
‘Bo A A QrfAz
B 2 a)rt
L Wt Wt
: y

\ o [ (aaﬁ”Y) Rotor (_wrt’ Qr,O) Lab

(Rotor fixed) (Laboratory frame)

.1 Spatial components of the Hamiltonian become time dependent:

0
Aél???’)'(t) — 2 gDéﬂ’,m”(_ct)rt’_er’O Z QD OC ﬁ Y)pflaf;?AS
m’'=—/( m=—/
¢ /
— Z gbé‘n’,m’ ( a)t Q O)A (rot) z eim’wrtd,i,,m”(_gr)AggB
m’=—/( m’=—/

.1 Spatial components of the Hamiltonian can be expressed in a Fourier series with wr as the
basic frequency.

Matthias Ernst ETH Zirich



Time-Dependent Hamiltonians: Interaction Frame

.1 The spin-system Hamiltonian in the rotating frame is static if the molecule is static.

2
2 =33 AT As.

i (=0

laboratory frame interaction frame

interacti
transfor

rotation

n 2 "l 2 LA
H(t)=2 D AT H(t)= 2 2 AT (1)

i (=0 i (=0

ETH Zirich



Interaction-Frame Transformation ¢

.1 Transformation of the spin-tensor parts from the rotating frame to the interaction frame:
AS A | R
z ‘/, 6) ’/, 9
S,% &
wt

< <
Sy / Sy~
Sx §>

(0,0,wt)
rotating frame tilted interaction frame

. Spin part of the Hamiltonian become time dependent:

I —iq’wt / —iq¢
Zgz; (6,6,0) T =77y d! () *T)
q=—"1 q=—1
.1 Spin components of the Hamiltonian can be expressed in a Fourier series with w as the basic
frequency.
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Origin of Time-Dependent Hamiltonians >

\

.1 The spin-system Hamiltonian in the rotating frame is static if the molecule is static.

2
B o (1T (/) AS,
ke, =33 AUT,
T e i (=0
u(t)
S,/ \év
laboratory frame interaction frame
| _ interaction-frame
sample rotation = 4 an5f0rmation - -
>
\ 4
n 2 n o 2 n
> - (i)( ) ~(i)< )_ > (k) ~inwt ~ikwt
H(t)=> Y ADBDTH ()= > > #H"e™e
I (=0 Kk=—oo n=—2

.1 Hamiltonians in solid-state NMR have often multiple time dependencies!
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Periodic Hamiltonians %(t)

.1 Rotating-frame Hamiltonians in MAS solid-state NMR are usually periodic in time.

1 MAS:
%(l‘)z r Z e/mwrtde )A(rot) "é(,g)

‘,m’
m'=—/

. Interaction-frame transformation:

Se(t) = ADTY (1) = Alle 7S o (B)e TV

q=—/

. We can write such periodic time-dependent Hamiltonians as a Fourier series:

e 1) Z% with ¢ — (Gen)'

. For multiple time dependencies with different frequencies, we can write:

n O n n n

¥
— Z %(”1,”2)ei”1wm1temzwm2t with %(’71’”2) — (%(—”1,—”2))

n=—oo

.1 Piece-wise constant Hamiltonians (toggling frame) can be expressed as periodic
Hamiltonians using Fourier series.
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Example: MAS and CW Irradiation

.1 Heteronuclear coupled I-S two-spin system: L
Continuous-wave (cw) irradiation on one spin under MAS.

I I W, “r 4

S .

.1 Examples for such a situation:

Heteronuclear CW decoupling (non resonant)

Rotary-resonance recoupling (R3) (no wr, £ w1 =0, no = £1, £2)

HORROR recoupling (rno wr, £ ko w1 =0, no = 21, £2, ko = +2)

Higher-order R3 experiments (no wr, £ w1 =0, no = £3, +4)

DARR or MIRROR recoupling (no wr, £ w1 + 20 AQiso =0, no = 3, +4, 0o = +1)

M. Ernst, A. Samoson, B.H. Meier, Decoupling and recoupling using continuous-wave irradiation in magic-angle-spinning solid-
state NMR: A unified description using bimodal Floquet theory, J. Chem. Phys. 123 (2005) 064102. doi:10.1063/1.1944291.
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N

Theoretical Description of CW Irradiation in Rotating Solids %(t)

.J Spin-system Hamiltonian in the rotating frame is time dependent due to magic-angle
spinning (MAS).
2

() = TC,(t)+ ¥ () + T 5 (1) + T, () + T s (1) = Y "™

N—— AS,

interaction-frame transformation:

itl2F. iwFt _inl2F.
y 1 y
— o] ze S/\éy

U(t) =T exp e

t
_If%rf(t1)dt
0

() = 9 ,(8) + 9 (1) + 9 (1) + 9, (1) + H g5 (1) =

laboratory frame interaction frame

Nn

y‘ %(n,k)e/nw te/kw1t

2 k=—2

NE

n

. Interaction-frame transformation with the rf-field introduces a second time-dependence in
the Hamiltonian. There are now two frequencies: wr and w1.

.J Average Hamiltonian theory requires that
- the two frequencies are commensurate, i.e., n wr = kw1 (simultaneous averaging) or

- a separation of time scales, i.e., wr « w1 Or wr » w1 (Sequential averaging).

.1 Floquet theory allows a unified description for all values of wr and ws.
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Fourier Coefficients Under CW Irradiation

~ 2 2 A
[ Fourier coefficients: #(t) = Z Z Jpnk) ginet ik
n=—2k=-2
I w, -

S H0 =S ;wm(l: f )
‘ﬁB

2 ; ol s 1/a = T 7
%( 0 — W(s )Sz - Zwéni [Iézlmz o E(szlmx Iéylmy)]

- 1 A on
V{ 0i1 ___ZWO)I$_§;M‘(S% zlnf
Y ni1 :__Zw(n)l$_%§m:wggszlnf
‘ Gp0:£2) _ 0
nj:2 ngmi A;F

€<m
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Fourier Coefficients Under CW Irradiation

2 z
. Fourier coefficients: (f) = Z Z Jp(nk) ginwt ikt

I - LN
o I‘—'—% H) = LS +;W£m(l I)
‘ﬁB

jero L g | S Wi [igzimz _ %(l},fmx /;yimy)]

W /<m

’ -
V{ > ___ZWO)F—E;LU(S% s

y H" = __Zw(n)ﬁ —%;wé%SZInT

‘ §€(0¢2) _0

niZ ngmi Anf

€<m

2

] Chemical shift of S spin: Z (n) ginst
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Fourier Coefficients Under CW Irradiation

2 z
. Fourier coefficients: (f) = Z Z Jp(nk) ginwt ikt

I | =~ 5 5
S I‘—'—% PTA —ws +;w€m(l . )
‘ﬁB

jero L g | S Wi [igzimz _ %(l},fmx /;yimy)]

W l<m

’ o
V{ 0i1 ___ZWO)I$_§;UJ(S% ZI,,T

> H™ = __Zw(n)ﬁ —%;wé%SZInT

‘ §€(0¢2) _0

”i2 Zwémi Anj*/F

€<m

[ Chemical shift of | spins: Z/mzz (n) ginit
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Fourier Coefficients Under CW Irradiation

n 2 2~
.1 Fourier coefficients: #(t) = Z Z Jpnk) ginet ik
n=—2k=-2
| fe S .
S %€ ,):wg)SZ Ht wam(l I’”D
\/<m
3 n n " 1 ~n oA A A

‘_??——-w_u %( 0) — wg )Sz — wém[ i mz E(nglmx Iéylmy )D

HO = —— Z wpl = > Z o Seln
V/ n 1) R 1

_ Zw(”)ﬁ — Eng;f,,Szlnf

‘ §€(o ) _ g
»
e 3 w;m/“;iﬂ
6’ /<m | "
n 5 5 A n A n A A 2 .
[ Homonuclear couplings (I-1): %, (t) = ;wé% (lg -Im) + ;(2& | — (nglmx + Igylmy)) Z;wgf},)ve’”“’”
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Fourier Coefficients Under CW Irradiation

n 2 2~
.1 Fourier coefficients: #(t) = Z Z Jpnk) ginet ik
n=—2k=-2
| fe S .
S %€ ,):wg)SZ Ht wam(l I’”D
\/<m
3 n n " 1 ~n oA A A

‘_??——-w_u %( 0) — wg )Sz — wém[ i mz E(nglmx Iéylmy )D

HO = —— Z wall - > Z o Seln
V/ n 1) R 1

= Zw(”)ﬁ —EZWE;;,)?SZ/;

‘} §€(o ) _ g
' 4
2 /] ,\
6’ /<m
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.y — o = o

Treatment of Time-Dependent Hamiltonians

Delhi, 2024

Matthias Ernst
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Magic-Angle Spinning: Time Slicing

A8
.1 We can use time slicing, i.e. we assume that the Hamiltonian can be

approximated by a constant value for a short time. .

: 2 o 2 <
Je(t) =D Geme it = 3 Geime i — Ge(¢) s

n=-2 n=-—2

1 We divide the rotor period into

N equal time periods of length
At = 7/N = 27/(wr N).

. The rotor phase for an interval i
IS given by ¢; =i wr At =i27/N.

[ The Hamiltonian during an

.......
~~~~~~~~
------

interval iis given by #(¢). [ §OLEs ’

. WS~ ST -
~~~~~~~~~~~~~~~~
_____

_____
,,,,,,,,,,,,,
—————

[ We have now again a
piecewise constant
Hamiltonian and can solve the

Liouville-von Neumann

equation. At=T1/N = 27/(w,N)
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Magic-Angle Spinning: Time Slicing

N . N n AB,
JdWe can now calculate the ‘gJ_—qﬁUwng 0,
propagal\’fc:r for a full rotor cycle: T T ° b, qu4 ~
A — A ~ ~ T 4 ‘
U(r,)= HU,- =Uy,--U,;---U,UU,UU, 2 v’
i=0 \ ) N
A The time evolution of the
density operator at multiples of b= oAt = 2r/(N)
the rotor period is now simply: [ e e d B LLJ
5 n B T et [ O f i = Ui(#)
5(nm,)=(0(7)) 6(0)(U (7)) | R N
1 This is of course only possible S
if the Hamiltonian is also cyclic
with the MAS frequency, i.e.:
H(t)=H(t+ nt,) At=T1/N =27/(w.N)

. If we have a rotor-synchronized pulse sequence (C7, RFDR, CP, ...) this can always be
achieved over one or multiple rotor cycles.

. For asynchronous sequences (most decoupling sequences, DREAM, APHHCP, ...) this is
not the case and one has to calculate all propagators over the full sequence.
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Magic-Angle Spinning: Time Slicing

T —0. 11 - I,
JdWe can now calculate the L;g_—gbU/ébM 0, ;
0—%¥N R
propagator for a full rotor cycle: " o2 Pt) "«
. N-1 _ A A o N s >
U(’Tr): HU’ — UN_1"'U,'"°U4U3U2U1UO TN 4 4 23
i=0 g "

1 The time evolution of the
density operator at multiples of

______
————————

ator | é = iw At = 2r/(N)
the rotor period is now simply: [ 7 T U, =0, ()

n ~n O _1 ________
o(nr, uir, )| a(O)WU (7.)) | |- R
- - ~ -~ -
- ’f N~ -~ -
rd N ~
_;” ’,' ’ V2 L T T R NN N \~~ RN
- s ’ ',I,I‘\\\ ~ ~ ~o
- - . o, [SERSRERN ~ ~ ~
- - . , T R N N ~. ~<
’ ’ ’ oy N . s ~ ~o
1
1

[ This is of course only possible

if the Hamiltonian is also cyclic
with the MAS frequency, i.e.:

n

¥ (t)=%(t +nr,) At=T1/N = 27/(w,N)

. If we have a rotor-synchronized pulse sequence (C7, RFDR, CP, ...) this can always be
achieved over one or multiple rotor cycles.

. For asynchronous sequences (most decoupling sequences, DREAM, APHHCP, ...) this is
not the case and one has to calculate all propagators over the full sequence.

Matthias Ernst ETH Ztirich 67



Megie-Anle Spining: Time Sng

. Rotor-synchronized sampling limits the spectral width to the value of the spinning

frequency.
.1 For higher resolution, we can calculate propagators for fractions of the rotor period:
U(kr, /M) "
0 : : : Us = Uy U, 0. -
The spectral width is then given by o= - 5, 2 (. .
SW = M wr. \ ' ,

P

[ Again this only works for
Hamiltonians which are
synchronized with the MAS
rotation.

6= At = 27/(N)
Ui — Ui <¢/>

[ We can not only use

propagators for fractions of the
rotor period but also propagators

that cover multiples of a rotor

period: U(nr,)
At=T1/N =27/(w.N)
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Megie-Anle Spining: Time Sng

. Rotor-synchronized sampling limits the spectral width to the value of the spinning

frequency.
.1 For higher resolution, we can calculate propagators for fractions of the rotor period:
U(kr, /M) "
[ The spectral width is then given by Lég—:gbUN Y U,
0~ N§b1 §/52 U3 A
SW = M wr. T % U,

[ Again this only works for 2 S
Hamiltonians which are
synchronized with the MAS \ B

rotaton. |l [ NN\ 6= At = (N
.1 We can not only use et LU (DT ) 29 U =U(¢)

---------
_______

propagators for fractions of the
rotor period but also propagators
that cover multiples of a rotor
period: U(nr,)

At=T1/N = 27/(w.N)
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Magic-Angle Spinning: Time Slicing

. How many time slices do we need: N= ????

. Check that simulations converge and larger numbers N of time slices do not improve
the quality of the simulations.

.1 Fewer time slices means faster calculations.

. How many detection points
propagators) do we need
to have the desired time
resolution?

an we map all pulses onto

- -
\ ’ - --"
. . 0\ g 4,0, 2,2 »7_- - -
-~ < ~ Soa s 114, %0,%0°0°.% -7 .~ _-- -
~-a_ S TSI S S S g, 1,00, e T T - -
-—— DR T O R N AL g )=
- - ~ R iy, %, %, - - -
————— RS S, 0 e e e - —
-—— -~ SN 2.7 - - == -
-—— - S 2 22=-=-2 - - i .
- S 2222 -
- - S5 ZzZzZZo=-="-" r I
] —_——— —=2232% S SSSCo~==--o_.
e == —--=22% §§S5c--1C ——————
? === - :11’,”’/," \\&‘s:\::-_ ~-. e ———a o
=== o - -7, S S ~ ~~a . -—————
H - - PR P RN ,l""“““\\\\‘\\\ SNSRI S--
- - PR SN W NSNS - Se~al
=" Pt 520 00, 00, TN (VSO ~ ~. T~ao -

Rule of thumb: N = 100 time
slices during a MAS rotation
are sufficient. Often one can

et away with fewer.
get away wi At=71/N = 21/(w.
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Magic-Angle Spinning: Time Slicing < >

. How many time slices do we need: N= ????

. Check that simulations converge and larger numbers N of time slices do not improve
the quality of the simulations.

.1 Fewer time slices means faster calculations.

. How many detection points
(propagators) do we need
to have the desired time
resolution?

.1 Can we map all pulses onto

an integer number of time
slices? T N
.1 Rule of thumb: N = 100 time

slices during a MAS rotation
are sufficient. Often one can

et away with fewer.
J Y At=7/N = 27/(w.N)
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Magic-Angle Spi

nning: Time Slicing

. How many time slices do we need

= 7777

. Check that simulations converge and larger numbers

the quality of the simulations.

N of time slices do not improve

.1 Fewer time slices means faster calculations.

. How many detection points
propagators) do we need

to have the desired time
resolution?

Can we map all pulses onto

an integer number of time
slices?

Rule of thumb: N = 100 time

rotation
are sufficient. Often one can

get away with fewer.

slices during a MAS

Matthias Ernst
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Magic-Angle Spinning: Time Slicing < >

. How many time slices do we need: N= ????

. Check that simulations converge and larger numbers N of time slices do not improve
the quality of the simulations.

.1 Fewer time slices means faster calculations.

. How many detection points
(propagators) do we need
to have the desired time
resolution?

.1 Can we map all pulses onto

P
~ ~ - - — — '2
R S~ s \\ AL A /l . -7 -7 — I At — /
-- - ST R R R I R A .- -- I u-’r I
[ . ~ ~ \ 1 ’ ’ -
- --- S~ AR R L A .- ~ n
S=- S . So S s Vg Tt e .-
~=a ~ ~ \ ’ - -
-~ - ~ LR % RS LY VAR SR -
-~ - ~No S N\ 1, 7 - PR
S ~a o SO SvS \\‘"“I, ¢ - _—
= =-a SJ 0 2 -  — .
~=~253 2 -7 - ] I}

. --=Z3 SR
- -7 %, SO~ s -a o
=" =% I NS S~ --a .
- PRIt} NN ~ -~
- - . 1IN ~ ~ -
L] - - P 7, 1 WMo ~ ~ -
- - PR TR MR TS ~o ~~a .
- - - ¢ s ! AR ~ S o -~ -
- - - . Ty N ~ ~ -~
- - AR ARe (S SRR S S=~a
- Pae ’ [ ra AT ~ RS SS
]
" —
L] —

slices during a MAS rotation
are sufficient. Often one can

et away with fewer.
g y Wi At=T1/N = 27/(w.N)
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Magic-Angle Spinning: Time Slicing \,/'

. How many time slices do we need: N= ????

. Check that simulations converge and larger numbers N of time slices do not improve
the quality of the simulations.

.1 Fewer time slices means faster calculations.

. How many detection points
(propagators) do we need
to have the desired time
resolution?

.1 Can we map all pulses onto
an integer number of time N
slices? ~~~~~~~~~~~~~~~~~

.1 Rule of thumb: N = 100 time ’ i §
slices during a MAS rotation

are sufficient. Often one can

t ith fewer.
get away with Tew At=1/N = 27/(w.N)
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Magic-Angle Spi

. How many time slices do we need: N= ????

. Check that simulations converge and larger
the quality of the simulations.

. Fewer time slices means faster calculations.
. How many detection points
propagators) do we need

to have the desired time
resolution?

an we map all pulses onto

an integer number of time
slices?

Rule of thumb: N = 100 time

slices during a MAS rotation
are sufficient. Often one can
get away with fewer.

Matthias Ernst
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Methods to Deal with Time-Dependent Hamiltonians %(t)

J Average-Hamiltonian Theory (AHT):

Tc Tc
] Replace time- dependent Hamiltonian by a series expansion of a time-independent

average Hamiltonian: % = % + %@ + %

.J Floquet Theory:

§€(t):---+§€(—2) 2t Sp0)| G [Gp@) | +2)
+JN @it Flo que t A JeN| G0 |G |G 1)
+5¢© > % = —  [Ge2|getn[Gp0) [ Ge | Ge)] |0)
HIHO e 5021530 |Fe0| | 1)
1+ 9@ g2iunt 4 ... ——

F 2N g0 | —2)

. Map the finite-dimensional but time-dependent Hilbert-space Hamiltonian onto an infinite
dimensional but time independent Floquet Hamiltonian.
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. Continuous time dependence: Magnus expansion describes the calculation of different
orders of the average Hamiltonian expansion.

H = Tlfﬁe(t1)dt1

H'? = 2_7'ic Zdtzzdt1 [%(Q)’%(m]

= [t ot ot e ) e ). e )
S _

.1 Magnus Expansion is also important in other fields of physics and there is a large
mathematical literature about it.

Review: S. Blanes, F. Casas, J.A. Oteo, and J. Ros “The Magnus Expansion and some of its applications”, Physics Reports 470, 141-238 (2009).
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AHT: Some Rules and Special Cases %(t)

1 A time dependent Hamiltonian is symmetric if 9¢(t) = 9¢(, —t)
- All even orders of %" are zero and can be neglected: #2 = % =... =0

- This feature is often used in liquid-state NMR decoupling sequences to cancel the
second-order average Hamiltonian term.

- In solid-state NMR it is not often used, because the MAS rotation cannot be reversed.
1 Atime dependent Hamiltonian is antisymmetric if J¢(t) = —9¢ (1, —1)
- All terms in the average Hamiltonian expansion are zero.
- Not very useful unless one wants to eliminate the Hamiltonian.
. A time dependent Hamiltonian under MAS is called inhomogeneous if [§€(t2),§€(t1)] =0
- All orders with n> 1 are zero since all commutator terms vanish.
- The exact average Hamiltonian is given by 7 = 7",

- Important in solid-state NMR to discuss the properties of Hamiltonians under MAS.
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AHT Example: Magic-Angle Spinning - CSA

\
. MAS modulates the spatial part of the Hamiltonian:
" 2 = .
%(t) _ Z e/mwtdé rot } Z %(n)e/nwrt
m'=—/ n—=—2
1 Chemical-shift Hamiltonian: %(t Z Gein) ginet — =1, Z Wt
. Apply average Hamiltonian expansion:
27/ w, 5 A
H0 — L f Je(t,)dt, = = [ Z et | dt, = w2l isotropic chemical shift
0
§6(2) :%fdtgfdh [%(l‘é), fdt fdt I1zzw(n) iNw,ty I-|ZZ (n) Inwrt1
. fdt fdt Z (n) i, Z Wl = 0 Hamiltonian is inhomogeneous

n=—2
[ All higher orders of the average Hamiltonian expansion are zero because [§€(t2),§€(t1)] =0
. Spectrum consists of a single (infinitely) sharp line at the isotropic chemical-shift frequency.

. No spinning side bands can be observed because of stroboscopic detection with w.
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AHT Example: MAS - Dipolar Coupling

\
. MAS modulates the spatial part of the Hamiltonian:
" 2 = .
%(t) _ Z e/mwtdé rot ] Z %(n)e/nwrt
m'=—/ n—=—2
n 2 2 . A il
1 Dipolar-coupling Hamiltonian: %, (t)= >~ #™e™" = ( 1, —1 -1 )Z w et
n=-2
. Apply average Hamiltonian expansion:
27/ w, S o 5
5 _—f% t)dt, = — f (3/ —1,- /2)2 e | dt. =0 no isotropic component
n=-2

o 0
— ;;]dtzjdt1 (3i12i22 —7172) 22:2 E)n)emwtz ( ] /:) 7)2 w(”) il
o 0 n——

5 o o o Hamiltonian is
A A A '\ ~oA (n) /nwrtz (n) qinwt;
Bl lo, =l 15,31 05, — ;-1 }fdt fdt Z Z wpre =0 inhomogeneous

2T, — >

n

[ All higher orders of the average Hamiltonian expansion are zero because [%(tz),%(ﬁ)] =0

. The total average Hamiltonian under MAS is zero.
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Matt

AHT Example: MAS - CSA and Dipolar Coupling

. MAS modulates the spatial part of the Hamiltonian:

%(O _ Z e/m wrtdé rot } Z % /nwr

m'=—/ n=-2

. CS and D Hamiltonian: % Z% gt —( /“2 _/71/72)22: (n) ginust _|_I1z§2: P ginit

cs
n=—2 n=-2 n=-2

. Apply average Hamiltonian expansion:

n —1 A A A A — A A ~ A A
%76(2>:ZTr[dtz[dt1[%D(t2)+% (t,),9¢, (t,) %Cs(z;)]:% 3l 0 10,0
ok 2 Hamiltonian is
> f dt2 f dt1 |(3n) e/nw 1o éns) e/nw 1 f dt f dt Z éns) elnw 1‘2 Dn) elnw 52 - O
A — homogeneous

n

1 All higher orders of the average Hamiltonian are in general non zero: [%D(tz),%cs (t1)] =0
. Spectrum consists of a broad line due to higher-order average Hamiltonian contributions.

. No spinning side bands can be observed because of stroboscopic detection with w.
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Homogeneous and Inhomogeneous Hamiltonians <

. Under MAS a Hamiltonian is called inhomogeneous if the Hamiltonian commutes with
itself at all times: [%(tz),%%(zq)] =0

. Under MAS a Hamiltonian is called homogeneous if the Hamiltonian does not commute

n n

with itself at all times: |9(t,),9(t,)| = 0

1 Inhomogeneous Hamiltonians 1 2 SPIn Q _____ G 1
(e.g., a single interactions, o8 ]
. . . 0.6 Inhomogeneous -
multiple chemical shifts, J
04} .
multiple heteronuclear . J
couplings) give rise to spectra | L
with infinitely sharp lines. 1000 -800  -600  -400 -200 O 200 400 600 800 1000
: : 16F 3 spin@ _____ G ——30kHz |-
Jd Homogeneous Hamiltonians | . 40kHz |
: _ ——60kHz |_
(e.g., one homonuclear dipolar '? .~ homogeneous 70 kHz
)i Q@ D
I 0.8 - - _
coupling and one other o J*bl?bk_//L 100 kHz
interaction) give rise to spectra o4 — #\’} — = -
. . . 02 N — J "
with broad lines due to higher- . . . A — . . .
Order AHT terms -1000 -800 -600 -400 -200 0 200 400 600 800 1000

v [HZz]
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AHT and Multiple Time Dependencies Cié

. We have often multiple (incommensurate) basic frequencies:

Heteronuclear decoupling under MAS (CW, TPPM, XiX, ...)

Homonuclear decoupling under MAS: Lee-Goldburg irradiation

Decoupling during recoupling sequences under MAS

sin(wg f)  sin*(w, 1)

- Double rotation for quadrupolar nuclei 1 | B |
5 NN AT IN
.1 Use time-scale separation: 0-871 // \\ // N\
0.6 ft: / \ 5 / \
assume wa > ws and Ta < Ts: o LA NTTTETTTLA \|
. . . O 2 -E '// \\\ : l// \\\ .
- Averaging over the short cycle time 7a will LY N LY N
0 4: \:J =
not affect the slow oscillation significantly. 0T 02 04 i 06 e
: - (sin? (wyt sin’ (w,t
- We can then average over the long cycle ’ o o < | (e >>Q;U < (),
: o o j o 0!
. . ; o o} 5 o o
time 18 in a second step. 08 . o . o ]
. . my . 06 -OEOOOOgOOOOOOOOgOOOOOEOOOOOgOOOOOOOOgOOOOO_
. Use synchronization conditions: nawa = nsws o4 o 0°°%" o o 0%
: 0'2_5 <>O Oo <>O Oo 1
- Use cycle time 1c = 27/(nawa) that 0ol | oo | o

averages both frequencies. | | | t[s]
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N

Shortcomings of Average-Hamiltonian Theory %(t)

.1 Not applicable to Hamiltonians with multiple basic frequencies. No single cycle time can be
defined if the two frequencies are incommensurate:

- MAS and rf irradiation must be synchronized or time-scale separated.
- Multiple rf irradiations must be synchronized or time-scale separated.

.1 Only stroboscopic observation is allowed after a full cycle time. Nyquist frequency equals
the basic frequency while side bands appear at integer multiples of the basic frequency.

- Sidebands in MAS spectra cannot be described and are folded back onto the center band.
- Sidebands in rf-irradiation schemes are neglected and folded back onto the center band.

. Convergence of the series expansion of the Hamiltonian can be a problem. Usually the
basic frequency has to be larger than the transition frequencies in the Hamiltonian.

- This is one of the reasons why we use interaction-frame transformations to eliminate large
terms in the Hamiltonian.

- The convergence of the AHT series (Magnus expansion) is not yet fully understood.

Review: S. Blanes, F. Casas, J.A. Oteo, and J. Ros “The Magnus Expansion and some of its applications”, Physics Reports 470, 141-238 (2009).
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Floguet Theory

. Floquet theory maps the time-dependent finite-dimensional Hilbert (or Liouville) space onto
an time-independent infinite-dimensional Floquet space.

n

g@(” —... ,
L Gp2) g2t Sp(0)| St | Se() +2)
1 GpED gicnt T, R JeV|5e(0) [Ge | Ge(2) +1)
1 9¢©) P S E— T — > % = —  |9¢-2)Ge0|Ge©@) |G| GeR) |0)
1 G givnt Je-2\GeN0[Ge©@ | G| | —1)
+ J® g2 nt Je2)GeD[ )| | —2)
4. 3

. Tt is a homomorphism: mapping (projection) from Floquet space to Hilbert space is
unique but mapping from Hilbert space to Floquet space is not.

. Floquet description needs an additional Fourier space to describe the “quantization” of the
motional process.

.1 Floquet theory is an exact method and does not imply any assumptions or approximations.
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[ Floquet theory tells us how to,

The Floquet Space

build the matrix
representation of the Floquet
operators from the time-
dependent Fourier
coefficients.

[ This can be formally written

as a direct product of the
spin-Hilbert space with the

basis {|¢),|@.). o)} and a

Fourier space with the basis
{I=00),---| =110} | +-1),---,| o0} }
that describes the time-

dependent process.

.1 Can we define operators on

Matt

hias

this space?

Ernst
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Operator-Based Floquet Theory

n

_|_ %(—2) e—2iwmt

Construction of

Floguet Hamiltonian

Projection back

iInto Hilbert space
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Effective|Hamiltonians

v




Operator-Based Floquet Theory

H(t)="---
9 o 2 pint . Calculation is independent of the detailed structure of the
+%€ © | spin-Hilbert space blocks.
_|_ %(—1) e—lwmt
L 560 1 We can do the perturbation treatment once and calculate the
— R effective Hamiltonians for arbitrary problems.
_|_ %( ) elwmt
| Gp@)| g2t . We only need to know the Fourier series of the Hamiltonian.

Effective|Hamiltonians
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Operator-Based Floquet Theory

H(t)="---
9 o o) o . Calculation is independent of the detailed structure of the
+%€ © spin-Hilbert space blocks.
_|_%(—1) e wpt
L 560 1 We can do the perturbation treatment once and calculate the
— R effective Hamiltonians for arbitrary problems.
_|_ %( ) elwmt
| Gp@)| g2t . We only need to know the Fourier series of the Hamiltonian.

/nwm

Effective|Hamiltonians — §€ (nk) gint giknt

\ 4
% =30 1 %= 5@ ... —5e0 _1 e, Fe L
§€(2) n 270  hw,
2 o ~ 1 l%(”o—’/’ko—’f) %(Vﬁ)
%(3) W — %(1) + %(2) 4= %( oko) 1 y T
. Mo Ko 2 '% ; Wy + RWp,
nyw, + Kyw, =0  ww, +kw, =0

atthias Ernst
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Effective Hamiltonians from Floquet Theory

. We can calculate effective Hamiltonians for Hamiltonians with multiple time dependencies
In a way very similar to AHT.

. Appearance of for more than one frequency:
single frequency: two frequencies:
) [A Set-m e Gptno—vio—r) Gp(vye)
:% _ 4. %”Oko _ 4.
; % ,%;O ; VW, + KW,
nyw, + K,w,, =0
.1 With multiple frequencies we have and non-resonant contributions to the effective

n n

~

Hamiltonian in different orders: o )
%(”o v,Kg—kK) %(Wv)

I\

gg% %(an) _I_%((Oz’())) + ... _|_Z§€(n01ko) _|_Z§€(’;Osko) + ... ”o Ko) — __Z

oo o X VW, + KW,

non-resonant: ny, =k, =0 resonant: now + Kyw,, = —0

.1 At these resonance conditions, certain Fourier coefficients of the time-dependent
interaction-frame Hamiltonian are time independent.
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(Dis-)Advantages of Operator-Based Floquet Theory

. Can easily be expanded to multiple incommensurate frequencies.

. Expressions are independent of the detailed structure of the spin-Hilbert-space
Hamiltonian.

. Leads to an effective Hamiltonian that can be written as an analytical operator expression.

. Can be used to treat systems with many spins as long as the commutators can be
calculated.

.1 Projection back into Hilbert space eliminates the side bands at integer multiples of the
Fourier frequencies. What is the cycle time in multi-mode Floguet theory?

.1 Resonance conditions that involve simultaneous transitions in Fourier space and spin
space can not be treated.
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Building Blocks in Solid-State NMR
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Important Building Blocks in MAS NMR Qé

(a) HN.Ca,, correlation: (HN)CANH (8) -

H h fslp TPPM decoupling t3 X 3
. MISSISSIPPI HRer | smeem | | SITPPM cp
15N I N I TN'Itz/z I TN+t,2/2 I I waltz64 %

% L ¥
¥ y
| | | I 1 15N I -1 ta I EH.I—
A ‘h M\ t/2 ' t/2 :‘h :M i lk i E; ——Q = Nce |Twarrzie |
X
| |
3CO m ' m‘ ‘L ‘h 13COICA y S I

WALTZ-16 |

OINE B
(b) HN.Ca correlation: (H)CANH 1H Iﬁ Py | [ e m‘
fslp TPPM decoupling fslp TPPM decoupling t3 L] A 2
(i-1) 2 i) H MISSISSIPPI 15N 2 t -
H 2m ﬂ::p — ] ** JcP | waALTZ 16

/ I
I '
N co A) 5N . . Y2 Y2 I I— et : WE < F 5 ¢ & ;
Nea” N 7% “co [ y : S
33 ’ : CA i - T iy g B
B-"0 CA ! . 13CO ' R T
e 2 42 — & : = AL
g oy | e ) y
: LG
13CA ' T T & B o
: ! : |ep [ waLtz-16

(c) HN.Ca . correlation: (HCO)CA(CO)NH

H h fslp TPPM decoupling - t, ( C ) X s
i1 0 R e sTePw | s,
Q) ,-Si) - — t/2.1t,/2 I I waltz64 ; ) % w“y vV

H
| o \ \ | ¥ y
N /-(?O ¥ A\ . t/2't/2: 1< B 15N tz o
\@* co BCA cfficq W WA, J <Wc ce [—f " JcP | waLTz-8
AN v (5) |
|

13 bl
CA EF'—1"'.:‘:

| WALTZ-16

NPT

(d) HN.Ca. . correlation: (H)CA(CO)NH e ‘ . I I = I T
- 0 " hfs|prppMdemupung fsprpMdemupnnilgm_l-W_i A. Marchetti, ..., G. Pintacuda, Angew. Chem. Int. Ed. Engl. 51
Ho~ 5 (2012) 10756—-10759. https://doi.org/10.1002/anie.201203124.

ll\l\()\z ,Cé()\‘ A\ 15N . _ t2/2 :t2/2l I_ waltz64
@ \gﬁ ) M Il - -
13 1 I

c Cross Polarization

S. Penzel, ..., B.H. Meier, J. Biomol. NMR. 63 (2015) 165—-186.
https://doi.org/10.1007/s10858-015-9975-y.
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Hartmann-Hahn Cross Polarization

. Proton-Driven Spin Diffusion under MAS (PDSD)/DARR :
/2
| || CP | decoupling decoupling
/2 /2
S | CP i m l}\)MMMM m\m{% AAAAAAA

| AAAAAAA S
MM [T

. The time-dependent Hamiltonian with the exception of the radio-frequency part is the same
during all times of the experiment:

5= S5 AN OTY 43¢, () = Ty (B)+ 5 o (0 + 56, (D4 5., (D)

i (=0
.1 Effective Hamiltonian during Hartmann-Hahn cross polarization: heteronuclear zero-quantum

Hamiltonian: % ~ W (*S +1-8*)



Example: MAS and Double CW Irradiation

.1 Heteronuclear coupled I-S two-spin system: L
Continuous-wave (cw) irradiation on both spins under MAS.

| Jwn W,

S Iw1s I

. Examples for such a situation:

- Hartmann-Hahn cross polarization (high-power and low-power CP).

- HORROR or rotary-resonance recoupling (R3) with simultaneous heteronuclear
decoupling.

- Proton-assisted recoupling (PAR) polarization transfer.




Theoretical Description of Double CW Irradiation and MAS %(t)

.J Spin-system Hamiltonian in the rotating frame is time dependent due to magic-angle
spinning (MAS).

N

Fe(t) = 9, (t) + 9 g () 4 F€ 5 () + T, () + T 55 ()

t
J i . j im/2F, _iwy Pt iml2F,
Ul(t): TeXp _If%rf(t1)dt1 eI y — @ i 1,thel )
0
t | ) A | A
Us(t) — TeXp —If% dt1 e’W/ZFy _ e—lw1SFZtel7r/2Fy
\ 4 0

N N
~

J(t) = 9,(t)+ T, (1) + I 5 (1) + T, (8) + T g5 (£) =

. Interaction-frame transformation with the two rf fields introduces a two more time-
dependencies in the Hamiltonian. There are now three frequencies: wr and w1 and wis.

.J Average Hamiltonian theory requires that
- the three frequencies are commensurate, i.e., nwr + kw1 + | wis=0 or

- a separation of time scales, i.e., wr « w1 « wis OF wr» w1l » wis (Sequential averaging).

. Floquet theory allows a unified description for all values of wr and w1 and wis.
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Fourier Coefficients Under CW Irradiation

I\

[ Fourier coefficients: #

[y

Iw1s

S
A

T |

.

2 2 4

n

= 2k=—2 _

OOO 5 5 5 5
mm(/ i)eyeel(s, 8
l<m p<q
Geroor = S i g i h

wém (z"mz {x" mx y my
2
‘<m
Suml§ 8 1§ 8 18
pq|“pz=az o\ Uk py
pP<q
ni10 :__Zw(n)l$
n0i1 :__Zw(n)8$
z (n,+1,+1) (n) | FoF
¥ ___Zwmplmsp
nj:20 I1F1F
Zwéml m
€<m
nOiZ TOT
ZquSPSq
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Fourier Coefficients Under CW Irradiation

I\

2 2 A
1 Fourier coefficients: %(t) = » & >~ g™ e™ellgld

n=—2k=-2 _

I Iwu Gp(0.0.0) wamﬁ’ I:’)+prq(§ §)

S I w1s l<m p<q
‘Bo 00) Zwém Iﬁzlmz_E<I€xImx—|—I€y my)]
o, w. <m
g N 1/~ . i
o Z u)/(o,c)l szsqz B E (prsqx T Spy

V/ p<q
4 =5

n0i2 Zw Sqtsqt
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High-Power Cross Polarization

. The resonance condition at the Hartmann-Hahn conditions under MAS is: =
Now, + Kowy + Cowis =0 = (Ny,Ky, 0o ) = (£1,£1£1),(£2,£1,41) |

. Zero-quantum polarization transfer: nowr = w1 - wis

. Hamiltonian at n = no (no = 1,2) zero-quantum HHCP condition: .
HO = S Gerorel) §6 i +§6 o) ——Z( A e UL 5 B

Ny Koo

. Double-quantum polarization transfer: nowr = w1+ wis

. Hamiltonian at n = no (no = 1,2) double-quantum HHCP condition:
§6(1): Z §€(nokoﬁo §6 —ny,1,1) §6n0 —1,-1) :__Z< m;o nj:S;_FwnrioplmSp)

Ny Koo
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Simulation of Cross Polarization
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I. Scholz, B.H. Meier, M. Ernst, Operator-based triple-mode Floquet theory in
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w1g/(27) [kHz]
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Simulation of Cross Polarization
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Low-Power CP at n = 0 Hartmann-Hahn Condition

.1 At very high MAS frequencies, high-power ZQ cross polarization is ‘B°H
difficult because it requires very high rf fields.
. Low-power CP at the n = 0 Hartmann-Hahn condition: ‘o//
Ow, + Kowy + low;s =0 = (0,ky,0,)=(0,£1,£1)
. First-order Hamiltonian at n = 0 zero-quantum HHCP condition: ‘*é
%(1) Z %Okofo _ (o 1)_|_ (0,—1,1) ___Zw ( +é;—|—/Ar;é;):——Z7TJ ( +S —|—/mé;)
N .Ko,C o
3.5
. low-power CP ...
 Polarization transfer is too fastfora | ..
coupling mediated polarization transfer. o high-power CP
.1 Other higher-order terms have to be
considered for a full explanation.
O ; | | | |
0 1 )

Tcp [MS]
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Low-Power CP at n = 0 Hartmann-Hahn Condition

\
.1 At very high MAS frequencies, high-power ZQ cross polarization is ‘B°H
difficult because it requires very high rf fields.
. Low-power CP at the n = 0 Hartmann-Hahn condition: ‘o//
Ow, + Kowy + low;s =0 = (0,ky,0,)=(0,£1,£1)
. Second-order Hamiltonian at n = 0 zero-quantum HHCP condition: ‘*é

l (0—v,1—k,—1-)\) §€(V,l€,/\)j|

%(2) Z %Okofo - o; 1)_|_ o i _ 7 __Z[

Mg Ko Lo V/'i)\ W, +I{w1l+>\w18 V/ﬂ?)\ Vo, +I{w1/+)\w18

n

O v,—1-r,1-)\) %(Vﬁ,)\)

PR R e
PR
-
-
*
-
-

high-power CP

good agreement

between theory

and experiment 0% 1' S ; :
TCcp LMS
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Practical Aspects of Cross Polarization

.1 Select a spinning frequency that does not match a

chemical-shift difference. ] I cp decoupling

.1 Experimentally optimize the two rf-field amplitudes

T

such that the polarization transfer is maximized. S [ o
- Avoid rf-field amplitudes o, ~ nw, to avoid fast decay WWA#
of magnetization due to homonuclear recoupling. P

. Experimentally optimize the length of the cross-polarization time Tep-

.1 Polarization transfer on the n = 1 condition is faster than on the n = 2 condition.



Practical Aspects of Cross Polarization >

\
.1 Select a spinning frequency that does not match a v/2
chemical-shift difference. | I cp decoupling
.1 Experimentally optimize the two rf-field amplitudes t
such that the polarization transfer is maximized. o
- Avoid rf-field amplitudes o, ~ nw, to avoid fast decay - o~ >,

of magnetization due to homonuclear recoupling.

. Experimentally optimize the length of the cross-polarization time Tep-

.1 Polarization transfer on the n = 1 condition is faster than on the n = 2 condition.

. Implement a linear ramp or even better a tangential sweep of the amplitude to compensate
for ri-field inhomogeneity over the rotor and to get higher (adiabatic) transfer efficiency.

. The shape of the sweep needs to be optimized. For hints how to do this, see:
M. Ernst, B.H. Meier, Adiabatic Polarization-Transfer Methods in MAS Spectroscopy, John
Wiley & Sons, Ltd, 2010. https://doi.org/10.1002/9780470034590.emrstm0004.pub?2.

. Typical gain in sensitivity are a factor of 2-10 depending on the ratio of the Larmor
frequencies.

. Additional gain in sensitivity stems from the faster possible repetition rate due to faster
relaxation of proton spins.

.1 At fast MAS the DQ Hartmann Hahn condition ‘a)1 ;+ o S‘ = nw, IS more advantageous

and should be used.
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Numerical Pulse Sequence Optimization Q@

Radio-frequency .

irradiation: H (1) = 0 (D(F, cos(¢(D) + F, sin(¢p(1)))

6(0) =S, > [G(T ) = SZZJ
Spin-system - A A A A A A A A ‘
Hamiltonian: A1) = a)Slslz T a)SQS2Z+a)12(t)(2SIZSZZ — (5150, + SlySZy)) %

\ .

[ Full quantum-mechanical simulation
ws /(27) € [~10,10] kHz

required.
Parameter «;/(27) € [-10,10] kHz |
ranges: 5,,/(27) € [2,10] kHz .1 Numerical pulse-sequence
w,/(2x) € [0,50] kHz optimization in Simpson, Spinach or

any other program of your choice.

T —— B
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Computer Optimization of Pulse Sequences <

. This is often done using optimal control theory - e
where we do a state-to-state optimization. ( - 1 l l I will
. Initial and final state are propagated forward and - Go, =TI PO p(T)

backward to give the most efficient transfer by ons
modifying the amplitude and phases of pulses. |

JIn solid-state NMR, this has mostly been
implemented for heteronuclear polarization
transfer as an alternative to the cross polarization
experiment.

. Sequences can be designed to compensate
typical rf-field inhomogeneity better than standard

CP sequences.

A B
1 There are also some homonuclear sequences 9 T T o6 X
but they are more complex to optimize. One can A L Lo 5
also implement directed transfer which would not S o 15
be so simple with effective Hamiltonians. Ol st 0 Q
= L T

5(**C)/ppm 3("*C)/ppm
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Computer Optimization of Pulse Sequences A%

J Optimal control pulse sequences often look like * =2, ST
SR a& ik “W ‘;,mww, i 'W”H "YNHF;. r**Lh

NCA

/ZH[kH

“noise”. £ 5
g | |
. Early implementations showed a quite erratic behavior « ”W‘M *WJW'*\WW\WWWMM WMW
and would work some places and not in other places. v

lll\‘/zﬂ (kHz]

fg‘ \ sl J' | f "' 2 g ";|,' A | ' | 0 |;' ’;1 [ A
0 . WM, » ‘7“" / ‘? W “": '.": . ! N LA I ) ‘l u‘j'
1 Newer sequences seem to be more stable due to the -wm“-W“w"|P‘ﬁ.f‘f%?'***w‘*W At -".‘Prﬂ.’ﬁl,*'\ﬂwm«'wﬁ‘?“hd:‘ﬁ“ §

3

0 Muﬁw w,mf,mm mw wf/\\p% e w TWWM\ rwmww

inclusion of MAS modulations of the rf-field"

/?.!r [kHI]

Inhomogeneity. TR e w
1 If one uses mixing of transverse components, one can A =
gain an additional factor of \/5 for each indirect ° 4 Sw
dimension. In higher-dimensional experiments this can / - )
be an important factor! B
10One has to make sure that the sine and cosine
modulated signal are not mixed up (echo/anti-echo St:;:(sm) o Ty nhenes
processing) which can be achieved by an additional 5 A
180° pulse before the transfer. LL ik
J. Blahut., Z. Tosner, ..., Solid State Nucl. Magn. Reson. 135 (2025) 101984. https://doi.org/ N ‘ T P
10.1016/j.ssnmr.2024.101984. % )

Alexander Klein, ..., Rasmus Linser, High-dimensional solid-state NMR facilitated by transverse- S
mixing optimal control, https://doi.org/10.21203/rs.3.rs-8003957/v1 : sin(Qt)
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Important Building Blocks in MAS NMR Qé

(a) HN.Ca,, correlation: (HN)CANH (8) -

H h fslp TPPM decoupling t3 X 3
. MISSISSIPPI HRer | smeem | | SITPPM cp
15N I N I TN'Itz/z I TN+t,2/2 I I waltz64 %

x 2
¥ ¥
| | | | | 15N I =1 ta I - I—
BeA ‘k M\ t/2 ' t/2 :‘h :M i lk i E; ——Q = Nce |Twarrzie |
X
| |
13CO ‘k ' m‘ ‘L ‘h 13CO/CA 4 y - I

WALTZ-16 |

X ¥3
(b) HN.Ca correlation: (H)CANH (b) 1H Iﬁ SITPPM | | SITPPM mhmﬁp,“m.
‘I?

: _fslp TPPM decoupling fslp TPPM decoupling t3 L] L ] U
- . H ¥ ¥
(-1) (2) ) MISSISSIPPI 15N il t r

H o~ — ] 54 WP

: ’ , | . ce WALTZ-16
t264
N CA) 15N . 2 2 RS T ;
CA N 7% “co [ y : S
"B S v gl M el a | T
- p |— B : ;
e 2 42 — & . = WALIDR

T4 x |

i ¢ aPs
13 : T T E-. E 51 -
oA 5 ” : ‘ , |cP I [ wautz1
(c) HN.Ca . correlation: (HCO)CA(CO)NH

i
H h fslp TPPM decoupling - t, (C) I} s
(i-1) (i) - ' ' H §er SITPPM | | SITEPM m‘n [TV
Q) -Si) - — t/2.1t,/2 I I waltz64 ; Y v“y vV

H . X
1 4 Y y
N /go 4 A\ il |y t/2:t/2: :T T 15N t2 2
Rt co 3 <y W4 N2 | Y K l cp [} =" JCP | wALTZ-16
P 40 CA e . =
3) ay 1 1 i il H I X
zfilter o0 alPs r
wcomm IL b U NIl 1 S % A I_I I

13
cA l—Y ., |

{‘2

| WALTZ-16

BRI
(d) HN.Ca. . correlation: (H)CA(CO)NH e ‘ . I I = I T

S ecouplin S ecouplin t
- 0 " hprTPPMd pling folp TPPM decoupl ;,gs.pp—.-%’i A. Marchetti, ..., G. Pintacuda, Angew. Chem. Int. Ed. Engl. 51
H - = \ (2012) 10756—10759. https://doi.org/10.1002/anie.201203124.
3) \; A N . . . t2/2 | t2/2 I I — waltz64
co !

II\IQ)\@/,;&’( ° (4) ! co [
o s 2 1?  ] :
c n Heteronuclear Decoupling

S. Penzel, ..., B.H. Meier, J. Biomol. NMR. 63 (2015) 165—-186.
https://doi.org/10.1007/s10858-015-9975-y.
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. Proton-Driven Spin Diffusion under MAS (PDSD)/DARR
/2

|| CP

S | CP

. The time-dependent Hamiltonian with the exception of the radio-frequency part is the same
during all times of the experiment:
2

Ge(t) =SS TAD (DT 456, (1) = T o (0 + 9 s (O + T, () + T, (1

i (=0
.1 Effective Hamiltonian during free evolution (# and t): S-spin isotropic chemical-shift

Hamiltonian: 5 ~ w®S

V4



Do We Need Decoupling Under Fast MAS?

.1 MAS will average in first-order all the second-rank spatial tensors but ...

PV Fr Faf FeC vy VaFa  FBVB Vy Vo

48 kHz
M with XiX
t decoupling U

O

M T — 10 kHz ,NJ\L |
. M- |

1 1 I I I | |
200 180 160 140 120 100 80 60 40 20 0 10 20 30
13C chemical shift [ppm] 1 [kHz]

.
o
|
40

.1 Higher-orders will lead to a residual line width due to cross terms between heteronuclear
and homonuclear dipolar couplings: Awsy, o< 1/wr

. Faster MAS (~ 250 kHz) will lead to a liquid-like NMR spectrum.
. Isotropic J couplings are not averaged.

. I-spin spin diffusion will lead to a line broadening of the J multiplet lines.
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1 Fourier coefficients: () Z Z Sp(nk) ginud gkt

n=—2 k=

%(00) _|_ng0) (Ie Im)
‘<m
%(nO)_w(”)S ez:wg [zAmz ;(ieximx—l_iyimy)]

JpO+ _ Zwo)l¢__zw(0)slq:

- 2l -3 wh
m

Fe(n+2) — n)[F|F
Zwﬁmlé Im
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N

Theoretical Description of Decoupling in Rotating Solids %(t)

.1 Time-dependent interaction-frame Hamiltonian under decoupling in rotating solids has (at
least) two modulation frequencies:

n n

% ) > > Y n K) elnw 1 elkwmt Afo
nN=—2 K=—o0 G
Floquet Theory
\ 4 %(ﬂo—u,ko—ﬁ) %(1/,/«;) ‘ p
n b) q
— n k \ o o
% — E % 0’ O - E 5 I te interaction frame

[ Factors determining the observed line width: )

- Residual coupling is given by the non-resonant (% )’) second-order commutator term
because the interaction-frame Hamlltonlan is not “symmetric” due to the MAS rotation.

- (%‘”0 *o) or % A )) between the two modulation frequencies can lead
to large terms which can be benef|C|aI or detrimental to the decoupling process.

— I-spin spin diffusion (resulting from or non-resonant terms) leads to an additional
averaging of the residual couplings.

.1 Only the interaction between these three effects will explain the decoupling behavior in
rotating solids.
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Theoretical Description of Decoupling in Rotating Solids %(t)

.1 Time-dependent interaction-frame Hamiltonian under decoupling in rotating solids has (at
least) two modulation frequencies:

n n

% ) > > Y n K) elnw 1 elkwmt Afo
nN=—2 K=—o0 G
Floquet Theory
\ 4 %(ﬂo—u,ko—ﬁ) %(1/,/«;) ‘ p
n b) q
— n k \ o o
% — E % 0’ O - E 5 I te interaction frame

[ Factors determining the observed line width: )

- Residual coupling is given by the non-resonant (% )’) second-order commutator term
because the interaction-frame Hamlltonlan is not “symmetric” due to the MAS rotation.

- (%‘”0 *o) or % A )) between the two modulation frequencies can lead
to large terms which can be benef|C|aI or detrimental to the decoupling process.

— I-spin spin diffusion (resulting from or non-resonant terms) leads to an additional
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rotating solids.
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CW Decoupling in Rotating Solids

%
\

w4/(2m) [kHZ]
0 68.5 137 205.5 274 342.5
0.8 | I I I I | I I I Glycine
HORROR condition H-N-CH--COOH
0.7 (wr = wil2) 1 = 68.5 kHz
1.3 mm Samoson
0.6 fractional {probe
rotary resonance higher-order
> (W1 = wy/3) rotary resonance
‘w 0.5 d
-
e :
= 04l —
(D) >
£
— . rotary r nan
0.3 |§ otary resonance |
0.2 ¢ -
0.1% -

Matthias Ernst
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Outside Resonance Conditions: Decoupling

. Outside the resonance conditions, the non-resonant contributions are important:
[% —V,—K) %(y/@)]

S oD | (@) _ Gp(00) | Gp(00) Gk 1
H=H"+5H+.. . =#H"+H) +...= 3™k 22 +
on VW, T RW,
. . . . : w4/(2m) [kHz]
. In first order we have the isotropic chemical shift g0 e85 137 2055 274 sas
: : TR Jow-power
of the S spin and the J couplings of the | spins: 71 Hiecoupling high-power
. A A 06| %] ¢ decoupling
#'" =w8s, —I—Zwm( /m) 20
<m SEJ
'G—J 0.4
. The second-order non-resonant effective Hamiltonian: = .|
(@) 1 [%(V’H),%(V’H)} -
WP = ——
2 ; W, + KW, > |
w( w _|_ w w l/) w(l/) (—V) _|_ W )w(_ ) 00 015 115 é w?I/Swr é 315 éll 4!5 5
— Z IS IS 28 / Wi IS IS Iz
VW, + KW, VW, + KW, A it
g — 08, + Y w0 i1,
.1 In second order we have cross terms between (<m
the heteronuclear dipolar coupling and the I-spin Sp(n: __walq: _12“’(”)8 i
CSA tensor B e
. There are no homonuclear/heteronuclear dipolar- ge+2) ng’;ilflnf
£<m

coupling cross terms.
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Continuous-Wave Decoupling in Rotating Solids

.1 Continuous-wave decoupling is a terrible decoupling D3G, Crr
sequence with a large residual coupling. D4C- JI5NTH
1 Residual coupling increases with increasing By field DsC

strength (CSA term!).

[ Rotary-resonance conditions have to be avoided: cw 100 kHz
ngh power deCOUpllng W1 > 3(,(} 30I00 20I00 10:)0 ;) -1(I)00 -2(I)00 -3(I)00
— - ) [
— Low-power decoupling: w1 < wi/2 for high MAS
frequencies.
1 I-spin spin diffusion averages the residual coupling: W 100 kHz Bo=7 T
30IOO 20IOO 1 OIOO I0 -1 (I)OO -2(I)OO -3(I)OO

— Observable line width increases with increasing
spinning frequency: spin diffusion is slowed down.

- Low-power decoupling at the HORROR condition
leads to a narrower line width. “

1 High-power decoupling: Aw, decreases with ws. no decoupling By=7 T

.1 Low-power decoupling: Aw decreases with wr. 3000 2000 1000 /(QO)[H] 1000 -2000  -3000
wl(&T V4




Asynchronous Decoupling Sequences

\
Cw XiX
0
\
\
— Tp :<—.
— 27w
W, , W, W s W,

.1 All sequences have at least two frequencies in the interaction frame.

.1 There are many modifications of the TPPM sequence:
- frequency-modulated and phase-modulated (FMPM) TPPM
- small phase angle rapid cycling (SPARC) small phase incremental alternation (SPINAL)
- CPM m-n; amplitude-modulated TPPM (AM-TPPM); GT-n
- continuous modulation (CM) TPPM
- swept-frequency TPPM (SWs-TPPM)

TPPM: A. E. Bennett, et al., J. Chem. Phys. 103 (1995) 6951. XiX: A. Detken, et al., Chem. Phys. Lett. 356 (2002) 298.



Asynchronous Decoupling Sequences

\
Ccw XiX
0
\
\
— Tp +—
— 27w
W,y Wy Wy W,
History: 1950 2001

.1 All sequences have at least two frequencies in the interaction frame.

. There are many modifications of the TPPM sequence:
- frequency-modulated and phase-modulated (FMPM) TPPM
- small phase angle rapid cycling (SPARC) small phase incremental alternation (SPINAL)
- CPM m-n; amplitude-modulated TPPM (AM-TPPM); GT-n
- continuous modulation (CM) TPPM
- swept-frequency TPPM (SWi-TPPM)

TPPM: A. E. Bennett, et al., J. Chem. Phys. 103 (1995) 6951. XiX: A. Detken, et al., Chem. Phys. Lett. 356 (2002) 298.



Asynchronous Decoupling Sequences

Cw TPPM

w1/(2ﬂ)

SPINAL-64

+¢ +o+a +o+0
6 -¢ra_ -¢-f

Hist
Al — Tp
— 2T/ wm

1 Th|
- f{ [ SPINAL-64: $=10°, a=5°, 3=2a, super cycle QQQQ QQQQ

. Phase angles and pulse lengths have to be optimized. SPINAL)

SPINAL-64: B. A. Fung, et al., J. Magn. Reson. 142 (2000) 97. G. Comellas et al., J. Magn. Reson.
209 (2011) 131.

- SWEPTTTEqUETICY T F IV (OVVF- T F T 1VI)

TPPM: A. E. Bennett, et al., J. Chem. Phys. 103 (1995) 6951. XiX: A. Detken, et al., Chem. Phys. Lett. 356 (2002) 298.




Asynchronous Decoupling Sequences

CwW TPPM
+¢
[ r\' i / [ \\ . 1i----\x-- o N7 Ty
SWi-TPPM wi/(2m)
+¢ +o +  |'n
- -
Hist
Al — 27/wp,
. Th| Tp
- fi
. Frequency-Swept-TPPM (SWi-TPPM): pulse length is varied during the SPINAL)
-S
c decoupling period. ‘
= C| SWi-TPPM: R. Thakur et al., Chem. Phys. Lett. 426 (2006) 459.

- SWEPTITEqUETTCY TPV (SVVF TV
TPPM: A. E. Bennett, et al., J. Chem. Phys. 103 (1995) 6951. XiX: A. Detken, et al., Chem. Phys. Lett. 356 (2002) 298.



Asynchronous Decoupling Sequences

\
Ccw XiX
0
\
\
— Tp +—
— 27w
W,y Wy Wy W,
History: 1950 2001

.1 All sequences have at least two frequencies in the interaction frame.

. There are many modifications of the TPPM sequence:
- frequency-modulated and phase-modulated (FMPM) TPPM
- small phase angle rapid cycling (SPARC) small phase incremental alternation (SPINAL)
- CPM m-n; amplitude-modulated TPPM (AM-TPPM); GT-n
- continuous modulation (CM) TPPM
- swept-frequency TPPM (SWi-TPPM)

TPPM: A. E. Bennett, et al., J. Chem. Phys. 103 (1995) 6951. XiX: A. Detken, et al., Chem. Phys. Lett. 356 (2002) 298.



XiX Decoupling in Rotating Solids

>

.1 Residual coupling is given by a non-resonant second-order cross term between the I-spin

homonuclear and the heteronuclear dipolar coupling:

Zzwlé W/s ‘1“*‘}/53"%

v,k {=m

[ First-order

line intensity

VW, + KW,

at nO = i1 ,12: Tp/Tr

( ab\" +al’b{”)

= -ko/2 and Tp/Ty
- Very strong and rf-field and spinning frequency independent.

45,1 1

{z"mz

= -ko/4.

- Heteronuclear dipolar coupling is directly recoupled. Strength is determined by a(%.

n

H =

O
o

O
»

o
~

§6(”o’ko)_|_§€(—”0s ko)

ZZRe(w,S)( 28,1, +al28,1, |

- -

fl

ﬂ
|

|

|

m'

—E e wm mm == =

.

—L—&———————————————

NDbEr—m—m————— = — — — — — = = = = ==
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XiX Decoupling in Rotating Solids

o v
<//

.1 Residual coupling is given by a non-resonant second-order cross term between the I-spin

line intensity

homonuclear and the heteronuclear dipolar coupling:

Zzwlé W/s ‘1“*‘}/53"%

VW, + KW,

v,k {=m

[ Second-order

( (Fé)
X

b\ +al b )48,1,I

{z"mz

at No = 13,14: Tp/’Tr — 'k0/6 and Tp/Tr

= -Ko/8.

- Decreases with increasing rf-field amplitude and increasing MAS frequency.

- Cross term between |-spin CSA and heteronuclear dipolar coupling..

n

H =

O
o

O
»

o
~

a(kO_H)a(KV) _ a(’i)a(

ko —K

A ,\ )

‘5‘6((20)”‘°)+§6((‘2§’°’ o) 22|m<w,gs Wit )Z( SR A R )282162
e .::::ﬂ::: . Illk vll.
Y II@IIHI. A J 1o



.1 TPPM decoupling consists of two pulses with a phase shift of 2¢. \

. Flip-angle of the pulses is roughly a 180° pulse.

. Phase angle and flip angle (pulse length) have to be optimized.

l/1 l/r Snax) qsonax) gnax) Iﬂnax)
kHz | kHz | us ° | I(cw)
100 12 5.2 7 1.03 | 14
150 25 36 | 105 | 1.08 | 24
150 | 35 34 (164 | 1.02 | 2.6
190 | 48 3 16.5 | 1.14 | 2.6

[ Optimum phase angle

changes significantly with
experimental parameters.

. Optimum pulse length is

always close to a 180° pulse.

Matthias Ernst

v, = 12 kHz v, = 100 kHz

‘_

o [°]
v, = 35 kHZI

1{1:= 1;50 kHz

5.5
4.5 - :
| —
3.5 . L
| -
15 20

0 5 10
o [°]

Tp [us]

TPPM Decoupling in Rotating Solids

Tp [us]

Tp [us]

— Tp e— 1
v, = 25 kHz vy = 150 kHz

4.5 1

4 w
35 0 _ -
3_

0 5 10 15 20 25

¢[°]
v, = 48 kHz vy = 190 kHz

451 : 1
41 I 0.8
3.5- -—-————‘ L 106

3 A .m = | Jos
2.5 -
- Io.z
- \
2_
' . , ““J 0

0 5 10 15 20 25
¢ [°]

A. E. Bennett, et al., J. Chem. Phys. 103 (1995) 6951.
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Theory of TPPM Decoupling Under MAS

+o -
. There is no analytical solution for the interaction-frame transformation \ /(b
\ r1 "\
under TPPM. w1/(27)
) Interaction-frame transformation has more than one frequency —= p=~—

— 27w, -—

because the basic TPPM element has an effective nutation frequency:

n n

5, —~8a,0+Sa,0+Sa.0= Z(s k! + 8, )+ Salk" | ehrle!

y Xy Xy~ xy
kK=—oc (=—2

. Interaction-frame Hamiltonian has now three frequencies: o, wm, w.

n 2 ©.@) 2 ~n ‘f—B—oq, ——_—

Y _ N (n,k,ﬁ) inwrt Ikwmt iﬁwefft .

Ht)=> > ) Lt e e e

n—=———2k=—o0 {=-2
Floquet Theory

. . 8

4 [ (no—y ko—k,lo—\) %(y,m) >

~ ~ y interaction frame

% — E :%(”o’ko’go - § § SEEE

no ,ko no ko V,K Vw —I_ l{/w —I_ Aw

.1 Triple-mode Floquet theory is required to describe TPPM decoupling properly.

. There are additional and more complex resonance conditions possible.
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TPPM Decoupling in Rotating Solids Q@

all interactions

.1 TPPM decoupling is a sequence that has small residual
couplings that originate from cross term between I-spin
CSA and heteronuclear dipolar-coupling tensors. Cross

7_p[l-ls]
N W R OO N ® ©

terms between the heteronuclear and the homonuclear

dipolar couplings are only important for ¢ = 90° (XiX!). f
0O 10 20 30 40 50 60 70 80 90

g m [} . ¢[°]
. Some resonance conditions reintroduce the no |-spin CSA tensors
heteronuclear dipolar coupling (nowr = wm, Nowr = w-¢,) and

have to be avoided. Others reintroduce the homonuclear

o [us]

N WA~ 00 OO N 00 ©

dipolar couplings of the | spins (nowr = £(wm-w-0c) and are

e\ |

0 10 20 30 40 530 60 70 80 90

beneficial for the decoupling process by increasing the I-
spin spin diffusion process.

no homonuclear dipolar couplings
]

. I-spin spin diffusion is present everywhere but is

emphasized on the homonuclear resonance conditions. 08

10.6

simulations for a CH, system v, = 25 kHz,v, = 100 kHz

Tp [us]

N W R~ O OO N 00 ©

' Numerical simulations with different contributions to the

r 104
I0.2
0
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Hamiltonian support this picture.
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TPPM Versus SPINAL-64 for “slower” MAS

+¢ +o+a +o+3 +o+a

< 0 0ue! B -¢-a

> — p !
= T T |
7 7
© >
(@)
o 8 6.5 6.5
CC» —
) 1 6 6
2 5 B 7
ol n o 5.5 = 55
N - -
(/p] I =
-_,%) Xx M 5 5
- — o —
& - T
o g M 4.5 4.5
I= - oS
— N QA 0 5 10 15 ' 0
< ¢ [°] ¢ [°]
N 1
3 T
O A\ 6.5 1 6.5
- ()
S g o ; s °
= g I 55 55
'Cg = I ER ¢ 2 s
o~ 8‘ - = S
o . N 4.5 04 4.5
+ 4 4
8 -8 o 0.2
o O ‘I\: 3.5 3.5
Il o 3 0 3
1 < 0 5 10 15 20 0

¢[°] o[°]
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TPPM Versus SPINAL-64 for Fast MAS 3
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TPPM Versus SWs-TPPM Qé

y=22kHz, v1 =130 kHz, Bo=10.7 T =22kHz, v1 =130 kHz, Bo=16 T

25
1.0
21 =
EIRE |
1 [
=0 =
T 13
= - ' >
_4 9 91 ' > 0.0
! 5 5h . 4

s i
%40 160 180 200 220 140 160 180 200 220 140 160 180 200 220 140 160 180 200 220
0 (degree) 0 (degree) 0 (degree) 0 (degree)

vr =10 kHz, 1 =115 kHz, Bo=10.7 T vr =60 kHz, 1 =196 kHz, Bo =16 T

e 5 R 5 5
140 160 180 200 220 140 160 180 200 220 140 160 180 200 220 140 160 180 200 220
0 (degree) 0 (degree) 0 (degree) 0 (degree)

V.S. Mithu, S. Pratihar, S. Paul, P.K. Madhu, “Efficiency of heteronuclear dipolar decoupling schemes in solid-state NMR: Investigation of
effective transverse relaxation times”, Journal of Magnetic Resonance. 220 (2012) 8-17.

. SWi-TPPM broadens the area of good decoupling and makes optimization simpler.
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Low-Power Decoupling

. In cw decoupling we have two possible

regimes:

- high-power decoupling with w1 > 3w.
- low-power decoupling with w1 < 0.5w:. u’1/(2")
.1 Decoupling with rf-field amplitudes in between is inefficient.
low-power /em) [kHz]
iah- decouplin W4/\em Z
- Atfast MAS (v > 50 kHz), high 0.8° g 968.5 137 205.5 274 342.5
power decoupling becomes <—HORRO/R condition high-power
difficult o7t 4 (n = wi2) eenfie
' higher-order
. i fractional rotary rfsonance |
1 Can we improve over low-power  °° rotary resonance (r = nwy)
_ > (wy = w/3) : i
cw decoupling? B 0.5 s e
.1 At what spinning frequencies é 0.4 & T |
. — : li
does low-power decoupling 03l e
become comparable/better than - vr = 68.5 kHz
high-power decoupling? | T
0.1] -
J What is the best sequence for :
0O 0.5 1 1.5 2 2|5 (IS 3!5 éll 415 5

low-power decoupling?

Matthias Ernst
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Low-Power Decoupling: Comparison Qé
XiXCcW

]
| Io.9
0.8

| 1107

0.6

05

0.4

0.3

80 100 120 140 160 02  0Ogp 80 100 120 140 160 180 02
7, [ps] 7, [us]

XiXcw TPPM SW+TPPM XiX
-------------------------------------------------------- R (107
"""""""""""""" n ﬂ 94%,

H n |

vr =60 kHz, 1 =12 kHz

30
25|

20

¢ [°]

15/

10/

36 40 44 48 52 56
7, [us]

SW:+-TPPM

44 48 52

36 40
T, [Ms

. TPPM and XiXCW give about the same line width and line height.

Matthias Ernst ETH Zirich

B.H. Meier, Chem. Phys. Lett. 583 (2013) 1-7. https://doi.org/10.1016/j.cplett.2013.07.073.

V. Agarwal, ...,



Low-Power WALTZ-64 Decoupling Cié

.1 Low-power WALTZ decoupling is mostly avoiding resonance conditions!
1 Line intensity (simulation) at 100 kHz MAS as a function of the pulse length 7y,

25 kHz 10 kHz 5kHz vy = 1/(4*1yy)
(@) 4 E !
208
C
© 0.6
£
o 0.4
= % “0° 0 ®
: l l : | | | 1 |
10 15 20 25 30 35 40 45 50
Too (18] 25 kHz

: 10kHz = . There are narrow
Wk T gy S G ey (©) 1 oo, am, coocmi ranges of pulse
2087 2080 °° lengths where we
) n

G 0.6 & 0.6 have no resonance
= = dit
= = 5
£ = . —————

0.2f 0.2f o
0 - : . 0 - 5 '
23 24 25 26 27 8 9 10 11 12
Too (18] Too LHS]
L. Thomas, M. Ernst, Low-power WALTZ decoupling under magic-angle spinning NMR, Magn. Reson. 5 (2024) 153—-166. https://doi.org/10.5194/mr-5-153-2024.



Low-Power WALTZ-64 Decoupling Qé

.1 Low-power WALTZ decoupling is mostly avoiding resonance conditions!
. Line intensity (experiments) at 100 kHz MAS as a function of the pulse length 7y,

25 kHz 10 kHz 5 kHz v, = 1/(4* 19p)

(a) | : n n | | | | |

1r i
208 ' _13
2. CHz.group in 1,2-13C
[Tl glycine ethyl ester
-

S04} .
0.2 .
O u | l | | l | | | | !
5 10 15 20 25 30 35 40 45 50
10 Kkhz Too 1S 25 Xhz There are narrow
(b) | (c) | :

’ W ’ | = ranges of pulse
508] I o8 lengths where we
% o6 | g:; ol hav(ej.r.\o resonance
= = nditions.
=04} =04} conditions

F—————ﬁ
0.2t 02t

0 - ; - 0 ' : -

23 24 25 26 27 8 9 10 11 12

Too [HS] Too [1S]

L. Thomas, M. Ernst, Low-power WALTZ decoupling under magic-angle spinning NMR, Magn. Reson. 5 (2024) 153—-166. https://doi.org/10.5194/mr-5-153-2024.
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Low-Power WALTZ-64 Decoupling </

. B; field and pulse-length dependence
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L. Thomas, M. Ernst, Low-power WALTZ decoupling under magic-angle spinning NMR, Magn. Reson.
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Practical Aspects of Heteronuclear Decoupling

1 At MAS frequencies 40 kHz and below use high-power decoupling with as high @, as
possible.

1 At MAS frequencies 60 kHz and above use low-power decoupling with w; < w,/4.

.1 In between there are no clear rules and the choice might depend on the available rf-field
strength. Experimental comparison of high- and low-power decoupling is important in this
regime.

.1 For high-power decoupling SWi-TPPM and SPINAL-64 seem to be the most stable variants.
At MAS frequency above 30 kHz and high enough rf fields, XiX can be a simple to optimize
alternative.

1 For low-power decoupling, WALTZ-64 with w; = w./10 or w, = w./4 needs almost no
optimization. SWi-TPPM also works quite well with @; < @,./4 and optimizing the pulse
length (roughly a 1t pulse).

.1 For samples with diluted proton density, low-power decoupling might also work for lower
MAS frequencies.

.1 Decoupling of spins with large CSA tensors and large chemical-shift ranges (e.g., 19F) is
often difficult.



Important Building Blocks in MAS NMR Q@

(a) HN.Ca,, correlation: (HN)CANH (8) -

H h fslp TPPM decoupling t, X T3
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A R . (2012) 10756—10759. https://doi.org/10.1002/anie.201203124.
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ot Dipolar Recouplin

S. Penzel, ..., B.H. Meier, J. Biomol. NMR. 63 (2015) 165—-186. p p g

https://doi.org/10.1007/s10858-015-9975-y.
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Important Building Blocks in MAS NMR <//>
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@D, x X X E w'mnp“
1H . SPINAL64 SPINAL64 SPINAL64 4
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DARR - R3 Recoupling

\
. Proton-Driven Spin Diffusion under MAS (PDSD)/DARR
/2
| || CP | decoupling decoupling
/2 /2
[
S CP t1 'm ﬂ M | MVI\VI\VI\V VI\VI\V/\V’\V’g;‘%A VVVVVVVVVVVVVVV
| W |

. The time-dependent Hamiltonian with the exception of the radio-frequency part is the same
during all times of the experiment:

5= S5 AN OTY 43¢, () = Ty (B)+ 5 o (0 + 56, (D4 5., (D)

i (=0
. Effective Hamiltonian during spin-diffusion mixing time: homonuclear zero-quantum

Hamiltonian: 7 ~ o (878, +8,8;)i.



Origin of Time-Dependent Hamiltonians >

\

.1 The spin-system Hamiltonian in the rotating frame is static if the molecule is static.

2
B o (1T (/) AS,
ke, =33 AUT,
B i (=0
u(t)
S,/ \év
laboratory frame interaction frame
| _ interaction-frame
sample rotation = 4 an5f0rmation - -
>
\ 4
n 2 n o 2 n
> - (i)( ) ~(i)< )_ > (k) ~inwt ~ikwt
H(t)=> Y ADBDTH ()= > > #H"e™e
I (=0 Kk=—oo n=—2

.1 Hamiltonians in solid-state NMR have often multiple time dependencies!
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Effective Hamiltonians from Floquet Theory

. We can calculate effective Hamiltonians for Hamiltonians with multiple time dependencies
In a way very similar to AHT.

. Appearance of for more than one frequency:
single frequency: two frequencies:
) [A Set-m e Gptno—vio—r) Gp(vye)
:% _ 4. %”Oko _ 4.
; % ,%;O ; VW, + KW,
nyw, + K,w,, =0
.1 With multiple frequencies we have and non-resonant contributions to the effective

n n

~

Hamiltonian in different orders: o )
%(”o v,Kg—kK) %(Wv)

I\

gg% %(an) _I_%((Oz’())) + ... _|_Z§€(n01ko) _|_Z§€(’;Osko) + ... ”o Ko) — __Z

oo o X VW, + KW,

non-resonant: ny, =k, =0 resonant: now + Kyw,, = —0

.1 At these resonance conditions, certain Fourier coefficients of the time-dependent
interaction-frame Hamiltonian are time independent.
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Example: MAS and CW Irradiation

.1 Heteronuclear coupled I-S two-spin system: L
Continuous-wave (cw) irradiation on one spin under MAS.

I I W, “r 4

S .

.1 Examples for such a situation:

Heteronuclear CW decoupling (non resonant)

Rotary-resonance recoupling (R3) (no wr, £ w1 =0, no = £1, £2)

HORROR recoupling (rno wr, £ ko w1 =0, no = 21, £2, ko = +2)

Higher-order R3 experiments (no wr, £ w1 =0, no = £3, +4)

DARR or MIRROR recoupling (no wr, £ w1 + 20 AQiso =0, no = 3, +4, 0o = +1)

M. Ernst, A. Samoson, B.H. Meier, Decoupling and recoupling using continuous-wave irradiation in magic-angle-spinning solid-
state NMR: A unified description using bimodal Floquet theory, J. Chem. Phys. 123 (2005) 064102. doi:10.1063/1.1944291.
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CW Irradiation in Rotating Solids: S-Spin Detection
w4/(2m) [kHzZ]

0 80 68.5 137 205.5 274 342.5
HORROR condition Glycine
0.7 (r = wif2) | H2N-CH,-COOH
vy = 68.5 kHz
0.6 fractional | 1.3 mm Samoson
rotary resonance higher-order probe
> (W1 = wi/3) rotary resonance
‘»n 0.5 (Cd-l = nwr)
-
9
=04l
()] :
= |8 d lin
= ol rotary resonance ecouping|
' (W = Nwy)
0.2 ¢ ]
0.1¢% -
O | | | | |
2.9 3.5 4 4.5 )
L . w1/(fdr < >w1/(2rr)

.1 13C line intensity under 'H CW decoupling. .
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CW Irradiation in Rotating Solids: I-Spin Detection
w1/(27) [kHz]

162.5

Glycine ethylester
HoN-CH2-COOC2Hs
vy = 65 KHz

1.3 mm Bruker
probe

0 | 325 65 | 975 130 |
higher-order
’ |(-|woF_{FL{UO/IZ{)cond|t|on higher-order ]
1= % HORROR condition
fractional (W1 =3w/2)
0.8 rotary resonance —
> / (Wy = w3)
=0
&
_"§ 0.6+ !
@
= |
0.4L spin lock—
0.2 N N
HOIiRO/I; condition Ntary resonance
2 (Wi = w/2) (W = Nwy) ]
0 I | | | I | ' | :
0 0.5 1

wilw, 15 2

. 'H line intensity under 'H spin lock of 2.5 ms length.
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N

Theoretical Description of CW Irradiation in Rotating Solids %(t)

.J Spin-system Hamiltonian in the rotating frame is time dependent due to magic-angle
spinning (MAS).
2

() = TC,(t)+ ¥ () + T 5 (1) + T, () + T s (1) = Y "™

N—— AS,

interaction-frame transformation:

itl2F. iwFt _inl2F.
y 1 y
— o] ze S/\éy

U(t) =T exp e

t
_If%rf(t1)dt
0

() = 9 ,(8) + 9 (1) + 9 (1) + 9, (1) + H g5 (1) =

laboratory frame interaction frame

Nn

y‘ %(n,k)e/nw te/kw1t

2 k=—2

NE

n

. Interaction-frame transformation with the rf-field introduces a second time-dependence in
the Hamiltonian. There are now two frequencies: wr and w1.

.J Average Hamiltonian theory requires that
- the two frequencies are commensurate, i.e., n wr = kw1 (simultaneous averaging) or

- a separation of time scales, i.e., wr « w1 Or wr » w1 (Sequential averaging).

.1 Floquet theory allows a unified description for all values of wr and ws.
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Fourier Coefficients Under CW Irradiation

~ 2 2 A
[ Fourier coefficients: #(t) = Z Z Jpnk) ginet ik
n=—2k=-2
I w, -

S H0 =S ;wm(l: f )
‘ﬁB

2 ; ol s 1/a = T 7
%( 0 — W(s )Sz - Zwéni [Iézlmz o E(szlmx Iéylmy)]

- 1 A on
V{ 0i1 ___ZWO)I$_§;M‘(S% zlnf
Y ni1 :__Zw(n)l$_%§m:wggszlnf
‘ Gp0:£2) _ 0
nj:2 ngmi A;F

€<m
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Fourier Coefficients Under CW Irradiation

2 z
. Fourier coefficients: (f) = Z Z Jp(nk) ginwt ikt

I - LN
o I‘—'—% H) = LS +;W£m(l I)
‘ﬁB

jero L g | S Wi [igzimz _ %(l},fmx /;yimy)]

W /<m

’ -
V{ > ___ZWO)F—E;LU(S% s

y H" = __Zw(n)ﬁ —%;wé%SZInT

‘ §€(0¢2) _0

niZ ngmi Anf

€<m

2

] Chemical shift of S spin: Z (n) ginst

ETH Zirich




Fourier Coefficients Under CW Irradiation

2 z
. Fourier coefficients: (f) = Z Z Jp(nk) ginwt ikt

I | =~ 5 5
S I‘—'—% PTA —ws +;w€m(l . )
‘ﬁB

jero L g | S Wi [igzimz _ %(l},fmx /;yimy)]

W l<m

’ o
V{ 0i1 ___ZWO)I$_§;UJ(S% ZI,,T

> H™ = __Zw(n)ﬁ —%;wé%SZInT

‘ §€(0¢2) _0

”i2 Zwémi Anj*/F

€<m

[ Chemical shift of | spins: Z/mzz (n) ginit
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Fourier Coefficients Under CW Irradiation

n 2 2~
.1 Fourier coefficients: #(t) = Z Z Jpnk) ginet ik
n=—2k=-2
| fe S .
S %€ ,):wg)SZ Ht wam(l I’”D
\/<m
3 n n " 1 ~n oA A A

‘_??——-w_u %( 0) — wg )Sz — wém[ i mz E(nglmx Iéylmy )D

HO = —— Z wpl = > Z o Seln
V/ n 1) R 1

_ Zw(”)ﬁ — Eng;f,,Szlnf

‘ §€(o ) _ g
»
e 3 w;m/“;iﬂ
6’ /<m | "
n 5 5 A n A n A A 2 .
[ Homonuclear couplings (I-1): %, (t) = ;wé% (lg -Im) + ;(2& | — (nglmx + Igylmy)) Z;wgf},)ve’”“’”
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Fourier Coefficients Under CW Irradiation

n 2 2~
.1 Fourier coefficients: #(t) = Z Z Jpnk) ginet ik
n=—2k=-2
| fe S .
S %€ ,):wg)SZ Ht wam(l I’”D
\/<m
3 n n " 1 ~n oA A A

‘_??——-w_u %( 0) — wg )Sz — wém[ i mz E(nglmx Iéylmy )D

HO = —— Z wall - > Z o Seln
V/ n 1) R 1

= Zw(”)ﬁ —EZWE;;,)?SZ/;

‘} §€(o ) _ g
' 4
2 /] ,\
6’ /<m
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Rotary-Resonance Conditions

1 The resonance condition at the rotary-resonance conditions is wi/wr = 1 or wi/wr = 2.
ol w=—nylky=1 = (ny,k,)=(—1),(=11),(2-2),(-2,2)
wlw=—nylky=2 = (ny,k,)=(2,—1),(—2,1) oo ]

68.5 137 205.5 274 342.5

Nyw, + Kyw, = 0;

0.80

o
M

o
»
T

2 1§ [ 1 rotary-resonance
S ! conditions

<= 04

(O]

=

o
w

o
(V)

0.1¢
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Rotary-Resonance Conditions

. The resonance condition at the rotary-resonance conditions is wi/wr = 1 or wi/wr = 2.

wlw,=—ny 1 ky=1
Nyw, + Kyw, = 0;

. n =1 rotary-resonance condition:

n n n n
~

%(1) _ Z%(no,ko) _ %(1,—1) 4 %(—1,1) + %(2,_2) 4 %(_2,2)

Ny Ko

= ISl + k) - 2SS+ w8,

m

2wl el )

/<m

.1 At the n = 1 rotary-resonance condition, we recouple
the I-spin CSA tensor, the heteronuclear dipolar
coupling and the homonuclear dipolar coupling.

Matthias Ernst ETH Zirich

= (My,k,)=(1—1),(-11),(2-2),(—2,2)
wlw=—nylky=2 = (ny,k,)=(2,—1),(—2,1)

w4/(2m) [kHz]
0.80 68|.5 | 1.?;7 20:5.5 . 2|74 342.5
0.7 1
0.6
> 1 % 1 rotany-
Zoslf b 1 rotary-resonance
S ! conditions
= 04
(O]
|
0.3 ff
0.2
0.1
0 1 1 1
0 0.5 1 1.5 2 25 3 3.5 4 4.5 5
wqlw,
~p(n+1) 1 (N7 1 (n) & T
¥4 =5 wl wenS, 1!
m m
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Rotary-Resonance Conditions

1 The resonance condition at the rotary-resonance conditions is wi/wr = 1 or wi/wr = 2.
ol w=—nylky=1 = (ny,k,)=(—1),(=11),(2-2),(-2,2)

Nyw, + Kyw, = 0;
wlw == 1ky=2 = (ny,k,)=(2,-1),(-2,1)

w4/(2m) [kHz]

0.80 68|.5 | 111%7 . 20|5.5 . 2|74 | 342.5
.1 n = 2 rotary-resonance condition: y
S So(nks) _ Gp(2-1) | Gp(—21) os - 12 4
i = Z% =t +dt 2 1§ [ 1 rotary-resonance
Mo Ko 5 : P 1  conditions
__1z(w<z>l“+ +w(2)i)—lz<w(2)§ P 08 f‘)é oelf 11
_ 2 m 'm m 'm 2 Sm~z"m Sm zm_o_s
m m o
0.1¢
. %05 1 15 2 25 3 35 4 45 5
. At the n = 2 rotary-resonance condition, we recouple wiker
the I-spin CSA tensor, the heteronuclear dipolar 2 1 A A
%(nﬂ):__ w(n)l$__ w(n)S |T
coupling but not the homonuclear dipolar coupling. - T B
. At the rotary-resonance conditions the S-spin line is §@<ni2> _ 3 (n 5]
‘<m

broadened because the heteronuclear coupling is
reintroduced.
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HORROR Condition

. The resonance condition at the HORROR conditions is wi/wr = 1/2.
Now, + Kow; =01 w/w,=—ny 1k, =12 = (ny,k,)=(1-2),(-12)

w4/(2m) [kHz]

0 80 68 5 137 205.5 274 342.5
. \HORROR
' §% condition

line intensity
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HORROR Condition

. The resonance condition at the HORROR conditions is wi/wr = 1/2.
Now, + Kow; =01 w/w,=—ny 1k, =12 = (ny,k,)=(1-2),(-12)

w4/(2m) [kHz]
0.80 . 68|.5 | 1.?;7 . 20|5.5 . 2|74 | 342.5
.1 HORROR condition: | §<~——HORROR
' condition
H' — Zﬁ(g(no,ko) _Gplh-2) | Gp(-12) | Gp(2-2) | Gp(-22) oo
No Ko ’Zg: 0.5
3 (1) J+]+ (-7 < o4
:Zz<wﬁ,mlﬂ Im +w€,m IE Im) go_s
<m
0.2 §
[J At the HORROR condition, we recouple only the "
homonuclear dipolar coupling. 0

.1 Reintroducing the homonuclear coupling leads to

2 1 A 1 A oa
. . . (n£1) (n) (n)
faster spin diffusion. HE T ==5 ) wn [y — > WemS
m m
[ This leads to “self decoupling” and narrower lines in Sen2) _ S (m]f+f+
l<m

the S-spin spectrum.

. The Floquet formalism is for all three resonance
conditions the same.
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HORROR and DREAM Recoupling: wr = 2 w1

/2 7 o

|] CP decoupling - l ;_r |

1 80

o N R o :12000
S hﬁ om0z MA | ﬂ Lo

I l o

T t T t L1200
P 1 m 2 200 160 120 80 40 0

o [ppm]

[ppm]

.1 DREAM (adiabatic version of HORROR) can be used for two-dimensional correlation
spectra with DQ polarization transfer.

. DREAM has the advantage that the match condition is much broader and easier to
iImplement in a broadband (large chemical-shift range) fashion.

.1 DREAM polarization transfer is very efficient at fast MAS where the rf-field amplitude is high
enough to cover (part of) the interesting spectral range.

.1 At intermediate MAS frequencies the polarization transfer becomes strongly dependent on
the chemical shifts of the spin pairs.



DREAM DQ Filtering >

. Using different sweep profiles, DREAM can also be
used as an efficient DQ filter to select 13C 'H || CP | CW decoupling TPPM decoupling

\

nNIa

neighboring spins.
. In a mixture of 1-13C alanine, nat. abundance e m
methionine and iso-leucine, the efficiency is about

b + + -
T t2

61% and the suppression of natural abundance
' q odd scans I\
peaks very good.

z d z
$‘ d,‘ | H
""SSZ - ‘4_832

w"—/\‘v‘/\JJ even scans

70 60 50 40 30 20 10 0 L
even minus odd scans 2 X
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Radio-Frequency-Driven Recoupling (RFDR)

\
/2
CP decoupling

71:/2_ TC : TC /2

< 1|1 b1
— T T Jn

- | |

- - - e

. RFDR is a homonuclear recoupling sequence where one 1 pulse per rotor cycle prevents
the averaging of the homonuclear dipolar coupling.

.1 An xy-4 phase cycle compensates the effects of finite pulses.
1 RFDR is simple to implement and quite robust method.

. It has seen renewed interest in recoupling protons under fast MAS.

A.E. Bennett, ... R.G. Griffin, Homonuclear radio frequency-driven recoupling in rotating solids, J. Chem. Phys. 108 (1998) 9463—-9479.
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Radio-Frequency-Driven recoupling (RFDR)

1 In RFDR, recoupling is achieved by addinga ™2

180° pulse during each rotor period. ] CP decoupling

. We can transform the ZQ part of the
Hamiltonian into a toggling frame with the rf

pulses (instantaneous rotations):

_l_AwisoSzA — Wy (t) uSXA O<t< ’Tr/z o - 3 > T ont, > 5 >
¥ = - —AwiSOSAZA—wm(Z‘)éXA T./2<t<3T1,/2
—|—Awisoéf — Wy (l‘)é’xA 37, /2 <t<2T, o

. Transforming into an interaction frame with the
chemical-shift part of the Hamiltonian leads to
an effective Hamiltonian of the form:

5 weff <65Awiso/wr> (
2

F) —

0‘)eﬁ:(B’ A('Ois,o/('or)/BD
S
o
(6} o

S+, + 8 é;)

|
o
—

1 The recoupling depends strongly on the
chemical-shift difference. 0151
.1 RFDR is very stable and robust. -02,
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13C RFDR, 40 kHz MAS, DNP Conditions
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S. Bahri, ...,

R.G. Giriffin, Proc. Natl. Acad. Sci. 119 (2022) e2114413119.
https://doi.org/10.1073/pnas.2114413119.

'H RFDR, 3 kHz MAS, Micelle Sample
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A. Ramamoorthy, J. Xu, J. Phys. Chem. B 117 (2013) 6693—-6700.
https://doi.org/10.1021/jp4034003.




Examples of RFDR Spectra

TH RFDR, 100 kHz MAS, GB1, Structural Restraints from 'H-'H Contacts

B
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L.B. Andreas, ..., G. Pintacuda, Structure of fully protonated proteins by proton-detected magic-angle spinning NMR, Proc. Natl. Acad. Sci. USA 113 (2016) 9187—
9192. https://doi.org/10.1073/pnas.1602248113.
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Rotational-Echo Double Resonance (REDOR)

90° (m), (m), (), (), (), (m), (m),
T
o B LE AT Al
T?Z T/2 /2
T
/I I t1
13
C ‘ CP \\ /Z] \\ //n M/\/\[\U{\Uﬂvﬂv/\v/\vl\vl\vf\vl\vr\vA AAAA
B nt 8 T A T A nt, i \}UUW

.1 REDOR (Rotational-Echo Double Resonance) is a periodic w-pulse sequence with two Tt
pulses per rotor cycle.

. It recouples the heteronuclear dipolar coupling and leads to a dephasing of the
magnetization under this coupling.

. Chemical shifts are refocused by the central 1t pulse.

.1 REDOR is typically measured with a reference experiment where all the pulses on one of
the two spins are omitted.

. There are variants with shifted pulses to scale the dipolar coupling for measuring large

couplings since sampling is only possible at multiples of 2z..

T. Gullion, J. Schaefer, Rotational-Echo Double-Resonance NMR, J. Magn. Reson. 81 (1989) 196—-200.
T. Gullion, J. Schaefer, Detection of weak heteronuclear dipolar coupling by rotational-echo double-resonance NMR, Adv. Magn. Reson. 13 (1989) 57-83.

Matthias Ernst ETH Ztirich 139



Rotational-Echo Double Resonance (REDOR)

. REDOR is a heteronuclear dipolar '
recoupling sequence that uses two N e S G N S
rotor-synchronized 180° pulses to . . . .
prevent averaging of the dipolar L o o o o .
_ 2 e e e e
coupling. 2o
0.6_ ..................................................................................................................................
. REDOR is a robust sequence in isolated
two-spin systems and can be used to S N S SO SO U S
measure relatively precise distances. . . . .
. The theoretical description uses again a 0.2 """"""""""""" 1
toggling frame but here the 180° pulses
O | | | |
changes the sign of the dipolar coupling. 0 2 )0 8 10

(2nt)/(8p°'nt,)
.1 This prevents the averaging of the n = 1 Fourier component of the dipolar coupling leading
to a dephasing under the Hamiltonian: 5¢ — we (5,7)21,8,

.1 The REDOR curve is universal since it scales with the anisotropy of the coupling.
. The Ising-type effective Hamiltonian distinguishes REDOR from most other recoupling
sequences that have either a DQ or ZQ Hamiltonian.



REDOR Examples

Distance Measurements: Domain Architecture of the
SARS-CoV-2 Envelope Protein

10.3 ms, S, °

/ 23
W ‘9

(C)  cu-FRrEDOR

A I
( ) NTD] ™ E— ?TD 50 % =
20

o@&%‘

()

‘@ﬁ

10 20 30 TTteeeee
EET GTLIVNSVLL FLAFVVFLLV TLAILTALR

13C (ppm)
[«2]
o
e X \
I

70
(B) 180 170 70 60 50 40 10
Broadband 13¢ (ppm)
C-F REDOR (D) Broadband Cu selective
1.0
> 0.8
06+
Fooraans S18/21/2831 LV
A22
L18/28/31 \vlgggéza‘\ 94
\S x 4 m\\ , —
T T T T T T T 0.0 0.0 +~rvr—r—r=—
0 4 8 12 0 4 8 12
70 60 50 40 30 20 10 Mixing Time (ms) Mixing Time (ms)
13C (ppm)
(E) (F) (G) ‘ N-terminus

O. Toke, Int. J. Mol. Sci. 24 (2023) 13637. https://doi.org/10.3390/ijms241713637.

V.S. Mandala, ..., M. Hong, Nat. Struct. Mol. Biol. 27 (2020) 1202—1208. https://
doi.org/10.1038/s41594-020-00536-8.
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Dynamics Characterization in Ubiquitin
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P. Schanda, ..., M. Ernst, . Am. Chem. Soc. 132 (2010) 15957—

15967. https://doi.org/10.1021/ja100726a.
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Transferred Rotational-Echo Double Resonance (TEDOR) <%

/2

decoupling

H

e el
| .I.”.I.”.l . |

0 1 2 3 4 5 6 /

_

t/T,

. Including REDOR recoupling in an refocused INEPT-type pulse scheme allows us to use it
for polarization transfer.

. The polarization transfer is less efficient than CP (56% vs 73% maximum efficiency) but it
can sometimes be more robust and easier to set up.
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Dipolar Truncation <

.1 Most first-order dipolar recoupling sequences generate either a DQ (HORROR, DREAM,
C7,...) or ZQ (RFDR, Rz?, ...) effective Hamiltonian of the form:

a =0l (S8 +85787) D = o' P (S]Sy + S7SY)
- Such recoupling "N e 1
0.8 <S4,>(1) 15 A ® 0.8
sequences show 06l - _ 06l
dipolar truncation, 3‘2‘ ‘ 3‘2‘
.e., large dipolar ¥ ol X
couplings truncate ¥ °*| | <S>l
smaller dipolar 0.6} 5,50 ] 0.6} <Sazl)
couplings and we o b
observe only 0 2 4Tm [ms]6 8 10 0 2 4Tm [ms]6 8 10
transfer acrossthe ‘N~ g N ——=
. ©r 5 A o | O\ <Si>(1) 15A 0 A T
large coupling. o1 | 6, 1SAf15A os| | 304
J REDOR is the ool ool
. . N | <S3>(!)
exception with an 7 M/V\/\/—\—» A0
_ V -02} - V -02}
Ismg-type 0.4+ <Sg>(t) <Sy,>(1) . 0.4
Hamiltonian 0.6+ - 06T
(1) (12) -0.8 - -0.8
% — a) 2Sle2z N N T o 2 4 6 8 10
Tm [MS] T [MS]
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Second-Order Recoupling Sequences

.1 Second-order recoupling sequences are important
because they are less susceptible to dipolar
truncation than first-order recoupling sequences.

. While first-order recoupling sequences dlrectly lead ..

to time-independent Fourier coefficients J!"")
the second-order sequences lead to second-order
contributions:

I\

”oko :__E

.1 The most widely used sequence is proton-driven

n n
~

%(no—y,ko—m) %(Vﬁ)

VW, + KW,

spin diffusion where the incompletely averaged
dipolar coupling by MAS is used for the
polarization transfer.

1

0.6}

04}
A 027
Yoo

0]
V -02F

0.4}
06}
08}

-1

<S¢z~

1

4 6
T [MS]

06}
04}
A, 02}

06}
-0.8}
-1

V.-02f -
04} <S5,>(1) <S,,>(t) .

<Si>

0

4 6
T [ms]

8 10

081
0.61
04r
021

02}t
-0.4+
-0.6
-0.8+

0.8}
0.6
04}
02}

-0.2}
-0.4
-0.6 -
08}

<S2z>(t) 1

< 1z>(t)

4 6
Ty [MS]

15A 3.0A

4 6
T [MS]

/2
| |7 CP dec. RPSTIE decoupling
(cw irradiation)
/2 /2
CP ty H T |7 %
S ﬁ " MMAMMMMAA AAAAAAAAAAAA
T

. Second-order recoupling sequences use three-spin terms that are the result of the

commutator. This leads to an averaging of large and small couplings leading to smaller

differences in the effective Hamiltonian.
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Proton-Driven Spin Diffusion

.1 The second-order effective Hamiltonian contains
cross terms between two homonuclear couplings
and between homo- and heteronuclear couplings.

[ Both promote spin diffusion on the S spins.

.1 The magnitude of the effective couplings scales by
1/(,(}r.

. Small chemical-shift differences can lead to a
truncation of the coupling term.

.1 The chemical-shift differences on the S spins can

be compensated by the densely coupled I|-spin
network.

. In other words: If the proton SQ lines overlap, the
spin-diffusion process is possible.

.1 One can improve the overlap by irradiating the
protons at the n =1 RS3 condition.

Matthias Ernst ETH Zirich
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[ Proton-driven spin diffusion is one of the methods
to obtain long-range correlations in proteins.

. Such methods can be used to generate distance

restraints in order to calculate structures in solids S

by NMR.

/2
S R li
I |7 CP dec (cw irradiation) decoupling
/2 /2
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T. Manolikas, T. Herrmann, B.H. Meier, ..., J. Am. Chem. Soc. 130 (2008) 3959-3966.
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Practical Aspects of (Dipolar) Recoupling

. There are many more sequences than | have discussed here.
. Use a robust, easy to implement, low-power, and well-characterized sequence.

. First-order recoupling sequences generate polarization transfer that is independent of the
spinning frequency but show dipolar truncation.

. For distance measurements, REDOR is the best sequence available.

.1 For a large number of distance restraints in (bio-)molecules, use second-order sequences
like PDSD, DARR, PAR, ...



Important Building Blocks in MAS NMR Qé
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; . J-Coupling Based Transfer

S. Penzel, ..., B.H. Meier, J. Biomol. NMR. 63 (2015) 165—-186.
https://doi.org/10.1007/s10858-015-9975-y.
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J-Coupling Based Experiments in Liquids

weak coupling: % )= 27TJ12i12i22

[ Hamiltonian allows dephasing of
magnetization.

.1 Polarization transfer achieved by pulses.

(m2), (W (W2 ()

X (7T/2)

—

~
~
x

y

|I I i decoupling

s I ] \A/\/\/\/\/\

1=1/(2J,g) 1=1/(2J;s) \/

Preparation Evolution ! Mixing : Detection
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strong coupling: ¢ , = 2rJ,,/, -1,
1 Hamiltonian allows polarization transfer.

. Suppression of chemical shift is required.

/2 /2 /2

] ! I T | H Mﬂﬂhl\n/\m\% AAAAAAAA

Multiple Pulse Sequences:
- WALTZ

- MLEV

- DIPSI

- FLOPSY



J-Coupling Based Experiments in Solids: INEPT

weak coupling: % , = 2rJ,,/. I,.

. J-coupling experiments in solids require that dipolar couplings are partially averaged.
. This can be achieved by:

- fast MAS: for fully protonated samples at least 100 kHz.

- partial deuteration of the sample plus fast MAS of about 40 kHz.

- homonuclear decoupling and MAS.

- fast dynamics in the molecule.

. If the dephasing time of the magnetization under a spin-echo sequence (T2’) is slower
than 1/2J, pulsed polarization transfer is possible.

. Under such conditions, all INEPT-based Ideal Liquids Real Solids
experiments can be implemented. . _w.__'\:‘ - / ,’I \\\ o, 7 \‘_:\:‘ 05 [N\ C
1 Itis of advantage to use experiments £ %/ /0 %
: . . Ny - a4l 7
that implement in-phase detection due **| % /o al| %] N NG
. . . = / 2\ A _=
to cancellation of the multiplet lines. = o bl O — o -::t.;.;::.fi- ------ i
2 : ' CH N
J INEPT vs. CP can be used to S .lcH: s CH;
) ) ) ) \ i '
characterize dynamic vs. static parts CHo\: i/
of the molecule. 08 N o8
1 3 5 7 9 i 3 5 7 9
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J-Coupling Based Experiments in Solids: TOBSY

- -
n n n
L]
1

strong coupling: 7 , =2xJ,,/, -1,
. To implement TOCSY-like experiments, all interactions except the homonucler J coupling
have to be suppressed.

. This can be achieved by symmetry-based C9 sequences.
/2

a) Dipolar Coupling Tensor b) Isotropic J Coupling
I CP decoupling f='12
v=
TE/2 m=2 %
. Nt m=1
< H=+1
.: .:I n=3 u=+2
Tep t4 Tw=NT ] I =0 1=0 ‘
________ | |
£ . 3 c) CSA Tensor d) Isotropic Chemical Shift
! r — ! 1
I : : : : : : u=-1
m=+2 VV=1
©=0 | 2n/9 | 4n/9 | 6n/9 | 8n/9 |10/9|12r/9 |147w/9 |167/9
_ 1n N=9

m=+1 N=9

pu=-+1
p=-1
¢ Q+m ¢ n=3 =0 =1
90° 360°  270° | st |
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Adiabatic TOBSY Experiment

%
\

. One can also use adiabatic pulses to implement the rotations in the TOBSY sequence.

. this leads to a higher bandwidth and to a higher efficiency of the sequence.

. TOBSY sequences can be used to record correlation spectra that show through bond

connectivities.

. TOBSY spectra are not as strongly affected by dynamics in the molecule that can average

out dipolar couplings.

/2
I=

decoupling

/2

/2

2n/9

6n/9

8n/9 |10n/9

12n/9

147/9

amplitude

o, (t)coso)
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T2 0 T2 T, 8Ty2

Matthias Ernst

T2 0 T2 T, 8T,

polarization
o
N

transferred polarization

© oo oo
g O N 0 ©

o o o
- N

]

1
o C9,, adiabatic pulses {
°
o °
°©°%0, .o
o °

o
’
C9q

o Post element

o
®o °.“".2o°o°'. <

o
T

o
(o)

© © o o o ©

N W~ o0 oo N
—
[ ]

o
Y

o

1
Post element C9¢ ©

[
o

55 60 65 70 75 80 85
rms amplitude / kHz

ETH Zirich

81/ ppm

/. //
[ AB' —// T ¥ g
e V,Yl P'YOC ABOC & W@ o
20 ° ° °lle |V & o
P’YI ) (<} ©
%o @
05 VBo: ®|Pys PyBLL@ g
50 LPB'[Ee] VB' PB P|36 © e 06 o
e| e o o
35 ] o fo) ] f (]
o ® = [+] FBO(, ©
- Fp [FBy
o e s ®
9 Dooo @0 [=4] o
50 |-[O] Psa. e )
® o
55 L Vo (] o o o
Folp 2 épég@ o %o o
©
60 o°
= Pal P
\\ \t
125 | 5 i
130 @ @
)
135
© D
SN S
170 | o 0o —
ocoo ° [<]
175 1 1 1 1 1 /// 1 1 I@ 1 1 1 1 1 1 1
175 170 135 130 125 60 55 50 45 40 35 30 25 20 15
&> / ppm

152



Practical Aspects of J-Coupling Transfer >

.1 J coupling sequences are mostly used to get signal from highly dynamic areas of molecules
where the dipolar coupling is averaged out.

.1 Heteronuclear J coupling polarization transfer is an efficient alternative to CP at the highest
MAS frequencies (> 100 kHz) or in samples with diluted proton networks (deuterated
samples).

.1 Carefully optimize the length of the dephasing delays for optimum signal-to-noise ratio
under short T2’ relaxation times.



Conclusions
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: %
Conclusions

\

. Divide pulse sequences into their basic building blocks for better understanding how they
work.

.1 Each building block represents a different effective Hamiltonian that tells you what it does.

. If you want to implement efficient and good experiments, it is important to understand how
pulse sequence building blocks work.

. Choose the best (high efficiency, easy to implement, low rf-field requirement, ...) building
blocks available.

. The theory of solid-state NMR is complex.

. Know about experimental imperfections: phase transients, rf-field innomogeneity, MAS
modulations of rf-field inhomogeneity, amplifier droop, ...

.1 There is much more to solid-state NMR that | have not discussed or only mentioned in
passing:
- homonuclear dipolar decoupling

quadrupolar nuclei are an even bigger challenge

characterization of dynamics

sample preparation can have a big influence on the quality of spectra
- DNP

. Remember that sensitivity is the most important issue in NMR.
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