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1
Introduction

‘Multiphase flows’ where particles of a different phase are dispersed in a fluid

medium are observed in many human-made and natural processes. A few

common examples are (1) ‘Aeloen’ process, or the transport of dust, sand,

etc., by the wind [1]. An example of such a process that occurs in the Sa-

haran desert is shown in Fig. 1.1 [2]. (2) Bubble column reactors (Fig. 1.2),

used in industrial processes to carry out controlled gas-liquid reactions [3].

In other applications, the bubbles are also used to mix the fluid in a cost-

efficient way compared to mechanical stirring. (3) An extraordinary example

of bubbly flows is observed during hunting by the humpback whales. This

hunting process is depicted in the fourth episode of the “Netflix” series “Our

Planet” by Sir David Attenborough [4] 1.

The multiphase flows are diverse and depending on the thermodynamic

state (solid, liquid or gas) of the phases, it can be broadly classified into the

following categories [5]:

1. Gas-solid flows (dust in storms),

2. Gas-liquid flows (rains drops in atmosphere, boiling),

1To quote Sir Attenborough from the episode, “These whales have a remarkable way of

collecting the bounty. They work as a team; the lead whale dive first and blows a curtain

of bubbles to concentrate the fish. A [whale] call synchronizes the attack. By coordinating

this way, each whale can eat up to a ton of fish a day.”

1



Chapter 1 Section 1.0

3. Liquid-liquid flows (oil-water mixture),

4. Liquid-solid flows (mudflows),

5. Gas-liquid-solid flows (fluidized bed).

Further division based on the geometric property of the dispersed phase, its

size distribution, concentration, etc., are also possible. These classifications

are board and does not imply that each category can be studied separately [5].

For instance, the mist, a mixture of tiny droplets in the air which falls under

gas-liquid category, shares many similar features with pollutants dispersed

in the atmosphere – a gas-solid mixture.

Figure 1.1: Satellite image of the Saharan dust plumes carried by tradewinds.

Image by National Oceanic and Atmospheric Administration [2].

A common feature, that can be observed in all the discussed examples of

multiphase flows is that the background flow is, almost always, turbulent.

Turbulence is characterized by the presence of the flow structures of all

scales [6, 7]. The presence of a dispersed phase is known to alter the sta-

tistical properties of turbulence dramatically. For instance, as noted above,

the swarm of bubbles rising in a turbulent flow enhances mixing [8–10].

2



Section 1.1 Chapter 1

Figure 1.2: A schematic diagram of the bubble column reactor. The gas

bubbles are pumped through sparger at the bottom of the tube to carry out

gas-fluid reactions. Image taken fromWikipedia [11, 12].

In this thesis, we use direct numerical simulations to study: (i) Particle-

laden turbulent flow where the particle size is minuscule compared to the

smallest eddy. (ii) Statistical properties of buoyancy-driven bubbly flows,

where the size of bubbles are comparable to a typical eddy.

The rest of this chapter is organized as follows: We begin by briefly in-

troducing the single phase turbulence in Sec. 1.1. In Sec. 1.2, we will discuss

the specific multiphase flows of our interest and review the important results

from the earlier studies. In the last Sec. 1.3, we give a brief outline of all the

chapters in this thesis.

1.1 Turbulence

The Navier-Stokes equations [7, 13, 14] which describes the motion of fluids

are,

𝜕tu + u ⋅ ∇u = −∇p + ν∇2u + f, (1.1)

∇ ⋅ u = 0, (1.2)

where u is the velocity field, p is the pressure, ν is the kinematic viscosity, f is

the external force, and 1.2 gives the incompressibility condition. We assume

3



Chapter 1 Section 1.1

that the density ρ = 1 in Eq. 1.1. The Navier-Stokes equations are symmetric

under following transformations [7, 14].

• Space and time translations; u(x, t) → u(x + r, t) and u(x, t) → u(x, t + T)

• Gallilean transformation; u(x, t) → u(x + Ut, t) + U

• Parity; u(x, t) → −u(−x, t)

• Rotation; u(x, t) → Au(Ax, t) A ∈ SO(n) (SO(n) are the rotational group.)

• Scaling; u(x, t) → γhu(γx, γ1−ht), where γ is any positive real number and

h is any real number.

In the inviscid unforced limit, 1.1 gives,

1
2

𝜕t⟨u2⟩ = 0,
1
2

𝜕t⟨u ⋅ 𝝎⟩ = 0,

where E = 1
2 ⟨ρu2⟩, the total kinetic energy, and H = 1

2⟨u ⋅ 𝝎⟩, the total helicity
are the constants of motion. Here 𝝎 = ∇ ×u is the vorticity and ⟨⋅⟩ represents
averaging over space and time. At finite non-zero viscosity the energy gets

dissipated at a rate ϵν = ν⟨|∇u|2⟩.
The fluidmotion as described by 1.1 and 1.2 can have different flow regimes;

laminar and turbulent. This was first demonstrated by Reynolds [15] in an ex-

periment of water flowing through a cylindrical pipe. Reynolds [15] observed

that upon increasing the ‘Reynolds number’,

Re =
uadpipe

ν
, (1.3)

a laminar flow become turbulent. In 1.3, dpipe is the diameter of pipe, and ua

is velocity of the flow at inlet.

In fluid mechanics photographs or images are often used to describe dif-

ferent flow regimes. The best snapshots of the fluid flows can be found in

‘An Album of Fluid Motion’ by Dyke [16], and Refs. [17, 18]. Here, we shall

use the images taken from Refs. [18, 19] to describe the laminar and turbulent

flows. We show the snapshot of the flow, obtained using coloring dye, be-

hind bluff bodies in Fig. 1.3. These dye follow the streaklines, which indicates

the direction of flow [19].

4



Section 1.1 Chapter 1

Figure 1.3: The turbulent flow behind a cylinder and a spherical body. The

red arrows indicates the direction of flow. Image taken from Ref. [12, 18–20].

Let us first consider the flow behind a cylinder at Re = 485 as shown in

Fig. 1.3 (top). We choose a coordinate system where, the origin coincides

with the center of the cylinder. As we move towards x < 0 (or region towards

the left of the cylinder), the streklines are expected to be parallel indicating

a laminar flow. In this region all the symmetries of Navier-Stokes equations

will be satisfied. Now consider the flow at x > 0 (towards the right). Here

we observe Von-Karman vortices initially which transition into random and

chaotic motion. This random or chaotic fluid motion is also known as turbu-

lence. One can easily distinguish the top (y > 0) from the bottom (y < 0); thus,

the top-bottom symmetry no longer exists. We can also see large swirling

5



Chapter 1 Section 1.1

motions or eddies along the edge of the wake but, as we move towards y = 0,

line one can observe the eddies of smaller sizes as well. A similar observation

can be made for the flow behind sphere in Fig. 1.3 (bottom).

Based on these observations, turbulence can be defined as a random and

chaotic fluid motion where individual flow realizations are statistically simi-

lar [14, 21]. Thus, this field is often studied using a statistical description with

the assumptions of homogeneity and isotropy [21–24]. These assumptions

implies that the statistical properties of a turbulent flow are invariant under

translation and rotation. As a consequence of homogeneity and isotropy all

the moments of longitudinal velocity increment,

δu||(ℓ) ≡ [u(x + ℓêℓ) − u(x)] ⋅ êℓ, (1.4)

is a function of ℓ only. In 1.4, x and x + ℓêℓ are the position vectors. The

moments of δu||(ℓ) are known as the structure functions, Sp(ℓ) = ⟨[δu||(ℓ)]p⟩.

1.1.1 Kolmogorov’s theory of turbulence

In a series of papers [25–27], Kolmogorov put forward two similarity hy-

potheses that has been the basis for understanding turbulent flow properties.

Here we list both the hypothesis and discuss their consequences.

Kolmogorov’s first similarity hypothesis states that “the statistical prop-

erty of small scale turbulent structure is universal and determined uniquely

by ν and ϵν.” The first postulate allows us to construct the following scales of

the turbulent motion, solely from ν and ϵν [7]:

Kolmogorov length scale η = (
ν3

ϵν )
1/4

, (1.5)

Kolmogorov time scale τη = (
ν
ϵν)

1/2
, and (1.6)

velocity scale uη = (νϵν)
1/4 . (1.7)

The Kolmogorov [25] second similarity hypothesis states that; “In every tur-

bulent flow at sufficiently high Reynolds number, the statistics of themotions

6
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of scale ℓ in the range ℓ0 ≫ ℓ ≫ η have a universal form that is uniquely de-

termined by ϵν and is independent of ν.” Here, ℓ0 is the large integral length

scale or the forcing scale.

The range ℓ0 ≫ ℓ ≫ η is also known as the ‘inertial range’. Since the

statistical properties of the turbulence in the inertial range depends only on

ϵν, a simple dimensional analysis gives,

S2(ℓ) ∼ ϵ2/3
ν ℓ2/3. (1.8)

The same scaling in S2 is observed in the experiments and numerical studies

on homogeneous and isotropic turbulence [7, 28].

Here, it is worth noting the Richardson cascade [29] picture that describes

Kolmogorov’s hypothesis. It states that the energy injected at scale ℓ0 gets

transferred to dissipative scale η via a self-similar breakdown of eddies. The

schematic of the Richardson cascade, depicting the different scales of tur-

bulent motion, is shown below in Fig. 1.4.

η

Dissipation

scale

ℓ ℓ0

Injection

scale

Transfer

Figure 1.4: The different length scales of turbulent flow. In the inertial range,

the energy is transfered to small scales by the breakdown of eddies (shown

as spirals). The process continues till the size of each eddy is comparable to

η, where the energy gets dissipated.

Although the 1.8 is derived using the dimensional arguments, Kolmogorov

from his second similarity hypothesis and using Karman and Howarth [30]

equation was able to derive an exact relation for the third order structure

7



Chapter 1 Section 1.1

function,

S3(ℓ) = 4
5
ϵνℓ. (1.9)

1.1.2 Multifractal model

Kolmogorov theory assumes that a turbulent flow is self similarwhich implies

that the structure function of order n scales according to,

Sn(ℓ) ∼ ℓζn , (1.10)

where the exponent ζn satisfies,

ζn = nh, and, h = 1/3. (1.11)

Later studies [31–34] have found that this relation does not hold (except for

n = 3) and has large deviations specially at large n. In Fig. 1.5, we show a rep-

resentative snapshot of |𝝎| and the exponent ζn versus n upto n ≤ 6. Clearly

ζn ≠ n/3 and the Kolmogorov theory needs modifications.

The simple assumption of self-similarity breaks because turbulent flow is

‘intermittent’ andmultifractal [14, 35, 36]. This leads to corrections in the scal-

ing exponents of the structure functions. Using a multifractal model Parisi

and Frisch [37] showed that,

ζn = inf
n

[nh + 3 − D(h)], (1.12)

where D(h) is the fractal dimension.

8



Section 1.1 Chapter 1

(a)

(b)

Figure 1.5: (a) Representative pseudo-color plot of the vorticity |𝝎| and (b) the
plot of ζn vs. n obtained from the numerical simulation of turbulence in 10243

grids ( JHU turbulence database [38]). In (a) the bright color represents region

of intense vorticity. In (b) the black continuous line shows the Kolmogorov

relation and the black dashed line shows the She and Leveque [34] relation

for ζn.

9



Chapter 1 Section 1.1

1.1.3 Energy spectra and transfer functions in the spectral

space

The study of turbulent flow in the Fourier instead of physical space has seen

much success [7, 14]. Here we shall introduce some of the key concepts

which are extensively used in this thesis. We first define the Fourier am-

plitudes of the velocity field,

uk = ∫exp(ιk ⋅ x)u(x)dx. (1.13)

The kinetic energy spectrum [E(k)] is defined using the velocity field in the
Fourier space,

E(k) = 1
2 ∫dk|uk|2δ(|k| − k). (1.14)

In spectral-spaceKolmogorov’s second similarity hypothesis implies that the

kinetic energy spectra,

E(k) ∼ ϵ2/3
ν k−5/3, (1.15)

in the inertial range. The above 1.15 gives the distribution of the turbulent

kinetic energy among the eddies of size ℓ = 2π/k. In Fig. 1.6(a) we show a

representative kinetic energy spectrum for homogeneous and isotropic tur-

bulent flow and mark the 5/3 scaling range. The scaling in energy spectra

can be understood using the energy transfer relation. Using 1.1, we write the

Navier-Stokes equation for the Fourier amplitude uk,

𝜕tuk + [u ⋅ ∇u]k = −ιkpk − νk2uk + fk. (1.16)

Taking a scalar product of Eq. 1.16 with uk and using the incompressibility

condition we obtain the energy transfer relation as,

T(k) = −D(k) + 𝔉(k), (1.17)

where,

T(k) = ∫dkδ(|k| − k) uk ⋅ [u ⋅ ∇u]−k , (1.18)

is the nonlinear transfer at scale k,

D(k) = νk2E(k), (1.19)

10
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is the energy dissipation rate at scale k, and

𝔉(k) = ∫dkδ(|k| − k) uk ⋅ f−k. (1.20)

is the contribution at k from the external forces. Since the energy injected

at large scales is dissipation only at small scales, 1.17 suggests that in the in-

ertial range the nonlinear flux Π(k) = ∫k
0 dqT(q) is constant. This is verified in

Fig. 1.6(b), where we show a representative plot of Πk.

100 101 102

k

10−7

10−5

10−3

10−1

E
(k

)

k−5/3

(a)

100 101 102

k

10−2

10−1

Π
(k

)

(b)

Figure 1.6: Log-log plot of the (a) kinetic energy spectrum (b) nonlinear

flux Π(k) obtained from the direct numerical simulation of homogeneous and

isotropic turbulence on 10243 grids ( JHU turbulence database [38]). In the in-

ertial range, the E(k) ∼ k−5/3 and Π(k) is constant.

1.1.4 Two-dimensional turbulence

Two-dimensional turbulence is used to model many natural systems such as

atmospheric and oceanic flows. In laboratories two-dimensional turbulence

can be realized in soap films [39, 40] or stratified layers [41, 42].

In the inviscid limit along with the total kinetic energy, the total enstro-

phy, Ω = 1
2 ⟨|ω|2⟩ is also a constant of motion [43–45]. Consequently, one

observes an inverse energy cascade from the forcing scale kf = 2π/ℓ0 to larger

scale and the forward enstrophy cascade from kf to smaller scales. Simple di-

mensional arguments, gives the following scaling relation for kinetic energy

spectrum [43–45],

E(k) ∼
⎧⎪
⎨
⎪⎩

Cϵ2/3
ν k−5/3, for k < kf

C′β2/3k−3, for k > kf,
(1.21)
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where, C,C′ are the constants and β ≡ ν⟨∣ ∇ω ∣2⟩ is the enstrophy dissipation

rate.

1.2 Multiphase flows

The key objectives in the research of dispersed multiphase flows involve

characterizing the statistical properties of the dispersed phase and under-

standing the flowmodulation due to its interactionwith the embeddedmedium

[46, 47]. These studies are relevant to many industrial and natural process,

e.g., turbulent dispersion of pollutants, pollinations in plants, mixing and

combustion, etc.

In multiphase flows, both the statistical properties of flow and the parti-

cles depend upon several parameters such as the ratio of particle-fluid length-

scale, particle-fluid density, particle Reynolds number (Rep), [46, 48] etc. For

example, a neutrally buoyant particle of diameter d ≪ η, basically follows the

fluid as tracers. However, when the particle-fluid density ratio is significant,

its behavior deviates from that of a tracer.

In a very simplified picture, each particle in a multiphase flow can be

assumed to be a sphere of diameter dp. At a sufficiently low Rep ≪ 1, the

acceleration of this spherical particle in the fluid is given by the Maxey and

Riley [49] equation,

dV(t)
dt

=
18ρfν
ρpd

2
p

[u(X, t) − V(t)] +
3ρf
4ρp

∇2u(X, t)

+
ρf
ρp

Du
Dt |X

+
ρf
2ρp

d
dt[

u(X, t) +
d2p
40

∇2u(X, t) − V(t)]

+
9ρfν
ρpdp ∫

t

0
dτ 1

[πν(t − τ)]1/2
d
dτ[u(X, τ) +

d2p
24

∇2u(X, τ) − V(τ)], (1.22)

where, u(X, t) is the undisturbed fluid velocity at the particle position X and

time t, V(t) is the velocity of the particle, and ρp (ρf) is the fluid (particle) den-

sity. The terms in RHS of 1.22 are arranged in the following manner; the first

line represents the Stokes drag, the second line gives the Faxen correction

[50], and the third line represents the Basset history force [51].

12
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For a micron sized particle with density, ρp ≫ ρf, we obtain the following

equations of motion for a heavy inertial particle,

dX(t)
dt

= V(t), (1.23)

dV(t)
dt

= 1
τp

[u(X, t) − V(t)] , (1.24)

where τp = ρpd
2
p/18νρf is the particle relaxation time. The above 1.23 and 1.24

can be used to model solid-particles or droplets (e.g., clouds) in a turbulence

provided dp ≪ η and the flow experienced by a particle is laminar. The main

non-dimensional number governing the dynamics is the Stokes number, St =
τp/τη. We shall often refer to the particles obeying 1.23 and 1.24 as ‘heavy

inertial particles’.

The level of carrier flow modulation by the particles obeying 1.23 and

1.24 is determined by the particle volume fraction ΦV and the mass-loading

parameter ϕm = ρpΦV/ρf [48, 52]. When ΦV ≤ 10−6, and ϕm is also small the sus-

pension is considered dilute and the effect of particles on turbulence is neg-

ligible. In this regime the dynamics of the particle is affected by the flow but

its back-reaction can be ignored (one-way coupling). At moderately dense

regime 10−6 ≤ ΦV ≤ 10−3 and ϕm ∼ 𝒪(1), the influence of the particle on car-
rier phase becomes significant (two-way coupling). For ΦV > 10−3 the inter-

particle collisions increases by a considerable amount (four-way coupling).

When the size of the particles are finite, or dp > η and Rep > 1, then

1.23 and 1.24 are no longer a valid model. Here the turbulence modulation

cannot be studied using a single non-dimensional number, St [53]. Moreover,

for Rep ≥ 𝒪(100), the vortex shedding behind the particles furthers adds to the
fluctuations in the carrier phase [54]. In this regime, we study the fluctuations

generated by a swarm of rising bubbles in an otherwise stagnant or turbulent

flow.

In the following sub-sections, we will describe the problems investigated

in this thesis in greater detail.
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1.2.1 Caustics in turbulent flow

In a turbulent flow, the inertial particles governed by 1.23 and 1.24 showmany

interesting behaviors, one of the most notable being preferential clustering.

Maxey [55] using 1.24, showed that the particles of density greater than the

fluid tends to cluster in regions dominated by strain.

The inhomogeneous distribution of the inertial particles in turbulent flow

is known to have consequences in increasing the rate of raindrop formation

[56–59]. In clouds, the raindrops are believed to grow by the process of co-

alescence that occur as tiny droplets collide with each other [59, 60]. The

collision rate between droplets is highly enhanced by the formation of sin-

gularities in the particle velocity gradients, also known as caustics [60]. This

caustic formation also plays a key role in the growth of planetisimals in as-

trophysical dusts [61]. In chapter 3, we study the rate of caustic formation in

the turbulent flow. Previous studies havemostly studied this problem in syn-

thetic flows [62–64]. We show that in the turbulent flows, the rate of caustic

formation falls exponentially with 1/St.

1.2.2 Dusty gas turbulence

In astrophysical plasma, the inclusion of back-reaction from dusts allows for

the streaming instability [65, 66], to manifest itself. Thus, in a suspension at

moderate dense regime, the back-reaction from particles can not be ignored.

The turbulence modulation by heavy inertial particles at high mass load-

ing has been studied both numerically [52, 67–70] and experimentally [71]. In

the decaying turbulence the for a fixedmass-loading parameter ϕm = 1, it was

observed that particle with St < 0.1 tends to increase both the total turbulent
kinetic energy and the total dissipation rate, compared to single-phase flow.

The particles with 0.1 < St < 0.5 increases, the dissipation rate but the tur-

bulent kinetic energy remain unchanged. Particles whose St ≈ 1 reduce tur-

bulent kinetic energy but the total dissipation rate remain unchanged. Large

particles St > 1 reduces both turbulent kinetic energy and dissipation rate

relative to their values in the single-phase flow. These modulation in to-
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tal kinetic energy and dissipation rate can be explained on the basis of time

spent by a particle of given St in vortical or strain region of the fluid [67].

Similarly, an increase in the dissipation rate was also reported by Muramulla

et al. [70] in a recent study on channel flow.

Much fewer studies exist where the scaling in kinetic energy spectra in

the particle-laden flow is investigated. In turbulence the scaling in the ki-

netic energy spectra is universal, i.e., E(k) ∼ k−5/3 in three-dimension. How

does this scaling changes in the presence of back-reaction from dust is not

understood fully. It is also difficult to answer this question from the earlier

studies as not enough scaling range was resolved. Only recently, Gualtieri

et al. [68] observed a new power-law scaling regime in the kinetic energy

spectra where E(k) ∼ k−4 in three-dimensions. In two-dimensional particle-

laden turbulence Bec et al. [72] observed a spectral exponent of ≈ −2 in ki-
netic energy spectra. The question that remain is, how does this new scaling

regime and the scaling-exponent depend upon the mass loading parameter

and the Stokes number? In chapter 4, we investigate this problem in a two-

dimensional particle-laden turbulent flow.

1.2.3 Buoyancy-driven bubbly flows

In this thesis, we study the statistical properties of the buoyancy-driven bub-

bly flows using a fully resolved simulation. TheNavier-Stokes equations gov-

erning the motion of bubbles in fluid [73–75] are,

ρ(𝜕tu + u ⋅ ∇u) = −∇p + ∇⋅[2μ𝒮 ] + Fσ + Fg, (1.25)

∇ ⋅ u = 0, (1.26)

where μ is the dynamic viscosity, 𝒮 = 1
2 (∇u + ∇uT), is the strain-rate tensor,

Fσ = σκn, is the force density due to surface tension, defined in terms of σ,

the coefficient of surface tension, κ, the curvature and n, the unit normal to

the interface, and Fg = (ρ − ρa)g, is the buoyancy force density, in which g is

the acceleration due to gravity, ρa is the average density.
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A set of four non-dimensional numbers governs the dynamics of bub-

bly flows. The density and the viscosity ratios of the two-fluid, ρb
ρf
and μb

μf

respectively, are the first two. Here, the subscript b is used to denote the

bubble phase and f the liquid phase. For an air bubble in water, ρb
ρf

∼ 10−3 and
μb
μf

∼ 10−2. The usual choice of the other two, in buoyancy-driven flows, are

the Galilei number (Ga) and the Bond (Bo), [also known as the Eotvos (Eo)]

number, defined as,

Ga ≡
√√√
⎷

ρf|ρf − ρb|gd3

μ2f
, (1.27)

Bo ≡
|ρf − ρb|gd2

σ
, (1.28)

where d is the diameter of a bubble. The Reynolds number Re = ρfV0d

μf
is

defined using the rise velocity V0 of an isolated bubble.

Experimental and numerical studies on bubbly flows

We begin by discussing the studies on the dynamics of a single bubble. A

single spherical bubble while rising does-not necessarily remain spherical

and can also undergo path instability, where a rectilinear motion transverses

into zigzag. The first documented observation of these phenomena is found

in Leonardo Da Vinci’s book ‘Codex Leicester.’ [76].
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Figure 1.7: The bubble shape and trajectory in the Ga−Eo (or Ga−Eo) plane.
The different regions are: (I) spherical bubble and rectilinear trajectory, (II)

asymmetric bubble with non-oscillatory trajectory, (III) asymmetric bubble

shape with oscillatory trajectory, (IV) and (V) breakup regime. Figure pub-

lished from Tripathi [77] with permission.

Many studies have explored the subject of path instabilities and bubble

shapes of a rising bubble numerically [78, 79], experimentally [80, 81], and

theoretically [82]. Initially Bhaga andWeber [80] and more recently Tripathi

et al. [78] have identified five distinct regimes of bubble shape and trajecto-

ries in the Ga − Eo (Eo is same as Bo) phase space. We show the phase plot

as obtained by Tripathi et al. [78] in Fig. 1.7. In the figure, region-I (shown in

pink) bubble has a constant ellipsoidal shape and rises in a rectilinear trajec-

tory. Region II (marked in green color), the bubble rise in a straight line, and

the bubble shape is an axisymmetric cap with a thin trailing skirt. Region III

(blue color), the bubble rises in a zigzag or a spiral trajectory and shows shape

oscillation. Region IV and V (light and dark yellow color) represent periph-

eral and central breakup regime. Not only the bubble shape and trajectory

but also the wake structure is distinct at each regime.

In a homogeneous bubble swarm, the wakes of individual bubbles inter-

act giving rise to a complex flow structures resembling turbulence. Such

flows are often known as pseudo-turbulence [83] or Bubble Induced Agi-
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tation (BIA) [9, 84]. Although the wake structure of a single bubble is distinct

for a given Ga − Bo pair, the statistical properties of pseudo-turbulence are

observed to be universal. For instance, almost all the studies have shown

that the probability distribution function of the transverse component of the

liquid velocity fluctuations is exponential, and the horizontal component is

skewed [8, 9].

Energy spectra in pseudo-turbulence

The earliest experiment to study the statistical properties of pseudo-turbulence

was performed by Lance and Bataille [83]. In the experiment, the bubbles at

volume fractions (ΦV = 1− 4%) was released in a turbulent fluid. In Fig. 1.8 we
show the liquid kinetic energy spectra obtained by Lance and Bataille [83].

The single phase turbulent spectra, marked as 1, show a clear −5
3 scaling in

the inertial range. The spectra obtained for volume-fraction ΦV = 1, 3, and 4%
are marked as 2, 3, and 4 respectively. Once the bubbles interact with the un-

derlying turbulence, a new scaling region is observed for scales smaller than

d. Over this region, the kinetic energy spectra, E(k) ∼ k−8/3 and this scaling of

∼ −3 is also known as the pseudo-turbulent scaling.
Later, Rensen et al. [85] introduced the term bubblance parameter (b) to

characterize the amount of pseudo-turbulent fluctuations present in a tur-

bulent flow. The bubblance parameter is defined as,

b ≡
ΦVV

2
0

u20
, (1.29)

where u20 is the root mean square velocity of the turbulent fluctuations in

the absence of bubbles. In an experiment similar to Lance and Bataille [83],

Rensen et al. [85] did not observe any change in the spectral slope. This

observation was attributed to the fact that b explored by Rensen et al. [85]

(b < 1) was much lower than that of Lance and Bataille [83] (b > 1). In both

the experiments, the bubble Re ∼ 𝒪(103).
The direct numerical simulation of bubbly flows poses considerable chal-

lenges. A lot of computational resources are spent in simulating the sharp

interfaces accurately. Thus, earlier numerical studies of pseudo-turbulence
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Figure 1.8: The kinetic energy spectra as obtained from the experiments

of Lance and Bataille [83]. The spectra for different volume-fractions are

marked as (1) ΦV = 0, (2) ΦV = 1.0%, (3) ΦV = 3% and (4) ΦV = 4%. Figure

published with permission from Lance and Bataille [83]
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Figure 1.9: The kinetic energy spectra obtained from the experimental study

of Prakash et al. [86]. The top panel shows spectra for b = ∞, middle b > 1, and

bottom b < 1. For comparison, single phase turbulent spectra b = 0 is plotted

in black. The horizontal dotted line marks the frequency corresponding to

bubble diameter. Figure published with permission from Prakash et al. [86].
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were restricted to low Re ∼ 𝒪(10). In the first of a numerical study at b = ∞

in two-dimension Esmaeeli and Tryggvason [87] observed a kinetic energy

spectra of k−3. Later studies in three-dimensions [88–90], at similar Re ∼
𝒪(10), observed a steeper scaling of k−3.6 for scales smaller than the bubble

diameter. At high Re ∼ 𝒪(103) the scaling of k−3 was again recovered in the

numerical study of Roghair et al. [91].

In the experimental studies, the scaling range has remained controversial.

Mercado et al. [92] and Ref. [8, 86] reported a scaling of −3 for scales smaller
than the bubble diameter whereas Riboux et al. [84], and Ref. [93] reported

the scaling for the scales larger than d. The main difference between the

two was that the former measured the fluctuations within the swarm while

the measurement was taken behind the swarm in the latter. A Kolmogorov

scaling of k−5/3 was also observed by Riboux et al. [84] for scales k > kd (kd

bubble diameter mode), which is not observed in any other experiments or

simulations.

In a recent study, Prakash et al. [86] explored a range of bubblance pa-

rameter ranging from b = 0−∞. In the experiment, the bwas varied by chang-

ing both the turbulence intensity and the volume fraction ΦV. We show the

spectra as obtained by Prakash et al. [86] in Fig. 1.9. In all the cases, the

pseudo-turbulent scaling of −3 was observed even for b ≈ 0.01. The most
recent investigation of Alméras et al. [8] also made a similar observation for

a range of bubblance 0.1 ⪅ b ⪅ 1.3.
The pseudo-turbulent scaling of k−3 is robust and was observed in almost

all the experiments and simulations. Lance and Bataille [83], studied the en-

ergy transfer relation to help understand this scaling behavior,

T(k) = D(k) + 𝔉(k), (1.30)

where, 𝔉 is the production due to all the forces (gravity and surface ten-

sion) present in pseudo-turbulence. Lance and Bataille [83] argued that the

production term is local in spectral space, implying that its balance with the

dissipation term gives the scaling of k−3. All the studies that followed have

attributed the scaling to the balance of production with dissipation. The role

of the nonlinear forces and the contribution of different forces at each scale

21



Chapter 1 Section 1.3

in the energy budget remain unclear.

In chapter 5 of the thesis, we conduct a comprehensive study of the bub-

bly flows using Direct Numerical Simulations (DNS).We validate our analysis

by showing the distribution of the liquid velocity fluctuations fits precisely

with the experimental observation. We then study the energy transfer rela-

tion in the pseudo-turbulent flows. The main advantage of using DNS is that

it allows us to disentangle the contribution of various forces at each scale,

which otherwise is very difficult in the experiments. We show that the pro-

duction due to gravity is present only at scales larger than d. The combined

transfer of energy by the surface tension and fluid nonlinearity leads to the

observed scaling of k−3 in pseudo-turbulence. In chapter 6, we extend these

ideas to study the turbulence modulation by a swarm of rising bubbles for

different bubblance parameter.

1.3 A guide to the thesis

We summarize in brief all the chapters that constitute this thesis.

In the next chapter (chapter 2) we discuss in detail the numerical methods

to study different multiphase flows.

In chapter 3, we start with the simplest scenario in which the volume

fraction of the embedded particles is small and does not modify the flow

properties. Here we study the statistical properties of the particle velocity

gradients. We show the rate at which singularities occur in the gradients falls

exponentially with the 1/St.

In the following chapter (chapter 4), we study the statistical properties of

the flow in the regime of two-way coupling. The mass-loading is significant

and modifies the turbulent flow significantly. We show that a new scaling

regime appears in the kinetic-energy spectra, and the scaling depends upon

both the Stokes number and the mass-loading.

In chapter 5, we present the statistical properties of flows generated by

a homogeneous swarm of buoyant bubbles rising under gravity using three-

dimensional direct numerical simulations. In a suspension, the bubbles’ wake
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interaction leads to complex flow structures known as pseudo-turbulence.

Using an energy budget analysis we show that the balance of the viscous

dissipation and the net production by surface tension and fluid nonlinearity

gives the k−3 scaling in pseudo-turbulence.

In chapter 6, we study the interaction of a swarm of buoyant bubbles

with turbulence generated by large-scale driving. We show that E(k) ∼ k−5/3

for scales larger than the bubble diameter, whereas the pseudo-turbulent

scaling, E(k) ∼ k−3 is present only for scales smaller than d. We use the en-

ergy budget analysis to understand the energy transfer mechanism. We also

present the results for the acceleration statistics of the center-of-mass of

bubbles.

In the final chapter (chapter 7), we conclude the thesis and provide future

research prospects.
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2
Numerical methods for
multiphase flows

2.1 Introduction

In this chapter, we describe in detail theDirectNumerical Simulation (DUNE’S)

techniques for solving different types of multiphase flows. We shall first dis-

cuss the case of particle-laden flows which is studied using a one- and two-

way coupling techniques. We shall then describe buoyancy-driven bubbly

flows where the dispersed phase is an immiscible liquid with different den-

sity and viscosity. The main characteristic feature of such a flow is the pres-

ence of a sharp interface at the phase boundary [1, 2].

The level of carrier-fluid interaction or the coupling regimes for dispersed

multiphase flows is classified based on the Stokes number, St = τp/τη and the

volume fraction ΦV. Note that the Stokes number, St ∼ (
ρp
ρf ) (

dp
η )

2
also gives

an estimate of the relative size of the suspended particle. The classification

map, recreated from Elgobashi [3] and Ref. [4] is shown in Fig. 2.1. In each

regime, appropriate choice of computational method is decided based on

the volume fraction ΦV and St. Broadly, the following regimes are possible.

1. Dilute suspensions (ΦV ≤ 10−6): In this regime the effect of suspended

particles on carrier phase is negligible and the multiphase flows are
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studied in the one-way coupling regime where only the fluid→particle

interaction exists.

2. Moderately dense suspensions (10−6 ≤ ΦV ≤ 10−3): Here, the suspended

particles can modify the flow significantly and the multiphase flows are

treated using a two-way coupling scheme, where both the fluid→particle

and particle→fluid interaction exists.

Figure 2.1: The phase plot showing the different carrier-phase coupling

regimes for particle-laden flow and the appropriate choice of numerical

model. The phase diagram is recreated from Elgobashi [3].

3. Dense Suspensions (ΦV > 10−3): The collisions between particles be-

come significant and cannot be ignored and thus a four-way coupling

scheme (fluid→particle, particle→fluid, and particle↔particle interac-

tions) is needed to study the particle-laden flow.

The rest of the chapter is organized as follows: In Sec. 2.2, we describe the

pseudo-spectral method for the DNS of single phase. In Sec. 2.3, we discuss

the one- and two- way coupled DNS of multiphase flows. Finally in Sec. 2.4,
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we will describe the DNS methods for studying the buoyancy-driven bubbly

flows, where ΦV > 10−3 and size of each bubble is greater than η.

2.2 Single phase flow

The Navier-Stokes (NS) equations Eq. 1.1 and 1.2, governing the motion of a

single phase fluid can also be written as,

𝜕tu + 𝝎 × u = −∇p + ν∇2u + f, (2.1)

∇ ⋅ u = 0, (2.2)

where, 𝝎 = ∇ × u is the vorticity and we have used the relation u ⋅ ∇u =
u × 𝝎 + 1

2∇u2 to obtain 2.1.

2.2.1 Pseudo-spectral solver

We now discuss the pseudo-spectral solver for the single phase NS equation.

In a spectral decomposition, the velocity field u is expanded in terms of an

orthogonal basis functions ψ,

u(x, t) = ∑
k

uk(t)ψk(x). (2.3)

The choice of ψ depends on the problem at hand. For example, in a channel

flowwhere the domain is bounded, a class of Jacobi functions, the Legendre,

or Chebyshev polynomials of the first kind are used. When the domain is L =
(Lx, Ly, Lz)−periodic, as in our case, the natural choice of the basis functions
are the Fourier series,

ψk(x) = exp (ιk ⋅ x), (2.4)

where k = (kx, ky, kz) are the wave-numbers. In physical space, the contin-

uous field u is approximated using Nx,Ny and Nz discrete points respectively

along each component of L. This sets thewavenumbers along each direction,

ki ∈ 2π
Li [−Ni

2
+ 1, ..., −1, 0, 1, ..., Ni

2 ] . (2.5)
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We now write the 2.1 and 2.2 in Fourier basis,

𝜕tuk + Wk = −ιkpk − νk2uk + fk, (2.6)

ιk ⋅ uk = 0, (2.7)

where Wk is the Fourier transform of the nonlinear term. We can eliminate

the pressure by using the incompressibility 2.7 to obtain,

𝜕tuk + 𝔓 [Wk − fk] = −νk2uk, (2.8)

where 𝔓 = I − kk
k2
is the projection operator.

2.2.2 The nonlinear term and the aliasing error

The nonlinear term, a product in the real space becomes convolution in the

Fourier space,

(Wk)i = −ϵijk ∑
q+p=k

(uq)j(ωp)k, (2.9)

where ϵijk is the Levi-Civita tensor.

The evaluation of the convolution in spectral space is expensive as it re-

quires 𝒪(N2) operations, where N = Nx×Ny×Nz is the total number of colloca-

tion points. This problemwas overcome byOrzag [5, 6], where the evaluation

of convolution was avoided by shifting uk and 𝝎k back to the real space to

calculate u × 𝝎. Since the evaluation of nonlinear term involves transform-

ing back and forth between real and Fourier space, these methods are called

pseudo-spectral.

The use of discrete Fourier transform to evaluate the nonlinear term leads

to aliasing errors. Since in a discrete Fourier transform, only a finite number

of wave-numbers are resolved, the unresolved modes generated due to cou-

pling gets folded back leading to errors in the solution. To demonstrate the

aliasing error we expand 2.9, based on whether the condition Niei < (p+q)i <
Niei, is satisfied or not, into the following terms [7],
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(Wk)i = −ϵijk
−Nlel<kl<Nlel

∑
q+p=k

(uq)j(ωp)k − ϵijk[ ∑
q+p=k±Nxex

(uq)j(ωp)k+

∑
q+p=k±Nyey

(uq)j(ωp)k + ∑
q+p=k±Nzez

(uq)j(ωp)k + ∑
q+p=k±Nxex±Nyey

(uq)j(ωp)k+

∑
q+p=k±Nyey±Nzez

(uq)j(ωp)k+ ∑
q+p=k±Nxex±Nzez

(uq)j(ωp)k+ ∑
q+p=k±Nxex±Nyey±Nzez

(uq)j(ωp)k],

(2.10)

where ex is a unit vector along x. The second third and fourth terms in the

RHS of Eq. 2.10, represent singly aliased contributions. The next three terms

represent the doubly aliased contributions and the last term is the triply

aliased contribution.

The general rule of eliminating the aliased terms is by spherical truncation

[6, 7], where all Fourier amplitudes for modes |k| ≥ 2kmax
3 are eliminated. Here

kmax = (
2π
Lx )

Nx
2 , and the number of collocation points are assumed to be same

along each direction Nx = Ny = Nz. This rule is also known as 2/3 rule in the

literature.

The key to all pseudo-spectral solvers are the Fast Fourier Transform

(FFT) algorithms which requires 𝒪(N log2 N) operations. The FFT algorithms

makepseudo-spectral code competitive to any other finite-difference solvers

[7, 8].

2.2.3 Two-dimensions

In two-dimensions where u = (ux, uy) is restricted in x−y plane only, it is easy

to define a scalar function (Ψ) such that the continuity equation ∇ ⋅ u = 0 is

identically satisfied,

ux = 𝜕yΨ, (2.11)

uy = −𝜕xΨ. (2.12)

From 2.11 and 2.12, one finds ω = ∇2Ψ. In two-dimension, instead of u, it is

convenient to numerically integrate the vorticity equation,

𝜕tω + J(ω,Ψ) = ν∇2ω + (∇ × f) ⋅ ez, (2.13)
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where J(ω,Ψ) ≡ 𝜕xω𝜕yΨ− 𝜕yω𝜕xΨ is the Jacobian, and ez is a unit vector along z.

Pseudo-spectral algorithm

The schematic diagram for the algorithm of a pseudo-spectral code is shown

below:

Initialize Velocity

uk

Compute vorticity

𝝎k = ιk × uk

Transform

u(x) = ifft(uk)
𝝎(x) = ifft(𝝎k)

Compute non-linear term

W(x) = u(x) × 𝝎(x)

Transform

Wk = fft[W(x)]
Apply projection

Wk → 𝔓Wk

Integrate to obtain

uk(t + δt)

Add forces

to W

We use the FFTW (Fastest Fourier Transform in the West) library [9] to

carry out all the Fourier transforms. Since we are interested in large scale

simulations, we use the mpi version of the FFTW library for the parallel do-

main decomposition.

2.3 One- and two-way coupling

As discussed in the introduction, the equations ofmotion for a sub-Kolmogorov

particle [10] are (1.23 and 1.24);

dXi(t)
dt

= Vi(t),

dVi(t)
dt

= 1
τp

[u(Xi, t) − Vi(t)] ,

where i = 1, … ,Np is the particle index and Np is the total number of particles

in the suspension.
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We use a second-order Runge-Kutta scheme [11, 12] to intergrate 1.23

and 1.24 along each particle. Since the fluid equation is solved on a fixed

Eulerian grids, which in general does not coincide with the positions of par-

ticles, u(Xi) is obtained as,

u(Xi, t) = ∑
x

u(x, t)δ(x − Xi)dx, (2.14)

where δ(⋅) is a numerical approximation of the delta function. In this thesis,
we use the Peskin [13] cosine function as the numerical delta function,

δ(x − X) =
⎧⎪
⎨
⎪⎩

1
4h{1 + cos [

π(x − X)
2h ] }, |x − X| ≤ 2h,

0 otherwise,
(2.15)

where h is the smallest grid spacing.

One-way coupling: At low ΦV and mass-loading, the back-reaction of the

particle on the fluid is ignored.

Two-way coupling: At high mass-loading the back-reaction force from

the particle can not be ignored. From the Newton’s third law of motion, the

force density, due to the presence of particles is,

Fd→g(x, t) = ∑
i
fd→g
i δ(x − Xi), (2.16)

where fd→g
i = mp

τp
[Vi(t) − u(Xi, t)], and mp is the mass of a particle. The back-

reaction from each particle is spread over a certain volume of the compu-

tational grid using 2.15. We shall refer to this method as particle in cell [14],

which is extensively used in plasma physics. For convergence, it is recom-

mended to have the more than one particle per cell [15, 16].

Exact Regularized Point Particle (ERPP)

In the method described above the forces from sub-grid size particle is in-

stantly extrapolated to the fluid grid. Gualtieri et al. [16] and Ref. [15] intro-

duced a newmethod which takes into consideration the time ΤR required by

the forces 2.16 at particle positions to reach the nearby grids. The total force

density in the ERPP prescription is given by,
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Fd→g(x, t) = ∑
i
fd→g
i (t − ΤR)g(x − Xi(t − ΤR),ΤR). (2.17)

For more details of ERPP we refer the readers to Refs. [15, 16]. The explicit

form of g(x − Xi(t − ΤR),ΤR), is obtained by solving the diffusion equation for
the disturbance generated by a particle,

g(x,ΤR) = 1
[4πνΤR]3/2 exp [ − |x|2

4πΤR
]. (2.18)

The standard deviation of the Gaussian kernel given by 2.18 is taken, approx-

imately as the grid spacing h, from which we estimate,

ΤR = h2

2ν
. (2.19)

We remark that the Gaussian kernel given by 2.18 is similar to the one used

in the earlier studies of Capecelatro and Desjardins [17].

2.3.1 Test case

We now compare the results obtained from the particle in cell method with

the ERPP. For comparison we consider the case of a particle settling under

gravity (g), where,

dV(t)
dt

= 1
τp

[u(X, t) − V(t)] + mpg. (2.20)

We place the particle in top of a two-dimensional domain of length Lx =
Ly = 2π, discritized using 64 collocation points along each direction. The

parameters for the study is given in Fig. 2.2. The particle after an initial ac-

celeration attains a terminal velocity VT as shown in the figure. We find that

the both particle in cell and ERPP predicts the same VT. A sight departure

from the theoretical solution V(t) = VT [1 − exp(−t/τp)], is observed in both the
methods [16].
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Figure 2.2: (a) The velocity streamlines overlaid over the pseudo-color plot

of |u| at time t = 3.0τp. The bright blue color indicates the region with high
velocity. The arrow in the top marks the direction of gravity and red dot

indicates the particle position. (b) The normalized settling velocity of the

particle obtained using ERPP and particle in cell. We take τp = 1.0, mp = 0.33,
g = 0.2 and ν = 1.6.

In the particle equation of motion 1.24, u(X, t) represents the undisturbed
fluid velocity. A two-way coupling introduces small self-induced distur-

bances around the particle, leading to the observed error in the estimated

value of the terminal velocity [Fig. 2.2(b)] [16, 18].

39



Chapter 2 Section 2.4

2.4 Buoyancy-driven bubbly flows

We begin by rewriting the NS equations 1.25 and 1.26 for an incompressible

velocity field u governing the buoyancy-driven bubbly flows,

ρ [𝜕tu + u ⋅ ∇u] = −∇p + ∇ ⋅ [2μ∇𝒮 ] + Fσ + Fg, (2.21)

𝜕tρ + u ⋅ ∇ρ = 0, (2.22)

where Fσ = σκn, is the force density due to surface tension, defined in terms

of σ, the coefficient of surface tension, κ, the curvature and n, the unit normal

to the interface, and Fg = (ρ − ρa)g, is the buoyancy force density, in which g

is the acceleration due to gravity, ρa is the average density.

Here it is convenient to define, the density, and the viscosity using the

marker function c,

ρ = ρfc + ρb(1 − c), (2.23)

μ = μfc + μb(1 − c). (2.24)

where,

c =
⎧⎪
⎨
⎪⎩

1, in the fluid phase,

0, in the bubble phase.
(2.25)

2.4.1 Non-dimensional numbers

The NS 2.21 is non-dimensionalized using the transformation x∗ → x
d
, u∗

i = ui
U

and t∗ → tU
d
, where d is the diameter of the bubble, and U is the characteristic

velocity scale to obtain,

𝜕tu∗ + u∗ ⋅ ∇∗u∗ = −∇∗p∗ + 1
Ga

∇∗2u∗ + 1
Bo

F∗σ + 1
Fr

F∗g. (2.26)

Here Ga = ρfUd/μf is the Galilei number, Bo = ρfU
2d/σ is the Bond number,

and Fr = U2/|g|d is the Froude number. In buoyancy-driven bubbly flows,

the characteristic velocity scale is defined using d, U = √δρgd/ρf (δρ = ρf − ρb).

Replacing, we get Ga = √gρfδρd3/μf, Bo = δρgd2/σ, and Fr = δρ/ρf. In addition,
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the other important non-dimensional numbers here, are the viscosity ratio

μr = μf/μb, and the Atwood number At = δρ/(ρf + ρb). Physically, Ga gives the
relative strength of the buoyancy and the viscous forces, and Bo gives the rel-

ative strength of buoyancy and the surface tension forces. The Galilei num-

ber Ga, gives the relative strength of the buoyancy and the viscous forces,

and the Bond number Bo, gives the relative strength of buoyancy and the

surface tension forces.

Note that the Reynolds number Re = V0d/ν in buoyancy-driven bubbly

flows is defined using the rise velocity V0, of an isolated bubble.

2.4.2 Boussinesq approximation

In the regime where the viscosity μf is comparable to μb, and the density dif-

ference is small, the Navier-Stokes 2.21 gets simplified to [19],

𝜕tu + u ⋅ ∇u = −∇p
ρa

+ ν∇2u + Fσ

ρa
+ δρc

ρa
g, (2.27)

where, the contribution due to the density difference δρ is retained only in

the external forcing and ignored everywhere else. Here, the simplified form

of the viscous term can be dealt accurately using exponential integrators [20].

In the next section, we describe the front-tracking method to evaluate the

surface tension and the gravity force densities.

2.4.3 Front-tracking (FT)

This method was developed by Peskin [13] and Unverdi and Tryggvason [21]

to solve themultiphase flows consisting of two-fluidsmixture. In thismethod,

the interface of two-phase, also known as the front, is tracked in the fluid as

a Lagrangian mesh. In Fig. 2.3 we show illustrative diagram depicting the

front-tracking method in both two- and three-dimensions. The front is rep-

resented by a set of points (xp), which are connected by elements. In two-

dimensions the element is a line, whereas, in three-dimensions the element

is a triangle (or any two-dimensional geometric shape).

The NS equations are solved on a fixed grid but the front-properties such

as surface tension are calculated at the front point xp, which does not nec-
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essarily, coincide with the fluid grid. Hence, all the quantities that exist at xp
needs to be extrapolated to the fluid grid points x. Any front quantity, say αp

evaluated at xp, is approximated on the underlying grid points (x) as

α(x) = ∑
p
αpδ(x − xp), (2.28)

where δ(x − xp) = δ(x − xp)δ(y − yp)δ(z − zp) is a three- (or two-) dimensional
Dirac-delta function. The numerical approximation of δ function that we use

is given by 2.15.

Estimation of surface tension

The surface tension force on each front element is given by,

δFσ = ∫ dSσκn, (2.29)

where the integration is over an element of a front. From the relation, κn =
n × ∇n this force gets simplified to,

δFσ = ∫dlσ(t × n), (2.30)

where t is the vector tangent to the edge of the element and the integration

is over the line dl. The force given in 2.30 can be evaluated at each element

and extrapolated to fluid grid using 2.28.

In two-dimensions, the curvature κn = 𝜕t
𝜕t and the surface tension term

over a small line element gets simplified to

δFσ = σ(t2 − t1), (2.31)

where t is the tangent to the interface.

Evaluation of c

At the interface, it is easy to see that,∇c(x) = nδ(x−xp). Using the approximate
value of∇c at the fluid grid x, themarker function can be evaluated by solving

the following Poisson equation,

∇2c(x) = ∇ ⋅ ∑
p
nδ(x − xp). (2.32)

The 2.32 can be easily inverted in the Fourier space.
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fluid grids

front

(a)

(b)

(c)

Figure 2.3: (a) The two-dimensional front constructed by connecting the

points xp. The fluid grid are fixed in space but the front is evolved as La-

grangian points. The blue shaded region in the figure represents the two-

dimensional approximation of δ(x) at the blue point. (b) A spherical front in

three-dimensions and (c) a section showing the triangular elements.

43



Chapter 2 Section 2.5

Advancing the front

The front point are advanced in time as xp(t + δt) = xp + δtu(xp), where

u(xp) = ∑
x

uxδ(x − xp)h3. (2.33)

Pseudo-Spectral Front-Tracking (PSFT) algorithm

The schematic of Pseudo-Spectral Front-Tracking (PSFT) algorithm for buoyancy-

driven bubbly flow is shown below

Initialize Velocity

uk

Compute vorticity

𝝎k = ιk × uk

Transform

u(x) = ifft(uk)
𝝎(x) = ifft(𝝎k)

Compute

W(x) = u(x) × 𝝎(x)

Transform

Wk = fft[W(x)]

Apply projection

operator

Wk → 𝔓Wk

Integrate to obtain

uk(t + δt)

Add Fσ to W

Add Fg to W

Initialize front

xp

Evaluate forces and normals

using front

Fσ,n

Integrate to obtain

xp(t + δt)
Regrid

front

Evaluate ck

using n

Time step

The time step in the solver is decided by the Courant-Friedrichs-Lewy con-

dition,

max ((|ux|, |uy|, |uz|))
δt
h

< 1/2 (2.34)

where max (⋅) represents the maximum value of the argument.
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2.5 PARIS

PARIS (PArallel Robust Interface Simulator) [22] is an open source multi-

phase solver which has the option to select either, volume-of-fluid [23] or

front-tracking to simulate the bubbles. In this thesis, we use the front-tracking.

We now validate the front-tracking in PARIS and contrast the result with

the study ofCano-Lozano et al. [24], conducted using an open-source volume-

of-fluid solver Gerris [25]. For the comparison, we consider the isolated bub-

ble simulation “Bubble-26” in Ref. [24] (parameters given in Table 2.1). The

bubble rises in a spiraling trajectory and the structure of the vorticity along

gravity direction ωz = (∇ × u)z consists of a streamwise pair intertwined like
a cork-screw (See Fig. 10 and 11 in [24]). We conduct the simulation in a do-

main of size 4.8d×4.8d×60d, and discretize it uniformly by taking 2×108 collo-

cation points which implies 55 grids points along bubble diameter. The sim-

ulation is expensive and takes about 9 seconds per iterations on 501 Intel(R)

Xeon(R) (E5-2620) processors. We take a periodic boundary on all sides, in

contrast to Cano-Lozano et al. [24] where outflux boundary at the top, and

wall boundary at the remaining sides was taken.

We show the trajectory of the bubble obtained from PARIS in Fig. 2.4

and the iso-vorticity contours corresponding to ωz = ±0.24 when Z/d = 120 in

Fig. 2.5. We find that the wake structure as well as the trajectory is identical

to the one reported by [24]. However, a minor difference is observed in the

diameter of the spiral (Fig. 2.4). As opposed to the reported value of 0.28d, we
find the diameter to be 0.2d. This difference This difference can be attributed
to the different boundary conditions, and the domain size considered in our

simulation.

Ga Bo At × g μf/μb
100.25 10.0 0.999 × 1 100

Table 2.1: The non-dimensional parameters from the simulation of Cano-

Lozano et al. [24]. The density contrast ρf/ρb, between the phases is taken to
be 103.
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Figure 2.4: (a) The three dimensional trajectory of the bubble for parameters

given in Table 2.1. (b) The trajectory in (a) projected in the x-y plane.

Figure 2.5: The iso-vorticity contour of ωz corresponding to values ωz = ±0.24
(ωz = 0.24 is shown in green).

2.6 Test Cases

Since the PSFT code is valid only for low At numbers, we focus on the cases

where the density difference between the two fluids is small and their vis-

cosity is identical. For the tests, we consider the case of a single bubble rising

under gravity. Table (2.2) summarizes the parameters used in our DNS.

We consider a cuboidal domain of dimensions Lx = Ly and Lz = 2Lx. We

find that this choice ensures that the effect of the bubble-wake interaction

is minimal. All the results are presented in the units of the bubble diameter
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d and the number of grid point along the bubble diameter d, Ng = d/h. We fix

Lz = 10.8d and apply periodic boundary conditions at all sides.
In the following sub-sections, we present the two methods to integrate

the forces from the front to the fluid grid. We shall also contrast the results

from the PSFT simulation with the solutions obtained using an open-source

interface solver, PARIS [22, 26], which we have validated in the previous sec-

tion.

Ga Bo At × g

296.0 1.95 0.04 × 10.5

Table 2.2: The non-dimensional numbers for the single bubble test case.

2.6.1 Method-1

We begin by examining the effect of de-aliasing adopted in PSFT code on

the numerical delta function (2.15). We first define an operatorℙ, which elim-
inates all the Fourier amplitudes greater than the aliasing mode ka. Using ℙ,
the de-aliasing operation on any periodic function f(x) is defined as,

ℙf(x) ≡ ∑
m≤ka

exp(ιm ⋅ x)fm, (2.35)

where fm is the Fourier transform of f(x).
In Fig. 2.6, we show ℙδ(x − xp) for one-dimensional delta function. It is

evident that the aliasing correction results in grid size oscillations.

The error due to aliasing correction can be resolved by choosing a δ(x−xp)
consistent with the 2/3 de-aliasing adopted in the PSFT algorithm. To find a

consistent δ, we make the transformation h → 3h/2 to obtain,

δ(x − xp) =
⎧⎪
⎨
⎪⎩

1
6h [1 + cos(

π(x−xp)
3h )] , |x − xp| ≤ 3,

0 otherwise.
(2.36)

In Fig. 2.7 we show that using 2.36 for numerical approximation of δ(⋅), the
grid-size oscillations obtained previously gets suppressed.
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Figure 2.6: The numerical approximation of one-dimensional delta function

δ(x − xp) and ℙδ(x − xp). For the study we take h = 2π
64 . De-aliasing of δ results

in small scale grid size oscillations
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Figure 2.7: The δ(x − xp) and ℙδ(x − xp) for the delta function given by 2.36.

We conduct the single bubble test using 2.36 for front-grid communica-

tion. In Fig. 2.8, we show the z-component of the vorticity, ωz = (∇ × u)z, at
t = 9.0, at three different resolutions Ng = 24, 48 and 70. For a direct com-

parison, we show the ωz obtained from the PARIS simulation at same time
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and resolutions in Fig. 2.9. Clearly the ωz resembles only qualitatively and

spurious structures are present near bubble interface.

(a) (b) (c)

Figure 2.8: The iso-contour plot of ωz and the bubble shape at time t = 9.0
obtained from PSFT simulation of a rising bubble at Ga = 296. For the front

to grid communication we use the modified delta function given by 2.36. We

show the iso-vorticity contours corresponding to ωz = −0.01 (orange) and
ωz = 0.01 (purple). The results are shown for (a) Ng = 24, (b) Ng = 48, and (c)

Ng = 70.

(a) (b) (c)

Figure 2.9: The iso-contour plot of ωz at time t = 9.0 obtained from PARIS

simulation of a rising bubble at Ga = 296. We show the iso-vorticity contours

corresponding to ωz = −0.01 (orange) and ωz = 0.01 (purple). The results are
shown for (a) Ng = 24, (b) Ng = 48, and (c) Ng = 70.

49



Chapter 2 Section 2.6

(a) (b) (c)

Figure 2.10: The iso-contour plot of ωx at time t = 9.0 obtained from PSFT

simulation of a rising bubble at Ga = 296. We show the iso-vorticity contours

corresponding to ωx = −1.0 (orange) and ωx = 1.0 (purple). The results are
shown for (a) Ng = 24, (b) Ng = 48, and (c) Ng = 70.

(a) (b) (c)

Figure 2.11: The iso-contour plot of ωx at time t = 9.0 obtained from PARIS

simulation of a rising bubble at Ga = 296. We show the iso-vorticity contours

corresponding to ωx = −1.0 (orange) and ωx = 1.0 (purple). The results are
shown for (a) Ng = 24, (b) Ng = 48, and (c) Ng = 70.

We further compare the one of the lateral component of the vorticity, ωx,

where we show the results from PSFT simulation in Fig. 2.10 and PARIS in
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Fig. 2.11. We find that the ωx obtained from PSFT is identical to PARIS simu-

lation. We have verified that, in PSFT, the spurious effects are present only

in ωz and all the other fields including velocity and the other components of

the vorticity are smooth.

2.6.2 Method-2

In the previous section, we observed that the proper choice of δ function

and aliasing correction leads to a considerable reduction in the grid-level

oscillations. However, the resulting structure of ωz obtained using PSFT is

considerably different in comparison with PARIS. We now show how an im-

proved implimentation of the surface tension term leads to flow structures

consistent with other solvers (PARIS and Basilisk).

The numerical delta function given by 2.36 is differentiable only upto

second-order [27]. Therefore, we find the solenoidal component of Fσ us-

ing a scheme consistent with the second-order differentiability of the delta

function. To obtain the solenoidal component of the surface tension (Fσs ) we

solve the following vector identity,

∇ × ∇ × Fσ = ∇2Fσs (x) (2.37)

for Fσs . The above equation (2.37) is inverted in the Fourier space using a

central-difference scheme described below.

The derivative of a general function f(x) can be approximated as,

𝜕xf(x) = f(x + h) − f(x − h)
2h

. (2.38)

Taking the Fourier transform of the right hand side of 2.38, we obtain,

f(x + h) − f(x − h)
2h

= ∑
k

[fk exp(ιk(x + h)) − fk exp(ιk(x − h))]
2h

, (2.39)

which can be simplified to,

f(x + h) − f(x − h)
2h

= ι∑
k

sin(kh)
h

[fk exp(ιkx)]. (2.40)

Following similar steps in three-dimensions to estimate ∇ and ∇2 2.37 can be

trivially inverted to obtain Fσs . The resultant Fσs is then added to the nonlinear

terms during the evolution of NS equation.
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We show ωz as obtained in Fig. 2.12. For front to grid communication, we

use δ given by 2.36. Evidently, when the derivative of Fσ is evaluated using a

central-difference scheme, the obtained vorticity structure resembles with

the PARIS simulation.

(a) (b) (c)

Figure 2.12: The iso-contour plot of ωz at time t = 9.0 obtained from PSFT

simulation of a rising bubble at Ga = 296 using method-2. We show the iso-

vorticity contours corresponding to ωz = −0.01 (orange) and ωz = 0.01 (purple).
The results are shown for (a) Ng = 24, (b) Ng = 48, and (c) Ng = 70.

We now compare all the three schemes PSFT, front-tracking from PARIS

and volume-of-fluid from Basilisk [28] by conducting a simulation of an iso-

lated bubble for the parameters given in Table (2.3).

Ga Bo At × g

93.1 1.44 0.04 × 2.5

Table 2.3: The non-dimensional numbers for the single bubble test case. We

take a cubic domain of length Lx = 5d and discritize each side with Nx = 128

points.

Note that PARIS and Basilisk have been validated in many previous stud-

ies [22, 24, 29–31]. In Fig. 2.13 we show the position of the z-component
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of the bubble center of mass with time and find very minor differences in

the trajectory. We show the iso-contour of the streamwise vorticity over-

laid on the bubble position in Fig. 2.14. The core structure of ωz consists of

three pairs of counter-rotating vortices. We note that the choice of different

algorithms to evaluate surface tension results in minor differences in flow

structure around the bubble.

0 10 20 30 40
time

0

5

10

15

20

25

Z
(t

)
−
Z

(0
)

PARIS
PSFT
Basilisk

Figure 2.13: The z-component of the bubble center-of-mass with time pre-

dicted by different solvers.

(c)(b)(a)

Figure 2.14: The iso-contour plot of ωz at time t = 10.0 for (a) PSFT, (b) PARIS,
and (c) Basilisk simulation. We show the iso-vorticity contours correspond-

ing to ωz = −0.01 (orange) and ωz = 0.01 (purple).
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2.6.3 Bubble shape and the Reynolds number

In this section, we compare the bubble shapes obtained from different sim-

ulations at time t = 9.0 and the bubble Reynolds number for parameters

given in Table (2.2). We begin by showing the bubble shape obtained using

method-1 at different resolutions in Fig. 2.15. We find the bubble is ellipsoidal

and has grid size ripples on the bottom. The ripples at the bottom is clearly

a numerical artifact as at highest resolution (Ng = 70), it become insignificant.

A similar conclusion can be drawn from Fig. 2.16, where we show the bubble

shapes obtained using PARIS.

(a) (b) (c)

Figure 2.15: Side and bottom view of the bubble at t = 9.0 form the simulation

conducted using the method described in method-1 above for (a) Ng = 24, (b)

Ng = 48, and (c) Ng = 70.
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(a) (b) (c)

Figure 2.16: Side and bottom view of the bubble at t = 9.0 form the simulation

conducted using PARIS for (a) Ng = 24, (b) Ng = 48, and (c) Ng = 70.

In Fig. 2.17 we plot the bubble Reynolds number Re as obtained from

simulation conducted as described in method-1 and 2 above. For each of the

cases, we compare the Re from PSFT at three resolutions namely Ng = 24, 48
and Ng = 70 with the results of PARIS. We find the steady state value of the

Re to be identical in all the cases.
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Figure 2.17: The comparison of the bubble Reynolds number as obtained

from the simulation done using (a) method-1 and (b) method-2 with PARIS.

2.6.4 Two-dimensional test

In this section, we conduct the single bubble test in two-dimension and con-

trast it with the results obtained using the code ‘f2c2d-pv’ [32]. F2c2d-pv is a

open-source two-dimensional front-tracking simulator developed by Tryg-

vasson and similar to PARIS is second-order accurate in both space and time.

Same as three-dimensions here we compare the ω for the parameters given

in Table (2.2).

In Fig. 2.18 we show the ω obtained using the method-1 version of the

algorithm described in previous section. Here we find the error in ω to be
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minimal and the small scale vorticity structure are insignificant. Moreover,

upon increasing the resolution these structures disappears. In Fig. 2.19, we

further show the results obtained from f2c2d-pv. It is very evident that the

ω obtained here is comparable with the method-1. We find that the bubble

trajectory obtained using f2c2d-pv.f deviates from straight trajectory earlier

compared to PSFT simulation and thus results in the tilted vorticity structure.

(a) (b) (c) (d)

Figure 2.18: The pseudo-color plot of ω at time t = 9.0 obtained from PSFT

simulation of a rising bubble at Ga = 296 in two-dimension using method-1.

The color blue corresponding to ω = −1.8 and red corresponds to ω = 1.8.
The results are shown for (a) Ng = 24, (b) Ng = 48, and (c) Ng = 70 and (d)

Ng = 96. The bubble is drawn using black line in all the figures.

(a) (b) (c)

Figure 2.19: The pseudo-color plot of ω at time t = 9.0 obtained using f2c2d-
pv [32]. The color blue corresponding to ω = −1.8 and red corresponds to

ω = 1.8. The results are shown for (a) Ng = 24, (b) Ng = 48, and (c) Ng = 70 and

(d) Ng = 96. The bubble is drawn using black line in all the figures.

In two-dimensions, the stream-function vorticity formulation gives tremen-

dous advantage as the pressure gets eliminated completely and both vortic-

ity and velocity fields is obtained from same scalar Ψ. This could be the

reason that the spurious effects are insignificant here compared to three-

dimensional study.
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Before proceeding further we shall summarize the main results of this

section below.

• The front-trackingmethod can be coupled to PSFTNavier-Stokes equa-

tion to study multiphase flows in the low At number regime.

• The aliasing correction on the numerical approximation of δ results in

small grid size oscillations. With the proper choice of δ(x) these small
scale structures can be reduced or eliminated.

• We find that 48 grids per bubble diameter to be enough to resolve the

vorticity structures and bubble shape accurately at Ga ≈ 300.

2.6.5 Multiple bubbles

We shall now compare the statistical properties of the flow generated by

multiple bubbles rising under gravity. For simplicity and ease of simulation,

we choose only Nb = 4 bubbles at Ga = 296 in a domain of size Lx = Ly =
Lz = 5.4d and resolve individual bubbles by taking Ng = 24. Clearly, at this Ng,

the ωz structure obtained from PSFT simulation have small scale spurious

structures [section (2.6)]. Here, we show that in the multiple bubble study

such structures disappears when bubbles’ wake interactions are stronger.

The main motivation to conduct simulation with just 4 bubbles is to get

insights into the time and computational resources required to conduct mul-

tiple bubble studies. We provide the details of the simulation parameters

in Table (2.4). We note that the PSFT code is ten times faster than PARIS

at same resolutions. The difference in timings is because, in all the finite-

difference solvers the pressure Poisson equation is inverted using computa-

tionally expensive iterative methods (We use Gauss-Seidel solver in [22]).
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Ga Bo At × g Nb

296.0 1.95 0.04 × 10.5 4

Table 2.4: The parameters for the multiple bubble simulation. We resolve

individual bubbles by taking Ng = 24 in both PARIS and PSFT. For 100 iter-

ation on 9 Intel(R) Xeon(R) CPU, PARIS took 360 seconds while PSFT took

34 seconds.
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Figure 2.20: (a) The time evolution of the total kinetic energy for themultiple

bubbles test case. (b) The kinetic energy spectrum (E(k)) evaluated in steady
state.

We plot the time evolution of the total kinetic energy in Fig. 2.20. The
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initial growth till t = 20 is identical with both PARIS and PSFT solvers. After

an initial transient, the kinetic energy shows turbulence like behavior, where

steady-state fluctuates about the samemean value for both PARIS and PSFT.

The kinetic energy spectrum E(k) = ∑
m−1/2<k<m+1/2

|um|2 evaluated in the steady-

state obtained shows the same scaling. As opposed to section 2.6, we find that

the ωz obtained using method-1, shown in Fig. 2.21, is also similar to PARIS

result.

(a) (b)

Figure 2.21: The iso-vorticity contour of ωz and the bubbles, at a time in

steady-state from (a) PSFT (method-1) Ng = 24 (b) PARIS Ng = 24 simulation.

We plot iso-contours corresponding to ±(ωz)max/5, where (ωz)max is the maxi-

mum value of ωz at the given time instant.

2.7 Conclusion

In this chapter, we outlined the procedure for writing a pseudo-spectral

solver to numerically solve the single phase NS equation. Thenwe discussed

the DNS methods for solving different multiphase flows. In the later chap-

ters, we shall adopt thesemethods to study the statistical properties particle-

laden and buoyancy-driven bubbly flows.

TheDNSof buoyancy-driven bubbly flows poses considerable challenges.

We show that, in the regime where the density and viscosity of two phases

are comparable, the front-tracking could easily be coupled with a pseudo-
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spectral solver. The PSFT solver provides a massive advantage over PARIS

in terms of speed. A simulation that takes an hour with PSFT takes about

10hrs in PARIS. In chapter 5 and 6, we will primarily use the PSFT code for

all the low Atwood simulations.
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3
Caustics in turbulent flow

3.1 Introduction

In nature, flows with small particles are very common. Typical examples

include gas flows in proto-planetary disks with small dust particles [1] and

air flows in a cloud with water droplets [2]. In both of the cases the small

particles collides and merges leading to the formation of planetesimals in

former and rain droplets in latter. The crucial problem here, is to understand

the dynamics of the formation of large objects (planetesimals, rain drops)

from small particles.

In the clouds smallwater droplets formby condensation in a super-saturated

environment. If only condensation and evaporation determines the evolu-

tion of the size of the droplets then, it can be estimated that, it would take an

unnaturally long time for raindrops to form in clouds. Clearly, the droplets

can either coalesce or bounce off after collision. The collision between

droplets is set by their relative velocities. If the velocity field of the droplets

is smooth everywhere then the relative velocities between droplets go to

1Thiswork is a result of collaborative effort with JanMeibohm, BernhardMehlig, Kristian

Gustavsson, Dhrubaditya Mitra, and Akshay Bhatnagar. All the 3D simulations were done

by Akshay Bhatnagar. The stability analysis presented in the second last section was done

by Jan Meibohm. Some part of this chapter is published in Ref. [3].
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zero as their relative distances go to zero. In this case, both the frequency of

collisions and collision velocities remains small [4] and the estimated time to

form raindrops is still unnaturally long. One way out of this conundrum is to

consider the possibility that the velocity field of the droplets does not remain

smooth but develop singularities – such that the relative velocity between

two infinitesimally close droplets remains finite. Such singularities which

can invariably develop in the particle velocity gradients are also known as

caustics [5]. The indirect effects of these singularities, namely the increase

in the rate of collision has been observed in many earlier works [6–11].

In this chapter, we study the rate at which the caustics develop in the

gradients of particle velocity field and its dependence on the fluid Reynolds

number and the Stokes number (St). The earlier studies, Falkovich andPumir

[12] have also calculated the rate of the formation of singularities. But their

data, was not extensive enough to determine how the rate depends on the

Stokes number in the limit St → 0. In this chapter, we show that in the limit

St → 0, the rate of caustic formation J ∼ exp(− C
St), where C is a constant, in

both two- and three-dimensions.

The rest of the chapter is organized as follows: In the next Sec. 3.2 we

discuss the model equations and give theoretical arguments to derive the

expression for J in both two- and three-dimensions. We then in Sec. 3.3, give

all the simulation details used in this study. In the later sections, we discuss

the results of the study in detail.

3.2 Model

We assume that the size of the inertial particles are smaller than η and a dust

grain or a droplet obey 1.23 and 1.24,

dX(t)
dt

= V(t),

dV(t)
dt

= 1
τp

[u(X, t) − V(t)] ,

We shall also use the word “heavy inertial particle” to mean a particle which

obey 1.23 and 1.24. The major non-dimensional number which govern the
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dynamics of inertial particle is the St = τp
τη
, where τη is the Kolmogorov time

scale.

In the Lagrangian frame of this heavy inertial particle the equation of evo-

lution of the gradient of its velocity matrix, ℤ, with components Zαβ ≡ 𝜕βVα

(α, β = 1, … , 𝔇 in 𝔇 dimensions), [12–15] is given by

dZαβ
dt

+ ZαγZγβ + 1
τp
Zαβ = 1

τp
Aαβ. (3.1)

In above 3.1, Aαβ ≡ 𝜕βuα are the components of the fluid velocity-gradient ma-
trix, ℤ. This equation contains the possibility that elements of ℤ can become

infinitely large in finite time. To see this first consider the same equation in

one-dimension. Now both the particle velocity-gradient (Z ≡ 𝜕xV), and the
fluid velocity-gradients (A ≡ 𝜕xu) are scalars and 3.1 simplifies to

dZ
dt

+ Z2 + 1
τp
Z = 1

τp
A. (3.2)

The solution for the Z, assuming A to be a constant, reads

Z(t) = a − bexp ((t − t∗)(b − a))
1 − exp ((t − t∗)(b − a)) , (3.3)

where a, b = − 1
2τp (1 ± √1 + 4Aτp). It is evident from 3.3 that the solution de-

velops singularity when

t = t∗ ≡ 1
a − b

log(
Z(0) − a
Z(0) − b). (3.4)

In order to gain further physical insights on the process of caustic forma-

tion, we rewrite 3.2 using a potential V(Z),
dZ
dt

= −𝜕V(Z)
𝜕Z , (3.5)

where V(Z) = Z3

3 + 1
τp

(Z
2

2 − AZ), and we have assumed A is constant. In Fig. 3.1,

we show the plot of one-dimensional potential V(Z) for the case τp = 1, and

A = 0. The system has a stable fixed point at the minima, and an unstable

fixed point at the maxima. The trajectory of Z always remain concentrated

at the minima until a large fluctuation in A pushes it to −∞.
In principle, 3.2 is an inappropriate model for flows in clouds because the

incompressibility criterion dictates A to be identically zero. Let us, never-

theless, model the effects of turbulence in 3.2 by replacing A by a Gaussian,
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V (Z)

Z

ab

Figure 3.1: The potential V(Z) = Z3

3 + 1
τp

(Z
2

2 − AZ) [see 3.5]. In the plot we have
chosen τp = 1 and A = 0.

white-in-time noise. This turns 3.2 into a stochastic differential equation.

From the corresponding Fokker-Planck equation Wilkinson and Mehlig [5]

evaluated the rate of formation of singularities

J ∼ exp
(

− C
τp)

. (3.6)

In higher dimension we study the invariants of the velocity gradient ten-

sor ℤ = 𝜕αVβ. We rewrite the evolution of ℤ below,

dℤ
dt

+ ℤ2 + 1
τp

ℤ = 1
τp

𝔸. (3.7)

In two- and three-dimensions appearance of singularities implies that the

trace of the matrix ℤ will become infinitely large [see e.g., 14, section 4.1].

Thus we can study formation of singularities by investigating the evolution

of 𝒯 r [ℤ],

d𝒯 r [ℤ]
dt

+ 𝒯 r [ℤ2] + 1
τp

𝒯 r [ℤ] = 0, (3.8)

where 𝒯 r[𝔸] ≡ 0 because of incompressibility. In two-dimension in the limit
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of τp → 0 the 3.8 can be simplified to

d𝒯 r [ℤ]
dt

+ {𝒯 r [ℤ]}2 + 1
τp

𝒯 r [ℤ] = 2𝒟 et [𝔸] . (3.9)

Here the leading order term is 𝒪( 1
τp

) and we have ignored terms of 𝒪(τp)
and higher [15]. Similarly in three-dimensions the equation for 𝒯 r[ℤ] can be
simplified to

d𝒯 r [ℤ]
dt

+ {𝒯 r [ℤ]}2 + 1
τp

𝒯 r [ℤ] = 2𝒬 [𝔸] , (3.10)

where 𝒬 [𝔸] is the quadratic invariant of the matrix 𝔸, i.e., 𝒬 [𝔸] ≡ λ1λ2+λ2λ3+
λ3λ1. Here λ1,λ2, and λ3 are the three eigenvalues of the matrix 𝔸. To arrive at
3.10, we have again ignored terms of order τp and higher [15]. Note that 3.10

is equivalent to 3.9 because in two-dimensions 𝒯 r [𝔸2] = 2𝒟 et [𝔸].

Assuming that the 𝒬[𝔸] and 𝒟 et[𝔸] is Gaussian, form the Fokker-Planck

equation for 𝒯 r [ℤ] above we predict that the rate of caustics formation will
be given by 3.6 in both two- and three-dimensions.

3.3 Simulation details

In both two- and three-dimensions we solve the Navier–Stokes equation

given by

𝜕tu + u ⋅ ∇u = −∇p + ν∇2u + f, (3.11)

where u is the incompressible velocity field, p is the pressure, ν is the viscosity

and f is the external force. Along with 3.11 we evolve Np particles governed

by 1.23 and 1.24. In addition to tracking the heavy inertial particles, we solve

3.7 on each of the particles. We choose ℤ = 0, the zero matrix, on all the

particles at t = 0. We monitor 𝒯 r [ℤ], every time it becomes less than a large
negative threshold, Ath, – we have used several values for this threshold –

we set ℤ back to zero matrix and count this event to be the formation of a

singularity.

In two-dimensions, we solve 3.11 using a pseudo-spectral solver in vor-

ticity stream-function formalism. We add a Ekman drag term (αu) to the
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RHS of 3.11, to avoid accumulation of energy at small wave modes. In three-

dimensions we use the pencil-code [16].

We give the parameters for the simulation in Table (3.1). For the two-

dimensional simulations we use a variety of different situations. We use a

deterministic Kolmogorov forcing f = f0 sin(kfx)ey, where f0 is the forcing am-

plitude, in runs 2d1-2d8, and a stochastic forcing in runs 2d9-2d11. The Kol-

mogorov force is always limited to a single wave-number kf. For a small kf we

develop a direct cascade, whereas for a large kf we develop a large range of

inverse cascade. We also change the threshold of detection of singularities,

Ath, as we shall show later, has no appreciable effect on the dependence of

J (rate of formation of singularities) on the Stokes number.

In Fig. 3.2 we show the snapshot of vorticity along with particles position

from the two-dimensional simulation 2d10 and in Fig. 3.3 we show the snap-

shot from three-dimensional simulation 3d1. As expected the density of the

heavy inertial particle is higher in the strain dominated regions of the flow

[17].
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Figure 3.2: Representative snapshot of vorticity overlaid with the positions

of particles (St = 0.22) from one of our two-dimensional simulations 2d9.
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Figure 3.3: A representative snapshot showing the positions of the particles

and iso-surface of |𝝎| from our three-dimensional simulation (3d1).
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runs N Reλ λ τη η ⋅ 10−3 f0 ⋅ 10−3 kf τℓ0
dt ⋅ 10−3 −Ath

2d1 1024 1311 0.28 2.9 5 5 4 15.0 5 1010

2d2 1024 1311 0.28 2.9 5 5 4 15.0 5 107

2d3 1024 1311 0.28 2.9 5 5 4 15.0 5 102

2d4 1024 1311 0.28 2.9 5 5 4 15.0 5 10

2d5 512 395 0.27 4.6 7 2.5 4 26.0 5 107

2d6 512 395 0.27 4.6 7 2.5 4 26.0 10 107

2d7 1024 395 0.11 1.6 4 5 35 2.64 5 1010

2d8 1024 77 0.05 1.4 3.7 5 100 0.74 5 107

2d9 1024 4100 0.41 2.1 5 5 2 − 3 12.55 1 107

2d10 512 720 0.4 2.2 10 5 2 − 3 13.9 2.5 107

2d11 512 26 0.04 1.32 8 5 40 − 41 4.84 5 107

3d1 512 90 0.2 0.39 14 0.05 5 5.46 — 1010

3d2 512 170 0.27 1.56 14 0.01 2 36.98 — 1010

Table 3.1: Parameters used in both our three dimensional simulations are

listed here. The two-dimensional runs are marked with the prefix 2d and the

three dimensional ones aremarkedwith the prefix 3d. Definition of symbols:

N, number of grid points in one direction, 2 − 𝔇 runs have N2 number of grid

points and 2 − 𝔇 runs have N3 grid points in simulation domain; dt, time-step

used in the 2−𝔇 solver. ν, viscosity; f0, amplitude of the force; ⟨⋅⟩, spatial aver-
age over the computational box and temporal average over the statistically-

stationary, non-equilibrium, state of turbulence; u0 = √
⟨u2⟩
𝔇 , the root-mean-

square velocity of the flow; kf, the forcing wavenumber; ℓ0 ≡ 2π/kf, the in-
tegral scale; τℓ0

= ℓ0/u0, the large-eddy-turnover-time; ω0 = √⟨ω2⟩, root-
mean-square vorticity; ϵν = νω2

0, the rate of energy dissipation; η ≡ (ν3/ε)1/4,

Kolmogorov (dissipation) length scale, λ = u0/ω0, the Taylor microscale;

Reλ = u0λ/ν, the Taylor microscale Reynolds number; St = τp/τη. We use

St = 0.1 − 3.1 in three-dimensions and St = 0.12 − 1.1 in two-dimensions. We

use a drag coefficient of 10−2 in all the 2 − 𝔇 runs except for 2d7 and 2d11,

where α = 10−3, and 2d8 where α = 2 ⋅ 10−4. All the values of St used in differ-

ent runs are given in Table (3.2).
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runs St

2d1 0.18, 0.20, 0.21, 0.24, 0.26, 0.28, 0.31, 0.34, 0.41, 0.46, 0.52, 0.69, 0.76

2d2 0.28, 0.31, 0.34, 0.41, 0.46, 0.52, 0.62, 0.69, 0.76

2d3 0.22, 0.26, 0.28, 0.31, 0.34, 0.41, 0.46, 0.52

2d4 0.18, 0.20, 0.21, 0.22, 0.24, 0.26, 0.28, 0.31, 0.34, 0.38, 0.41

2d5 0.22, 0.24, 0.26, 0.28, 0.32, 0.39, 0.43, 0.52, 0.54, 0.78

2d6 0.18, 0.19, 0.20,0.21, 0.22, 0.24, 0.26, 0.30, 0.32, 0.39, 0.43, 0.48

2d7 0.14 0.15, 0.17, 0.19, 0.22, 0.25, 0.28, 0.31, 0.47, 0.62, 1.00

2d8 0.13, 0.14, 0.16, 0.18, 0.21, 0.29, 0.36, 0.43

2d9 0.17, 0.18, 0.19, 0.21, 0.24, 0.29, 0.38, 0.48, 0.52, 0.62, 0.71

2d10 0.15, 0.16, 0.17, 0.18, 0.20, 0.22, 0.28, 0.36, 0.45, 0.50, 0.60, 0.68

2d11 0.12, 0.15, 0.17, 0.19, 0.23, 0.26, 0.30, 0.34, 0.38, 0.45, 0.53, 0.76

3d1 0.10, 0.11, 0.12, 0.14, 0.15, 0.16, 0.17, 0.27, 0.53, 0.69, 0.98

3d2 0.10, 0.11, 0.12, 0.14, 0.15, 0.20, 0.25, 0.30, 0.40, 0.50, 0.70

Table 3.2: Values of St used in different simulations

As the heavy inertial particles are much smaller than the energy contain-

ing scales of the flowweuse theKolmogorov length scale η and and time scale

τη as our characteristic length and time scales. In addition to usual Reynolds

number, we use the Stokes number St ≡ τp/τη to study the dynamics. The St
we use in our study are typical of cumulus clouds where droplets are of size

10 to 60 micrometer [18–20] (St varies from 0.01 t0 2). We use St = 0.1 to 3.1
in three-dimensions and St = 0.12 to 1.1 in two-dimensions. In Table (3.2) we
give a complete list of Stokes numbers used in each of our simulations.

3.4 Rate of caustics formation

Let Nc(t) be the total number of caustics recorded till time t. Then the rate of

caustics formation is defined as

J = lim
t→∞

Nc(t)
t

. (3.12)
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Figure 3.4: The rate-of-formation of singularities J, non-dimensionalized by

multiplying it with τη the Kolmogorov time scale, as a function of the Stokes

number, St. The different symbols used are: blue circle (3d1), orange square

(3d2), green triangle (2d1), red plus (2d5), purple star (3d7), brown diamond

(2d8), and pink cross (2d9).

In Fig. 3.4, we plot the non-dimensional, rate-of-formation of singulari-

ties, log10(Jτη), as a function of the Stokes number St from all our simulations.

As shown, the rate J obtained from all the simulations has a universal behav-

ior, where all the data converge to a single curve. We verify that the rate

of caustic formation J ∼ exp(−C/St), by plotting log10[− log10 J], vs on 1/St, in
Fig. 3.5. The data for all the runs at large 1/St falls over a line of slope unity,
implying that the relation (3.6) holds. This shows the remarkable universal-

ity of 3.6. In Fig. 3.4 and 3.5 we show data from simulations in both three-

and two-dimensions. In two-dimensions, depending on which length-scale

is being forced, the turbulence may be dominated by either direct cascade of

enstrophy (e.g., run 2d2) or inverse cascade of energy (e.g., run 2d8). In some

two-dimensional simulations we have used a deterministic, Kolmogorov, ex-
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ternal force in others we have used a stochastic, white-in-time, force. We

have changed our Reynolds number over a large range, from approximately

70 to about 4000.

In the limit of small St, 3.6 holds in all of these cases, i.e., it is univer-

sal, but, as expected, the constant C is not. Earlier work [13] had assumed a

dependence of J ∼ exp(− C

St2
). We find that this assumption does not hold.

−0.5 0.0 0.5 1.0

log10 (1/St)

−0.2

0.0

0.2

0.4

0.6

0.8

lo
g 1

0
[ −

lo
g 1

0
( J
τ η

)]

Figure 3.5: The plot of log10 [− log10(τηJ)] as a function of log10(1/St). A slope

of unity in this plot implies that 3.6 holds. Two continuous lines with slope

unity are also plotted. For comparison, we plot a dashed line with slope of

two as well. For definition of symbols see Fig. 3.4.

3.5 Statistical properties of ℤ and 𝔸

Several assumptions have been made to derive the expression of J given by

3.6. In this section, we shall examine each of the assumption and make com-

parison with the data from the simulations.
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(a) (b)

(c) (d)

Figure 3.6: (top panels) Scatter plots of 𝒟 et [ℤ] vs. 𝒟 et [𝔸] from our two

dimensional simulation 2d1 at two different values of St: (a) St = 0.18, and
(b) St = 0.31. (bottom panels) Scatter plots of 𝒬 [ℤ] vs. 𝒬 [𝔸] from simulation

3d1 for two different values of (a) St = 0.12 and (b) 0.53. Black solid line in

all the plots from top panels represents 𝒟 et [ℤ] = 𝒟 et [𝔸] while it represents
𝒬 [ℤ] = 𝒬 [𝔸] in the figures in bottom panel.

The right hand side of 3.9 and 3.10 is derived using a perturbative expan-

sion on τp [15], where in the limit St → 0, we assume 𝒟 et [ℤ] = 𝒟 et [𝔸] in
two-dimensions and 𝒬 [ℤ] = 𝒬 [𝔸] in three-dimensions. In Fig. 3.6(a,b) we

show the scatter plot of 𝒟 et [ℤ] vs 𝒟 et [𝔸] for St = 0.18 and 0.31 form the sim-

ulation 2d1. Similarly, in Fig. 3.6(c,d) we show the scatter plot of 𝒬 [ℤ] vs 𝒬 [𝔸]
for St = 0.12 and 0.53, from the three-dimensional simulation. The black di-

agonal line in the figures represent 𝒟 et [ℤ] = 𝒟 et [𝔸] in two-dimensions and
𝒬 [ℤ] = 𝒬 [𝔸] in three-dimensions. For the smallest St in both two- and three-
dimensions the dispersion about the diagonal is small. At larger Stokes the

higher order terms in the expansion becomes more significant and thus the

dispersion about the diagonal increases.

77



Chapter 3 Section 3.5

In one-dimension, to be able to calculate the rate-of-formation of sin-

gularities analytically we must assume that the RHS of 3.2, is a Gaussian,

white-in-time, noise. Similarly, 3.6 to hold in two- and three-dimensions,

𝒟 et [𝔸] and 𝒬 [𝔸] respectively must also be Gaussian and white-in-time. In

Fig. 3.7, we show the probability distribution of 𝒟 et [𝔸] and Fig. 3.8 we show
the distribution of and 𝒬 [𝔸]. Neither the probability distribution function of
𝒟 et [𝔸] in two-dimensions nor the probability distribution function of 𝒬 [𝔸]
in three-dimensions is Gaussian. An important implication could be that 3.6

holds even for a non Gaussian noise, but such a proof does not exist.

4 3 2 1 0 1 2 3
[ ] 2
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0.24
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0.52

Figure 3.7: The probability distribution function of 𝒟 et [𝔸] at the location of
heavy inertial particles from one of our two-dimensional simulations –run

2d1 at different St.

Note that in two-dimensions 𝒟 et [𝔸] is also known as the Okubo-Weiss

parameter [21, 22], Λo. Its auto-correlation function calculated along La-

grangian trajectories, or at fixed Eulerian points in space, is exponential in

time with a characteristic decay time of the order of one to two Kolmogorov
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time [23] – characteristic time scale of the viscous scales of turbulence. It is

safe to assume that the same holds for the correlation function of Λo along

trajectories of heavy inertial particles, particularly in the limit of small τp.

Hence for time scales much larger than Kolmogorov time we can consider

the RHS of 3.9 to be white-in-time. The effect of non-zero correlation time

of 𝒟 et [𝔸] may manifest itself as corrections to leading order behavior in 3.6
or may just modify the constant C.

Figure 3.8: The probability distribution function of 𝒬 [𝔸] at the location of
heavy inertial particles from one of our three-dimensional simulations –run

3d1.

3.6 Path to caustics formation

The heavy inertial particles are preferentially ejected from regions of flow

where the vorticity is large [17]. This suggests that particle-particle collisions

are more likely to happen in regions where the flow vorticity is small. The
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particle-particle collisions with large relative velocities necessarily corre-

spond to formation of singularities of𝒯 r [ℤ]. 3.9 shows that in two-dimensions
𝒯 r [ℤ] can become singular only if 𝒟 et [𝔸] is negative. These correspond to
regions of the flow that are topologically hyperbolic points [22]. To demon-

strate this we plot in Fig. 3.9 𝒯 r [ℤ] as a function of time for several heavy

inertial particles from our two-dimensional simulation 2d1 at St = 0.31. The
lines are colored by red or blue depending on whether the flow at the posi-

tion of the particle is topologically in a hyperbolic (red) or an elliptic (blue)

point, respectively. Clearly the caustic formation primarily occurs when the

region is hyperbolic.
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t/
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Figure 3.9: Typical time traces of 𝒯 r [ℤ] from our two-dimensional run 2d1

at St = 0.31. In the plot blue and red colors correspond to the positive and

negative sign of 𝒟 et [𝔸] respectively.

This observation can be understood by doing a stability analysis [24] of

3.7. We first non-dimensionalize 3.7 using the transformation t → t/τp to get,

dℤ
dt

= ℤ2 − ℤ + 𝔸. (3.13)

We then expand ℤ in the orthogonal basis e0 = ( 1 0
0 1 ), e1 = ( 0 −1

1 0 ), e2 =
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( 1 0
0 −1 ), and e3 = ( 0 1

1 0 ) as,

ℤ =
3

∑
i=0

ziei, (3.14)

where zi = ℤ ⋅ ei and the dot product is defined as 𝕏 ⋅ 𝕐 = 1
2𝒯 r(𝕏𝕐 ). In this

convention A0 = 𝔸 ⋅ e0 = 0 because of incompressibility.

We further make the assumption that the particle can either be in a strain

dominated region or vortical. For the case in which the region is strain dom-

inated, the eigenvalues of 𝔸 is real (±λ̃) or,

𝔸 = λ̃e2. (3.15)

In the vortical region the eigenvalues of 𝔸 is imaginary (±ιω̃) or

𝔸 = ω̃e3 (3.16)

Thus, the dynamical equation for zi using 3.15 and 3.16 are,

dz0
dt

= −z0 − z20 − z21 − z22 − z23 (3.17)

dz1
dt

= −z1 − 2z0z1 (3.18)

dz2
dt

= −z2 − 2z0z2 + λ̃ (3.19)

dz3
dt

= −z3 − 2z0z3 + ω̃ (3.20)

These dynamical equations can be separated based on the eigenvalues of

𝔸. For the case when the eigenvalues of 𝔸 is real, the equations are,

dz0
dt

= −z0 − z20 − z22 (3.21)

dz2
dt

= −z2 − 2z0z2 + λ̃, (3.22)

and when eigenvalues of 𝔸 is imaginary, the relevant equations are,

dz0
dt

= −z0 − z20 − z23 (3.23)

dz3
dt

= −z3 − 2z0z3 + ω̃ (3.24)

Let us first consider the 3.21 and 3.22. The fixed points z∗
0 , z∗

2 can be deter-

mined by setting the RHS to 0. For λ̃ = 0, the trivial solution is z∗
0 = z∗

2 = 0.
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The other fixed points are z∗
0 = 0, z∗

2 = −1, z∗
0 = z∗

2 = −1/2 and z∗
0 = 1/2, z∗

2 = −1/2.
A saddle node bifurcation occurs at z∗

0 = z∗
2 = −1/2.

(a)

(b)

Figure 3.10: The joint distribution of 𝒯 r [ℤ] and 𝒯 r [𝔸2] for (a) St = 0.26, and
(b) St = 0.50. Each vertical slice in the distribution is normalized to unity.

Thus, the dark red represents the value 1 and the faint red 0. The optimal

trajectory is plotted in blue and the trajectory of the fixed-point is marked

in dashed green. Horizontal dashed line represents 𝒯 r [𝔸2] = 1/8.

When λ̃ is finite, one obtain the following parametric equation
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λ̃2 = −z0(z0 + 1)(2z0 + 1)2, (3.25)

and the bifurcation here occurs for {z∗
0 , z∗

2} = {(−1
4 (2 ± √2), ± 1

2√2
} and λ̃2 = 1

16 .

When the eigenvalues are imaginary or the dynamics is governed by 3.23

and 3.24, fixed points are stable and non-stable spirals. This implies no caus-

tics can form in the vortical region.

Figure 3.11: Typical time traces of 𝒯 r [ℤ] from our three-dimensional run

3d1. In the left plot blue and red colors correspond to the positive and neg-

ative sign of 𝒬 [𝔸], respectively. In the right plot green and magenta colors

corresponds to the positive and negative sign of Δ [𝔸] = 27
4 ℛ [𝔸]2 + 𝒬 [𝔸]3, re-

spectively, where Δ [𝔸] is the discriminant of the characteristic polynomial of
𝔸. The traces are colored according to the topological character of the flow
at the location of the particle. If the flow is topologically an elliptic point (a

vortex) we use the color blue. If the flow is topologically a hyperbolic point

(a strain dominated point) we use the color red.

Note that 𝒯 r [𝔸2] = 2(λ̃2 + ω̃2) and 𝒯 r [ℤ] = 2z0. Thus,

𝒯 r [𝔸2] = −𝒯 r [ℤ] (
𝒯 r [ℤ]

2
+ 1) (𝒯 r [ℤ] + 1)

2
. (3.26)

From the stability analysis, we can conclude that the caustic can occur

only in the strain dominated when 𝒯 r [𝔸2] exceeds 1
8 . In Fig. 3.10 we plot

𝒯 r [𝔸2] vs. 𝒯 r [ℤ] obtained from our two-dimensional simulation 2d4. The

optimal trajectory is obtained by finding themost probable𝒯 r [𝔸2] for a given
𝒯 r [ℤ]. In the plot we show this optimal trajectory using the blue line and the
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trajectory of fixed point is plotted using the dashed green line. The optimal

trajectory closely follows fixed point till bifurcation, or 𝒯 r [𝔸2] = 1/8marked
by horizontal dashed line. Beyond that 𝒯 r [ℤ] → −∞ almost vertically.

In Fig. 3.11 we show the evolution of 𝒯 r [ℤ] for three-dimensional sim-
ulation. Similar to two-dimension, we find the formation of singularities –

large negative excursions of𝒯 r [ℤ]– starts when the flow is hyperbolic in na-

ture. In three-dimensions 3.10 shows that 𝒯 r [ℤ] can become singular only
if 𝒬 [𝔸] is negative – these too correspond to regions of the flow which are

topologically hyperbolic [25].

3.7 Conclusion

In this chapter we investigated the rate of caustic formation in a particle

laden turbulent flow. The rate, given by 3.6 was first derived for the one

dimensional model, 3.2 in Ref. [5]. This work has been extended to two-

and three-dimensions in Refs [26, 27] respectively. Similar to this chapter, in

both of these studies, 3.6 was argued to hold by analogy in two- and three-

dimensions, but no systematic derivationwas provided. Inmost of the earlier

studies except Ref. [12], the fluctuations in 𝔸 was assumed to be Gaussian,

in this study, we make no such assumptions. Furthermore our study brings

out the clear nature of scaling for the rate of caustics formation in the limit

St → 0.

Singularities found in a numerical simulations are necessarily not true

singularities – their detection depends on the threshold value we use. We

have checked that by changing our threshold value −Ath from 102 to 1010

the rate-of-formation of singularities itself changed, by small amounts, but

its dependence on Stokes, 3.6, remains unchanged. This is expected, be-

cause in 3.2 once 𝒯 r [ℤ] < −1/τp the dynamics is determined by the nonlinear
term [𝒯 r [ℤ]]2. Hence any stochastic trajectories of ℤ where 𝒯 r [ℤ] becomes
smaller than −1/τp will reach blowup.

Possible effects the non-zero correlation time of the flow may have on

the rate-of-formation of singularities have been explored in a series of pa-
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pers [28]. None of these consider actual turbulent flows but synthetic flows

(statistical models) with a characteristic length scale (l), a characteristic ve-

locity scale (V) and a characteristic time scale (τ) all three of which can be

chosen independent of one another. This way, a new dimensionless num-

ber, the Kubo number, Ku ≡ Vτ/l, can be introduced. The rate-of-formation
of caustics for such models, in one dimension, was calculated numerically

[28] and compared with analytical perturbation theory. In the limit of white-

noise 3.6 was recovered. But for finite Ku the rate-of-formation of singular-

ities on St is not universal but depends on Ku too. In turbulent flows Ku is

unity because the characteristic time scale, τη = η/uη, where uη is the charac-

teristic velocity scale at the Kolmogorov scale. For Ku = 1, the simulations

of the statistical model confirmed 3.6.

In one dimensions, from 3.2 the rate-of-formation of singularities can be

calculated exactly and 3.6 is the leading order term in the expression. But

the mapping of the two-and three-dimensional problems to 3.6 holds only

for small τp, equivalently small St. Hence, in two-and three-dimensions 3.6

hold only in the limit of small St. Simulations in two-dimensions [15] have

shown that for small St, the approximation, 𝒟 et [ℤ] ≈ 𝒟 et [𝔸] holds.
The formation of caustics occur predominantly in the strain-dominated

region of the flow. In two-dimension this can be understood using a sim-

ple stability analysis (Ref. [3] for more details). A similar analysis although

possible, is much difficult in three-dimension and is left for future studies.
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4
Clustering and energy spectra in
dusty-gas turbulence

4.1 Introduction

In the previous chapter-3, the back-reaction from particle was ignored to

study the multiphase flow. In this chapter, we consider a problem in the

regime of moderately dense suspension, where the flow is affected by the

particles. For notational convenience, in the rest of this chapter, we shall

call the solvent phase “gas” and the particles “dust”. As discussed in chapter-

2, the simplest model of such multiphase flows is based on the assumption

that the dust is a collection of heavy inertial particles (HIPs).

In the absence of dust, the turbulence in the gas phase has been exten-

sively studied [1–3]. The pioneering work of Kolmogorov [4] has established

that in three-dimensions the (angle-integrated) energy spectrum of the gas

shows power-law behavior E(k) ∼ k−5/3 within the inertial range followed by

the dissipation range where the energy spectrum shows exponential decay 1.

More importantly, the inertial range spectral exponent is universal, i.e. it

1Experiments and recent numerical simulations have demonstrated that the Kolmogorov

picture is not complete, but must include corrections due to intermittency. The intermit-

tency corrections to the energy spectrum is small and is ignored.
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does not depend on the Reynolds number and the mechanism of turbulence

generation. Does the presence of dust modifies this energy spectrum? Obvi-

ously, in general, the answer depends on the number, size, and shape of the

dust grains. In this chapter, we study this question using direct numerical

simulations (DNS) of the dusty gas flow.

Previous studies [5] has suggested that in the presence of dust a newpower-

law behavior can emerge where E(k) ∼ k−4 in three dimensions. Is this expo-

nent universal, in the sense that, is it independent of the particle properties

such as Stokes number and the dust concentration? It is difficult to provide

an answer to this question because an accurate determination of the expo-

nent requires obtaining clean scaling of the energy spectrum over at least a

decade. This is a formidable task in three dimensions but is a much sim-

pler proposition in two-dimensions. Hence to understand the universality

(or lack thereof) we study this problem in two dimensions.

Two-dimensional turbulence is the simplest model to investigate flows

in the atmosphere and oceans [1, 3, 6]. A key feature of two-dimensional

turbulence is that it supports a bi-directional cascade, an inverse cascade of

energy from forcing scales to larger scales and a forward enstrophy cascade

from forcing scales to smaller scales [7–12]. As we are interested in investi-

gating how dust modifies small scale flow properties, we concentrate on the

forward enstrophy cascade.

In two-dimensional gas turbulence, forced at large scales (small k) and in

the presence of air-drag friction (α), the scaling exponent of the energy spec-

trum is universal with respect to the Reynolds number but non-universal in

general – it depends on the air-drag-friction coefficient [13, 14]. The scaling

exponent and its non-universality can be understood as an effect of the loss

of enstrophy due to air-drag-friction [15]. In our simulations, we choose an

α such that in the absence of dust E(k) ∼ k−3.9. We then perform extensive

simulations of the dusty-gas flow by varying both the Stokes number and the

mass-loading-parameter (ϕm, ratio of the total mass of the dust to the total

fluid mass).

The rest of this chapter is organized in the following manner. We first
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present themodel of dust grains and fluid and describe the numericalmethod

used to study the problem in Sec. 5.2. In Sec. 5.9, we study the pair distribu-

tion function of dust particles where we show that increasing mass-loading

parameter reduces the clustering of dust. In Sec. 4.4 and 4.5, we study the ki-

netic energy spectra and scale-by-scale enstrophy budget for the gas phase.

We show that in the presence of dust-gas coupling, a new scaling range,

whichwe call the dust-dissipative range, emerges in the kinetic energy spec-

tra of the gas. Furthermore, using a scale-by-scale enstrophy budget analysis

we show that the new scaling regime appears due to a balance between the

injection (from the dust to the gas) and viscous dissipation. Our main result

is that the scaling exponent is not universal but depends on both St and the

mass-loading parameter ϕm.

4.2 Simulation details

Wemodel the gas phase in the Eulerian-framework using the Navier-Stokes

equation in the vorticity-streamfunction formulation,

𝜕tω + u ⋅ ∇ω = ν∇2ω − αω + fk + ∇ × Fd→g, (4.1)

where ω(x, t) ≡ ∇ × u(x, t) is the vorticity field, u(x, t) is the incompressible
velocity field, ν is the viscosity, and α is theEkmandrag coefficient. To sustain

turbulence we force the equation with the Kolmogorov driving of the form

fk(x, t) = −f0kf cos(kfy), where f0 is the amplitude and kf is the forcing wave-

mode. The last term Fd→g is the back-reaction from the dust phase to the

gas.

We solve 4.1 in the vorticity-stream function formulation in a square peri-

odic box of length L and generate a stationary turbulence by forcing at wave-

mode kf = 4. The domain is discretized taking N collocation points along

each direction. For time evolution we employ a second-order Runge-Kutta

scheme [16]. We take ω(x, 0) = −f0kfν [cos(kfx) + cos(kfy)]. In Fig. 4.1 we show
a representative snapshot of the vorticity field in the steady state for the case

where Fd→g = 0, from the simulation.
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Figure 4.1: Representative steady-state snapshot of vorticity field (ω) from

the simulation of pure gas phase. (Inset) Log-log plot of compensated energy

spectrum [k3.9E(k)] versus kη, where η is the Kolmogorov dissipation length

scale. To generate turbulent flow we use the following parameters: α = 10−2,

f0 = 5 × 10−3, kf = 4 and ν = 10−5. We vary N = 1024 and 4096. We find:

the Kolmogorov disipation length η(≡
4√ν3/ϵ) = 5.4 × 10−3, the Kolmogorov

dissipation time scale τη (≡ √ν/ϵ) = 2.9, and enstrophy dissipation rate β =
2.8 × 10−4.

The details of modeling the dust phase is given in chapter 2. For com-

pleteness here we rewrite the equations of motion for a grain of dust (1.23

and 1.24),

dX(t)
dt

= V(t),

dV(t)
dt

= 1
τp

[u(X, t) − V(t)] ,

where X is the position, V is the velocity of a dust particle, u is the velocity

of the gas at a point X, and τp ≡ 2ρpa2/9ρfν is the particle relaxation time.
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In Fig. 4.2, we show that comparison of kinetic energy spectrum of the

fluid as obtained using the ERPP and the particle in cell. We find that the

scaling in the spectra is independent of the choice of method used to dis-

tribute the back-reaction forces. Due to the ease of computation we use

particle in cell for all the dns in this chapter.

10−2 10−1 100

kη

10−13

10−11

10−9

10−7

10−5

10−3

E
(k

)

particle in cell
ERPP

Figure 4.2: Comparison of the kinetic energy spectrum for the cases where

the particle back-reaction is treated using ERPP and particle in cell. The

simulation is conducted at St = 0.33, ϕm = 1 and N = 1024. In the ERPP

simulation we take ΤR = h2/2ν = 1.89.

We further compare the kinetic energy spectra obtained for two resolu-

tion N = 1024 and 4096 from particle in cell simulation. Such comparisons

are important to determine the convergence of the solution. In Fig. 4.3, we

show the energy spectra for St = 0.33 and ϕm = 1 at both the resolutions. The

spectra shows the same scaling in the inertial range for both N = 1024 and

4096. We find that, increasing the resolution only extends the scaling range

to smaller scales.
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Figure 4.3: Comparison of the kinetic energy spectrum for St = 0.33 and
ϕm = 1 at two resolutions. Inset shows the compensated plot showing the

scaling range.

In Fig. 4.4 we show a representative pseudo-color plot of the vorticity

field at high mass-loading ϕm = 1. In contrast to the case where ϕm = 0, here

we observe small-scale vortices form in the regions where dust particle clus-

ter. Our observation is consistent with the earlier study of two-dimensional

dusty-gas turbulence [17].

In the statistically stationary state, we continue the DNS for another 35τℓ0

to collect statistics of the turbulent flow. Here τℓ0
≡ 2π/kfu0 is the large-eddy-

turnover-time and theKolmogorov time scale τη ≡ √ν/ϵ is approximately τℓ0
/6

in our simulation. Similar to aerosols in clouds [18], we assume that ratio of

material density of dust over the gas density is ρp/ρf ∼ 103.
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Figure 4.4: (a) Representative snapshot of ω during steady state for St =
0.33 and ϕm = 1.0. (b) The positions of all the dust particles are overlaid

as olive dots on the underlying vorticity plot of (a). The diameter of each

dust particle is assumed to be much smaller than η. We vary St in the range

0.17 − 1.67 and Np in range 1.5 ⋅ 104 − 1.5 ⋅ 105 to achieve mass-loading (ϕm) of

0.1 − 1.0 respectively. Only exception is made for St = 0.17 for results shown
in Sec. 4.4 and Sec. 4.5 where we take Np = 4.5 ⋅ 105 to achieve ϕm = 1.
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4.3 Clustering

We quantify the clustering by using the cumulative pair distribution function

N(r) ≡
⟨

2
Np(Np − 1) ∑

i<j
Θ(r− ∣ Xi − Xj ∣)

⟩
. (4.2)

100 101 102 103

r/η

10−4

10−2

100

N
(r

)

φm = 1

slo
pe =

1.73

St=0.17
St=0.33
St=0.67
St=1.00
St=1.33
St=1.67

(a)

0.5 1.0 1.5
St

1.2

1.4

1.6

d
2

one way coupling
φm = 0.1
φm = 0.4
φm = 1.0

(b)

Figure 4.5: (a) Log-log plot of the cumulative distribution function N(r) vs. r/η
for ϕm = 1 and different St. The dashed line represents least square fit with

corresponding value of the slope. (b) The correlation dimension d2 vs. St for

different ϕm.

Here Θ is the Heaviside function and the angular brackets denote aver-

aging over different stationary-state turbulent configurations. In Fig. 4.5(a),
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we plot N(r) versus r for fixed ϕm = 1 and with different St. In the limit r→ 0,

N(r) ∼ rd2 , where d2 is the correlation dimension [19]. We obtain d2 by per-

forming a least square fit in the range 1 < rη < 10.

In Fig. 4.5(b) we plot the correlation dimension d2 as a function of St for

different values of ϕm. In the limit St → 0, 1.24 gives V(X, t) = u(X, t), which
implies that the spatial distribution of the particles is uniform (d2 = 2). The

opposite limit St → ∞, corresponds to the ballistic regime where the inertial

particles detach from the underlying flow, again resulting to a uniform spa-

tial distribution. At intermediate St, the correlation dimension d2 < 2, as the

particles preferentially cluster in the strain dominated regions of the flow.

Hence we expect a non-monotonic behavior in d2 as the St is increased from

0 Fig. 4.5. We find that d2 attains a minimum value, which corresponds to

maximum clustering, around St ≈ 0.6 [20]. We observe that for all the val-

ues of ϕm this is indeed the case. However, the amount of clustering (d2)

decreases (increases) with increasing ϕm. We find that for a fixed St, the

maximum clustering is obtained for one-way coupled simulations where the

back-reaction from the dust is ignored. Similar results have also been ob-

served for particle-laden turbulent homogeneous shear flows [21, 22]. Quali-

tatively, the small-scale vortices produced in presence of mass-loading expel

particles hence clustering reduces as with ϕm increases.

4.4 Energy spectra

In this section, we study the angle averaged velocity power spectrum,

E(k) ≡ 1
2 ⟨ ∑

k−1/2≤∣m∣<k+1/2
∣ um ∣2

⟩
, (4.3)

where um is the velocity at the fourier mode m. In the absence of dust par-

ticles (ϕm = 0), the energy spectrum [Fig. 4.1] shows inertial range scaling

E(k) ∼ k−3.9 for 0.03 ≤ kη ≤ 0.1 and decays exponentially in the dissipation

range (kη > 0.10) [23].
We find that once the feedback from the dust to the gas phase is included,

the energy spectra changes dramatically in the followingmanner: the inertial
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range scaling with an exponent of k−3.9 persists till a critical wave number Kc;

for k > Kc, we observe a new power-law E(k) ∼ k−ξ with ξ < 3.9. This scaling
range, which we henceforth call dust-dissipative range, continues, in some

cases, almost up to the dealiasing scale kmax. The new scaling exponent ξ

is non-universal – it depends on both St and the mass-loading parameter

ϕm. To demonstrate this we first compare the energy spectra for the case

with no feedback (dashed black line) with three representative cases with

feedback: ϕm = 1 and three different values of St, in Fig. 4.6(a). For k <
Kc all the four spectra show the same scaling behavior. But for k > Kc the

spectrum without feedback (ϕm = 0) falls off very sharply compared to the

ones with feedback. To explore the scaling behavior of the spectra in detail,

in Fig. 4.6(b) we plot the same spectra compensated with k3.9. For k < Kc all

the compensated spectra look horizontal, with fluctuations. In contrast, for

k > Kc the compensated spectrum for the case with no feedback (ϕm = 0)

falls off sharply, indicating an exponential fall off, whereas the ones with

feedback grows with k suggesting the emergence of a new scaling regime

with an exponent ξ < 3.9. Next we calculate ξ by a least-square fit to the tail

of the spectra with feedback. The values of ξ we obtain depends on St.

Next, in Fig. 4.6(c) we plot the three spectra with feedback again, this time

compensated with kξ. The range over which the specta are horizontal shows

the extent of new dust-dissipative range. Next we do a similar analysis where

we compare the case with no feedback again with three cases with feedback;

but this time we hold St = 0.67 fixed and consider three different values of

ϕm. The corresponding figures are shown in the right column of Fig. 4.6. We

systematically calculate the scaling exponent ξ for three values of St between

0.17 and 1.67 with ϕm = 1 and for three values of ϕm between 0.1 and 1 with

St = 0.67. With St, we find that ξ first decreases, reaches its minimum value

ξ ∼ 3 for St = 0.33 [see Fig. 4.6(d,e)] and then increases again. For a fixed

St = 0.67, ξ reduces monotonically as ϕm is increased [Fig. 4.6(b,d, and f)].

In Table 4.1 we list the scaling exponent ξ, obtained from the energy spec-

tra, with its error estimate. It is not trivial to estimate the error in measure-

ment of ξ. We select the scaling range as the range over which the scaling
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Figure 4.6: Log-log plot of energy spectra for (a) ϕm = 1.0, different values
of St, (b) St = 0.67, different values of ϕm Black dashed line shows E(k) for
ϕm = 0. (c,d) Log-log plot of energy spectra E(k) compensated by k3.9. The

black dashed lines shows the compensated spectra for the case ϕm = 0, i.e.,

no feedback. Once the feedback is included, the compensated spectra show

a rise at large wavenumbers, i.e., a new scaling regime emerges. (e,f) Log-log

plot of energy spectra compensated by kξ where the exponents ξ for each St

and ϕm is given in the figure. In (c) and (e) the mass loading ϕm = 1, while

St = 0.67 in (d) and (f). The scaling exponents of energy spectra in the dust-
dissipative range is obtained by doing a local slope analysis. The maximum

standard error [24] on the local slope for each data set is around ±0.05.
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exponent (obtained from local slope) of the energy spectra is within ±0.1 of
its mean value. We use the maximum standard error [24] of the local slope

as a reasonable estimate of error. We have checked that, if we calculate

the exponents ξ over half the data-set the values obtained remain within the

range of error. Note that the range of the scaling regime is not very large

even in the best cases. Consequently, sub-leading terms in scaling behavior

may contribute significantly [25]. The actual error in the determination of

the scaling exponents is likely to be larger than the values we quote. In the

next section, we calculate the exponent in another manner.

4.5 Enstrophy budget

To understand the scaling behavior we now study the scale-by-scale enstro-

phy budget equation:

Πω(k) = 𝒟ω(k) − αΩ(k) + ℱ k(k) + ℛ(k). (4.4)

Here

Ω(k) ≡
⟨∑

m≤k
∣ ωm ∣2

⟩
(4.5a)

is the cumulative enstrophy up to wave-number k,

Πω(k) ≡
⟨∑

m≤k
ωm(u⋅∇𝝎)−m⟩

(4.5b)

is the enstrophy flux through a sphere of radius k in Fourier space due to the

non-linear term,

𝒟ω(k) ≡ −ν
⟨∑

m≤k
m2 ∣ ωm ∣2

⟩
(4.5c)

is cumulative enstrophy dissipation rate, −αΩ(k) is the contribution due to

the Ekman friction,

ℱ k(k) ≡
⟨∑

m≤k
ωmfk−m⟩

(4.5d)

is the cumulative enstrophy injected due to Kolmogorov forcing, and

ℛ(k) ≡
⟨∑

m≤k
ωm(∇ × Fd→g)−m⟩

(4.5e)
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is the contribution because of the back reaction from the dust particles to

the gas.

10−2 10−1 100

kη

−4

−2

0

2

4

E
n

st
ro

p
h
y

b
u

d
ge

t Πω

Dω
F k

−αΩ

(a)

10−2 10−1 100

kη

−5

0

5

E
n

st
ro

p
h
y

b
u

d
ge

t

Πω

Dω
F k

−αΩ
R

(b)

Figure 4.7: Semi-log (X-axis in log scale) plot of scale-by-scale enstrophy

budget for (a) ϕm = 0, (b) St = 0.67 and ϕm = 1. The ordinates of figure (a) and

(b) are normalized by the enstrophy dissipation rate β.

101



Chapter 4 Section 4.5
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R
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Figure 4.8: Semi-log plot ofℛ(k) zoomed for kη ≤ 0.4. Note thatℛ(k) changes
sign form negative to positive at Kc. The ordinates of the figure is normalized

by the enstrophy dissipation rate β.

In Fig. 4.7(a) we plot the enstrophy budget for the gas in the absence of

particles (ϕm = 0). Similar to earlier studies, we observe that at large scales

enstrophy injected by external forcing is primarily balanced by the Ekman

drag and the enstrophy flux Πω(k) decreases with increasing k [11].

We now show that the presence of dust particles dramatically alters the

enstrophy budget in the range of wavenumber which belongs to the dissipa-

tion range for the case with no feedback. In Fig. 4.7(b) we plot the cumulative

contributions of all the terms in budget for St = 0.67 and ϕm = 1.0. The dust
particles inject enstrophy (ℛ) at large k which is then balanced by viscous

dissipation 𝒟ω. We find a negligible change in shape of Πω, ℱ k and the Ek-

man drag term in the inertial range. A closer look at ℛ [Fig. 4.8] reveals that

it makes a net negative contribution to budget till a wavenumber Kc after

which it turns positive. Clearly, the particles extracts enstrophy from the

flow at small k (large scales) but injects enstrophy at large k (small scales).

Furthermore, for k > Kc the two dominant terms that balance each other

are the contribution because of the back reaction from the dust particles to

the gas ℛ and the cumulative enstrophy dissipation due to viscosity 𝒟ω, i.e.

ν∑m≤km
4E(m) ∼ ℛ(k). Taking the derivative with respect to k, we get
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Figure 4.9: Log-log plot of ℛ(k) for (a) ϕm = 1, different values of St and (b)

St = 0.67, different values of ϕm. (Inset) Linear plot of Kcη (mode where ℛ(k)
changes sign) vs. St. Dashed lines in both (a) and (b) shows the scaling for

ℛ(k).

E(k) ∼ k−4dℛ(k)
dk

(4.6)

for k > Kc. In Fig. 4.9(a,b) we show that ℛ(k) ∼ kγ for k > Kc. Using 4.6 and

noting that E(k) ∼ k−ξ, we get ξ = 5 − γ. In Table 4.1, we present the scaling

exponent ξ evaluated using the dominant balance discussed abovewith those

obtained from Fig. 4.6. Except for ϕm = 0.4, the two different methods for

estimating ξ are in reasonable agreement. Note that the range over which

scalings are observed in Fig. 4.6 and Fig. 4.9 are slightly different.
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We would like to point out that using arguments similar to the paragraph

above, an equivalent prediction for the scaling of the energy spectrum can be

also obtained from the steady-state spectral kinetic energy transfer equation

[3, 6]

T(k) = 𝒟(k) − αE(k) + ℱ (k) + R(k), (4.7)

where

T(k) ≡
⟨ ∑

k−1/2≤m≤k+1/2
um(u⋅∇u)−m⟩

(4.8)

is the transfer function,

R(k) ≡
⟨ ∑

k−1/2≤m≤k+1/2
um(Fd→g)−m⟩

(4.9)

is the contribution due to particle fluid coupling, 𝒟(k) ≡ −νk2E(k) is the vis-
cous dissipation rate, −αE(k) is the dissipation rate due to Ekman drag, and

ℱ (k) is the energy injection rate due to Kolmogorov forcing. Since T(k) is
negligible for k ≥ Kc, the scaling exponent for the energy spectrum can also

be obtained from the balance between 𝒟(k) and R(k).

St ϕm ξ ≡ 5 − γ ξ (Fig. 4.6)

0.17 1.0 3.24 3.25

0.33 1.0 3.16 3.06

0.67 1.0 3.24 3.20

1.00 1.0 3.33 3.40

0.67 0.8 3.30 3.34

0.67 0.4 3.20 3.72

Table 4.1: Scaling exponent ξ = γ − 5 obtained from dominant balance of

the viscous term (𝒟 ) and the contribution because of back reaction from

the dust particles to the gas (ℛ) [see 4.6] for different values of the particle

interia (St) and the mass-loading parameter (ϕm). For comparison, in the last

column we provide the value of the same exponent ξ as obtained from the

energy spectrum [Fig. 4.6]. Themaximum standard error in estimation of the

scaling exponents is around ±0.05.
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4.6 Conclusion

We use the Eulerian-Lagrangian formalism to study the effects of dust to gas

coupling in two-dimensional turbulence. The dust are modeled as heavy

inertial particles immersed in the gas. We solve gas equations on fixed Eule-

rian grids by incorporating the forces [2.16] due to dust. The main problem

with this technique is that to have a smooth Eulerian representation of the

feedback, the number of particles per cell needs to be equal or greater than

a certain threshold (≈ 1) [26, 27]. We choose Np such that in the stationary

state, i.e. after the dust have clustered, the above constraint is satisfied for

almost all the St. Furthermore, we use higher order weight function for ex-

trapolation to ensure a smoother approximation of back reaction on the fluid

grids. We obtain reasonable scaling range for nearly all the St and ϕm.

The Eulerian-Lagrangian formalism has been extensively used to study

how the interaction between dust and gas modifies three-dimensional tur-

bulence. Here, we shall review some of them with an emphasis on energy

spectra (see [26, 28] and references therein for more details). Refs. [29, 30]

studied the effects of dust in isotropic stationary turbulence using direct nu-

merical simulations while similar studies in decaying turbulence were done

by Refs. [31, 32]. The key results of these studies are: (a) particle injects

energy at large k and reduces it at small k, and (b) increasing mass loading

leads to reduction of the total kinetic energy. But, the effects of changing

the inertia of the dust particles (St) or the mass-loading parameter (ϕm) on

the scaling of the energy spectra remained unclear as these simulations were

done at small or moderate resolution. More recently, Refs. [33–35] intro-

duced new numerical scheme to model coupling between gas and dust. In

brief, let us point out that the mollification function that we use spreads the

back-reaction of a single particle up to sixteen neighboring grid points and is

similar to theGaussian kernel used in Refs. [33, 34]. We avoid additional com-

putational cost, by not implementing the additional diffusion filter of Ref [33]

or the exact regularization protocol of Ref. [34]. One major advantage of the

method of Ref. [34] is that the number of particles need not be comparable to
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number of grid cells for smooth feedback. Unfortunately, themethod is com-

putationally expensive and not easily parallelizable on distributed-memory

machines. By studying dust laden homogeneous shear turbulent flow us-

ing this technique, Ref. [5] reported a scaling exponent of −4 in gas kinetic
energy spectrum [for St = 1 and ϕm = (0.4, 0.8)]. They argued that the new

scaling appears due to the balance of viscous forces with the back reaction

from dust. In Ref. [5], the critical wave number beyondwhich the new scaling

was observed was found to be Kcη ≥ 1, whereas our two-dimensional study

shows Kcη ∼ 0.2. Clearly, the crucial problem with our and similar studies is

that there is, as yet, no well-established algorithm to numerically calculate

the feedback in DNS.

For good reasons, themost important one being difficulties in experimen-

tal realization, turbulence in flows of dust and gas has been rarely studied in

two dimensions. Ref. [17] using Eulerian description of dust found a scal-

ing exponent of −2 in the gas energy spectra, that emerges due to balance

of the non-linear transfer against the feedback, for St ≪ 1 and ϕm between

0.1 − 0.4. To numerically smoothen the caustics that invariably develops in

such a computation a synthetic hyper-viscous term was added in the Eule-

rian description. Ekman drag coefficient was chosen such that the pure gas

spectra (without dust coupling) scale with an exponent −3.3. Notably, the

new scaling here starts at much small k compared to what we find.

To summarize our main results: (a) presence of dust-gas coupling de-

creases clustering of dust particles, (b) a new scaling regime emerges in the

kinetic energy spectrum, (c) scale-by-scale enstrophy budget, suggests that

the new scaling is because of gas viscosity dissipating the enstrophy injected

by dust at those scales. (d) dust has a net negative contribution to budget till

a wavenumber Kc and injects enstrophy at higher fourier modes, (e) as the

form of dust-gas coupling term varies with both ϕm and more importantly St,

the scaling exponent is non-universal and a function of both. Even in two

dimensions, where we have been able to do large-scale simulations for long

enough time, the appearance of the new scaling regime is not always promi-

nent. We cannot rule out the possibility that there may be no scaling range
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at all. But we can and do conclude that the spectra is non-universal.

It is quite difficult to perform a DNS of similar resolution, with feedback

from particles, in three dimensions. So it is unlikely that in near future we

shall observer clear scaling behavior in analogous cases in three dimensions.

But based on our result we speculate that the same non-universal nature of

spectra will be true in three-dimensions too.
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5
Statistical properties of
pseudo-turbulence generated by
buoyancy-driven bubbly flows

5.1 Introduction

In this chapter, we study the statistical properties of the buoyancy-driven

bubbly flows. Bubble laden flow appears in a variety of natural [1, 2] and in-

dustrial [3] processes. Presence of bubbles dramatically alters the transport

properties of a flow [4–11]. A single bubble of diameter d, because of buoy-

ancy, rises under gravity. Its trajectory and the wake flow depend on the

density and viscosity contrast with the ambient fluid, and the surface ten-

sion [1, 12, 13]. A suspension of such bubbles at moderate volume fractions

generates complex spatiotemporal flow patterns that are often referred to as

pseudo-turbulence or bubble-induced agitation [4, 8].

Experiments have made significant progress in characterizing velocity

fluctuations of the fluid phase in pseudo-turbulence. A key observation is

the robust power-law scaling in the energy spectrum with an exponent of

−3 either in frequency ̃ν or the wave-number k space [14–16]. The scaling
range, however, remains controversial. Riboux et al. [15] investigated tur-
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bulence in the wake of a bubble swarm and found the k−3 scaling for length

scales larger than the bubble diameter d (i.e., k < 2π/d), whereas Mercado

et al. [14], Prakash et al. [17] observed this scaling for scales smaller than d

in a steady state bubble suspension. Experiments on buoyancy driven bub-

bly flows in presence of grid-turbulence [17–19] observe Kolmogorov scaling

for scales larger than the bubble diameter and smaller than the forcing scale

and a much steeper k−3 scaling for scales smaller than the bubble diameter

and larger than the dissipation scale. Lance and Bataille [18] argued that, as-

suming production because of wakes to be local in spectral space, balance

of production with viscous dissipation leads to the observed k−3 scaling.

Fully resolved numerical simulations of three-dimensional (3D) bubbly

flows for a range of Reynolds number O(10) < Re < O(103) [20–22] found the
k−3 scaling for length scales smaller than d (k > 2π/d) and attributed it to the
balance between viscous dissipation and the energy production by thewakes

[18].

Two mechanisms proposed to explain the observed scaling behavior in

experiments are: (i) superposition of velocity fluctuations generated in the

vicinity of the bubbles [23], and (ii) at high Re, the instabilities in the flow

through bubble swarm [4, 8, 18]. In an experiment or a simulation, it is difficult

to disentangle these two mechanisms.

In classical turbulence, a constant flux of energy is maintained between

the injection and dissipation scales [24, 25]. In pseudo-turbulence, on the

other hand, it is not clear how the energy injected because of buoyancy is

transferred between different scales. In particular, the following key ques-

tions remain unanswered: (i) How do liquid velocity fluctuations and the

pseudo-turbulence spectrumdependon theReynolds number (Re)? (ii)What

is the energy budget and the dominant balances? (iii) Is there an energy cas-
cade (a non-zero energy flux)?

In this chapter, we address all of the above questions for experimentally

relevant Reynolds (Re) and Atwood (At) numbers. We first investigate the dy-

namics of an isolated bubble and show that the wake flow behind the bubble

is in agreement with earlier experiments and simulations. Next for a bubbly
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suspension we show that the liquid velocity fluctuations are in quantitative

agreement with the experiments of Riboux et al. [15] and the bubble veloc-

ity fluctuations are in quantitative agreement with the simulations of Roghair

et al. [22]. We then proceed to derive the scale-by-scale energy budget equa-

tion and investigate the dominant balances for different Re and At. We find

that for scales smaller than the bubble diameter, viscous dissipation balances

net nonlinear transfer of energy because of advection and the surface ten-

sion to give k−3 pseudo-turbulence spectrum. The dominant balances are

robust and do not depend on the density contrast (At).

5.2 Model and simulation details

We model the multiphase flows using the Navier Stokes (NS) equations 1.25

and 1.26

ρ [𝜕tu + u ⋅ ∇u] = ∇⋅[2μ𝒮 ] − ∇p + Fσ + Fg,

∇⋅u = 0.

We solve the non-Boussinesq NS equations using the open source finite-

volume-front-tracking solver PARIS [26]. The details of the solver is given

in chapter-2. For the Boussinesq approximated 2.27, we use a 2/3 dealiased

pseudo-spectral front-tracking solver [26–28]. For time marching we use a

second-order Adams-Bashforth scheme. Note that low-At DNS of bubbly

flows are much easier and such flows with same viscosity and comparable

density can be experimentally realized in near critical binary-fluids and cer-

tain mixtures of oils [29, 30].

113



Chapter 5 Section 5.3

runs L N Nb d g μf ΦV% Ga At Bo Re ℓ0 τℓ0

R1 256 512 60 24 1.0 0.32 2.6 104 0.04 1.8 150 11.3 36.6
R2 256 512 60 24 1.0 0.20 2.6 166 0.04 1.0 298 9.88 26.3
R3 128 432 10 22 8.75 0.42 2.6 206 0.04 2.1 315 8.51 8.1
R4 128 432 10 22 10.5 0.32 2.6 296 0.04 1.9 462 7.35 6.1
R5 256 256 40 24 0.1 0.32 1.7 113 0.90 2.0 173 10.0 38.7
R6 256 256 40 24 1.0 0.32 1.7 345 0.80 2.4 465 8.12 7.7
R7 256 256 40 24 1.0 0.32 1.7 358 0.90 1.9 546 7.31 7.0

Table 5.1: Table of parameters used in our DNS. Here, δρ ≡ ρf − ρb is the

density difference, Ga ≡ √ρfδρgd3/μf is the Galilei number, Bo ≡ δρgd2/σ is the
Bond number, At = δρ/(ρf + ρb) is the Atwood number, and Re ≡ ρfV0d/μf is the
bubble Reynolds number, where V0 is the rise velocity of an isolated bubble,

ℓ0 ≡ √10μfE/ρfϵμ is the integral length scale, and τℓ0
≡ ℓ0/√2E/3ρf is the integral

time scale. The simulations R5 − 7 is conducted using the open source solver

PARIS

We use a cubic periodic box of volume L3 and discretize it with N3 col-

location points. We initialize the velocity field u = 0 and place the centers

of Nb bubbles at random locations such that no two bubbles overlap. The

Reynolds number Re, the Bond number Bo, and the bubble volume frac-

tion ΦV ≡ [∫(1 − c)dx]/L3 that we use (see Table (5.1)) are comparable to the

experiments [15, 16].

5.3 Single bubble dynamics

In this section, we study the dynamics of an initially spherical bubble as it

rises because of buoyancy. The seminal work of Bhaga and Weber [12], Wu

and Gharib [31], Tchoufag et al. [32] characterized the shape and trajectory of

an isolated bubble in terms of Reynolds and Bond number. Experiments on

turbulent bubbly flows [17, 18, 33] observe ellipsoidal bubbles. In the follow-

ing, we characterize the dynamics of an isolated bubble for the parameters

114



Section 5.3 Chapter 5

used in our simulations.

Figure 5.1: Bubble positions at different times (in units of τs ≡ L/√δρgd/ρf)
and the z-component of the vorticity (ωz = 𝜕xuy − 𝜕yux) for the case of single
bubble rising under gravity. The non-dimensional parameters in represen-

tative cases are taken the same as run R1 in panel (a), run R4 in panel (b), and

run R6 in panel (c). Green region corresponds to ωz < 0, whereas red region

corresponds to ωz > 0. We plot iso-contours corresponding to |ωz| = ±10−3

in (a), |ωz| = ±10−2 in (b), and |ωz| = ±10−1 in (c).
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To avoid the interaction of the bubble with its own wake, we use a verti-

cally elongated cuboidal domain of dimension 5d× 5d× 21d. After the bubble

rise velocity attains steady-state, Fig. 5.1(a-c) shows the bubble shape and the

vertical component of the vorticity ωz = (∇ ×u) ⋅ ̂z. For Re = 150 and At = 0.04
(run R1), the bubble shape is oblate ellipsoid and it rises in a rectilinear trajec-

tory. On increasing the Re = 462 (run R4), the bubble pulsates while rising and

sheds varicose vortices similar to Pivello et al. [34]. Finally, for high At = 0.80
and Re = 465 (run R6), similar to region III of Tripathi et al. [13], we find that

the bubble shape is oblate ellipsoid and it follows a zigzag trajectory.

5.4 Bubbles suspension

We now study the pseudo-turbulence properties due to swarm of buoyant

bubbles rising under gravity. The plots in Fig. 5.2(a,b) show the representative

steady state iso-vorticity contours of the z-component of the vorticity along

with the bubble interface position for our bubbly flow configurations. As ex-

pected from our isolated bubble study in the previous section, we observe

rising ellipsoidal bubbles and their wakes which interact to generate pseudo-

turbulence. The individual bubbles in the suspension show shape undula-

tions which are similar to their isolated bubble counterparts. Furthermore,

for comparable Bo ≈ 2, the average bubble deformation ⟨⟨S(t)/S(0)⟩⟩ increases
with increasing Re (Fig. 5.3). Here, ⟨⟨⋅⟩⟩ denote temporal averaging over bub-
ble trajectories in the statistically steady state, S(t) is the surface area of the
bubble, and S(0) = πd2.
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(a) (b)

Figure 5.2: Representative steady-state snapshot of the bubbles overlayed on

the iso-contour plots of the z-component of the vorticity field ωz ≡ [∇ ×u] ⋅ ̂z
for Re = 150, At = 0.04 (a) and for Re = 465, At = 0.8 (b). Regions with ωz =
2σω(−2σω) are shown in red (green), where σω is the standard deviation of ωz.

As expected, bubble-wake interactions become more intense on increasing

Re.
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Figure 5.3: Average bubble deformation ⟨⟨S(t)/S(0)⟩⟩ versus Ga for low and

high At numbers
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5.5 Total kinetic energy

The time evolution of the kinetic energy E = ⟨ρu2/2⟩ for runs R1 - R7 is shown

in Fig. 5.2(a). A statistically steady state is attained around t ≈ 20τℓ0
, where

τℓ0
is the integral time scale (see table Table (5.1)). Using Eq. 1.25 and 1.26, we

obtain the total kinetic energy E balance equation as

𝜕t ⟨ρu
2

2
⟩⏟

E

= ⟨u ⋅ (∇ ⋅ 2μ𝒮 )⟩⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
ϵμ

+ ⟨[ρa − ρ(c)]uzg⟩⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
ϵg

+ ⟨Fσ ⋅ u⟩⏟
ϵσ

, (5.1)

where, ⟨⋅⟩ represents spatial averaging, ϵμ is the total dissipation rate, ϵg is

the energy injection rate due to buoyancy and ϵσ is the contribution due to

surface-tension. The total dissipation rate can further be simplified as

ϵμ = ⟨u⋅[∇⋅(2μ𝒮 )]⟩ = − ⟨2μ∇u ∶ 𝒮 ⟩ . (5.2)

Since ϵμ is scalar, the following relation should hold

ϵμ = − ⟨2μ(∇u)T ∶ 𝒮 ⟩ . (5.3)

From 5.2 and 5.3 we obtain the total dissipation rate

ϵμ = − ⟨2μ𝒮 ∶ 𝒮 ⟩ . (5.4)

In the approximation ρa ≈ ρf, valid for low At or in a very dilute bubble sus-

pension, the injection rate simplifies to

ϵg ≈ 1
V
δρg∫ uz(1 − c)dV. (5.5)

Since c = 0 inside the bubble and 1 in the liquid phase, 5.5 reduces to

ϵg ≈ ΦVδρg ⟨U⟩ , (5.6)

Where ⟨U⟩ = 1/Vb ∫ uz(1 − c)dV is the average bubble rise velocity.
In steady state, the energy injected by buoyancy ϵg is balanced by viscous

dissipation ϵμ. The contribution due to ϵσ = −𝜕t ∫ σdS [35], where dS is the

bubble surface element, is zero in the steady-state. In Fig. 5.4 we show the

steady state values of ϵμ and ϵg.

118



Section 5.5 Chapter 5

0 10 20 30 40 50
t/

0.00

0.05

0.10
E
/(

g
d
)

(a)

R1
R2
R3

R4
R5

R6
R7

100 150 200 250 300 350
Ga

10
2

10
1

  
g 

 
,f

  
w

(b)

Figure 5.4: (a) Kinetic energy evolution for the runs given in Table (5.1). (b)

Energy dissipation rate ϵμ (filled plus), the estimation of the liquid dissipation

rate ϵw ≡ ΦV(δρgd/ρf)3/2/d (empty squares) because of the bubble wakes [18],
the dissipation rate in the fluid ϵμ,f (filled cross) and, the energy injection rate

ϵg (empty circles) for runs R1 − R7. The low At runs are marked in red and the

high At runs are marked in blue.

Lance and Bataille [18] argued that the energy injected by the buoyancy is

dissipated in the wakes on the bubble. The energy dissipation in the wakes

can be estimated as ϵw = CdΦV((δρ/ρf)gd)3/2/d, where Cd is the drag coefficient.
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Assuming Cd = O(1), we find that ϵw comparable to the viscous dissipation in
the fluid phase ϵμ,f (see Fig. 5.4).

5.6 Liquid and bubble velocity fluctuations

In this section, we will discuss the results for the liquid and bubble velocity

distribution functions. We shall first discuss the distribution for the liquid

phase and then present the results for the bubble center-of-mass velocity.

In both the cases we contrast our results with the previous studies.

5.6.1 Probability distribution of the liquid velocity

Wefirst discuss the probability distribution function (pdf) of the velocity fluc-

tuations in the liquid phase (uf = uc). In Fig. 5.5(a,b) we plot the probability

distribution function of the fluid velocity fluctuations. Both the horizontal

and vertical velocity pdf’s are in quantitative agreement with the experimen-

tal data of Riboux et al. [15] and Risso [8]. The pdf of the velocity fluctuations

of the horizontal velocity components are symmetric about origin whereas

the vertical velocity fluctuations are positively skewed [15, 17, 19]. The skew-

ness in the distribution in the vertical component of of velocity has also been

observed in thermal convection with bubbles [6].

According to Risso [36], liquid velocity fluctuations in pseudo-turbulence

is a result of the combined effects of i) potential disturbance around a bubble,

ii) bubble wakes, and iii) the turbulent fluctuations due to flow instabilities. A

combination of these three contributions results in a probability distribution

of the form ∼ exp (−ξ|ui|/ ⟨u2i ⟩
1/2), for both horizontal (i = x or y) and vertical

component (i = z) of the velocity, with successively decreasing ξ. Since the

contribution due to bubble wake is present only in the vertical direction, the

initial decay in the pdf of horizontal component is primarily due to turbu-

lent fluctuations (ξ = √2) [36]. We verify the model of Risso [36] in Fig. 5.6,

where we plot the pdf for the horizontal component along with the function

exp (−√2|ux|/ ⟨u2x⟩
1/2). Indeed, we find that the function
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Figure 5.5: The probability distribution function of the (a) horizontal compo-

nent (b) vertical component of the liquid velocity fluctuations for runs given

in Table (5.1). The pdf obtained from our DNS are in excellent agreement

with the experimental data of Riboux et al. [15] [Data extracted using enguage

https://markummitchell.github.io/engauge-digitizer/].

accurately represents the initial decay of the pdf. The skewness in the pdf

121

https://markummitchell.github.io/engauge-digitizer/


Chapter 5 Section 5.6

of the vertical velocity is due to the presence of bubble wakes.

Althoughwe find all the pdf to be identical around themean for both hor-

izontal and vertical velocity, there are deviations in the tail. This deviation

is probably because of the differences in the wake flow for different Re and

At (see Fig. 5.1).
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Re=462, At=0.04 (R4)
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Riboux et al.  2010
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Riboux et al.  2010

Figure 5.6: Probability distribution function of the horizontal component of

the liquid velocity fluctuations. The black dashed line shows the exponential

distribution ∼ exp(−√2ξ|ux|/ ⟨u2x⟩
1/2).

5.6.2 Probability distribution of the bubble velocity

In this section, we characterize the fluctuations in the velocity of the center-

of-mass of bubbles using a probability distribution function. Since we evolve

the bubbles using front tracking, we use marker points to estimate the loca-

tion and velocity of the individual bubbles [20]. A typical front depicting the

marker points from the simulation is shown in Fig. 5.7. The volume Vb
i and

centroid position xbi of bubble ith are

Vb
i = ∫Vb

dVb = ∫Vb
∇ ⋅ xdVb = 1

3 ∮Si
x ⋅ dS, (5.7)

xbi = 1
Vb ∫Vb

xdVb = 1
2Vb ∫Vb

∇(x ⋅ x)dVb = 1
2Vb ∮Si

x ⋅ dS. (5.8)
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Where, the volume integrals are converted into surface integrals using the

Gauss divergence theorem. We then estimate the bubble velocity using the

centroid trajectory

ub
i =

dxbi
dt

. (5.9)

Here, we note that ub
i can also be determined using the surface information

of the bubble as

ub
i = 1

Vb ∫Vb
udVb = 1

Vb ∫Vb
∇ ⋅ (xu)dVb = 1

Vb ∮Si
x(u ⋅ dS), (5.10)

We have verified numerically that both 5.10 and (5.9) give identical results.

Figure 5.7: A typical front with marker points connected by lines.

We show the pdf of the bubble velocity in Fig. 5.8. In agreement with the

earlier simulations of Roghair et al. [22] and Esmaeeli and Tryggvason [37],

the pdf’s of the bubble velocity fluctuation are Gaussian (see Fig. 5.8). The

departure in the tail of the pdf is evident in comparison with the experimen-

tal data of Mercado et al. [14]. The reason probably is the formation of large

scale structures in the experimental water channel, which are absent in the

simulations with periodic boundary [22].
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Figure 5.8: The probability distribution function of (a) the horizontal and

(b) the vertical component of the bubbles velocity fluctuations for runs R1

and R6 (see Table (5.1)). The experimental data of Mercado et al. [14] and

numerical results of Roghair et al. [22] is also shown for comparison. The

black continuous line represents a Gaussian distribution.
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5.7 Energy spectra and scale-by-scale budget

In this section we discuss the kinetic energy spectra and the scale-by-scale

energy budget. Homogeneous and isotropic turbulence is characterized by

a energy spectra with scaling of k−5/3 in the inertial range [24, 38]. The energy

spectra in pseudo-turbulence, on the otherhand, have a scaling of of k−3 [17,

18]. To understand the scaling behavior we derive the scale-by-scale energy

budget equation for pseudo-turbulence.

5.7.1 Energy spectra

The kinetic energy spectrum for a velocity field u is defined as

Euuk ≡ ∑
k−1/2<m<k+1/2

|ûm|2, (5.11)

where um is the Fourier transform of the velocity field u(x). Since density of
the bubble is different than that of the fluid, we also define the co-spectrum

Eρuuk ≡ ∑
k−1/2<m<k+1/2

ℜ[ ̂(ρu)−mûm] ≡ dℰ/dk. (5.12)

5.7.2 Scale-by-scale energy budget

Here we derive the scale-by-scale energy budget equation. For the deriva-

tion, we closely follow section 2.4 of Frisch [24]. We start by introducing the

concept of scale using a Fourier transform. Any periodic function f(x) can be
represented using the Fourier series as

f(x) = ∑
m
exp(ιm ⋅ x)fm, (5.13)

given a scale k = 2π/l,

f(x) = ∑
m≤k

exp(ιm ⋅ x)fm + ∑
m>k

exp(ιm ⋅ x)fm, (5.14)

or

f(x) = f<k (x) + f>k (x). (5.15)
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Here f<k (pronounced as f-lesser) is a low pass filtered function with a filtering

scale of k. Similarly, f>k is a high pass filtered function.

We now define an operator ℙk, which, when operated on any periodic

function, eliminates all the wave-modes ≥ k.

ℙkf(x) ≡ f<(x). (5.16)

It is important to note the following properties of ℙ:

• The operator ℙk commutes with ∇ and ∇2

⟨ℙk(∇f)⟩ = ⟨∇(ℙkf)⟩ (5.17)

• ℙk is a Hermitian

⟨f(ℙkg)⟩ = ⟨(ℙkf)g⟩ (5.18)

A low-pass filtered function is orthogonal to any high-pass filtered function

with the same filtering scale k

⟨f<g>⟩ = 0. (5.19)

We now re-write the Navier Stokes equation for ρu and u below,

𝜕tρu + u ⋅ ∇ρu = ∇⋅(2μ𝒮 ) − ∇p + Fσ + Fg, (5.20)

𝜕tu + u ⋅ ∇u = 1
ρ [∇⋅(2μ𝒮 ) − ∇p + Fσ + Fg] . (5.21)

The equation for low-pass field (ρu)<
k and u<

k is obtained by applying ℙk to

5.20 and (5.21)

𝜕tρu<
K + ℙk(u ⋅ ∇ρu) = ℙk [−∇p + ∇⋅(2μ𝒮 ) + Fσ + Fg] , (5.22)

𝜕tu<
k + ℙk(u ⋅ ∇u) = ℙk {

1
ρ [−∇p + ∇⋅(2μ𝒮 ) + Fσ + Fg)]} . (5.23)

The scale-by-scale budget equation is finally obtained by taking a dot prod-

uct of u<
k with 5.22, (ρu)<

k with 5.23, and adding them both. The final expres-

sion can be written as

𝜕tℰk + Πk + ℱ σ
k = 𝒫k − 𝒟k + ℱ g

k . (5.24)
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Here, 2ℰk = ⟨u<
k ⋅ (ρu)<

k ⟩ is the cumulative energy up to wave-number

k, 2Πk = ⟨(ρu)<
k ⋅(u⋅∇u)<

k ⟩ + ⟨u<
k ⋅(u⋅∇ρu)<

k ⟩ is the energy flux through wave-

number k, 2𝒟k = −[⟨(ρu)<
k ⋅ (∇⋅[2μ𝒮 ]/ρ)

<
k ⟩ + ⟨u<

k ⋅(∇⋅[2μ𝒮 ])<
k ⟩] is the cumulative

energy dissipated upto k, 2ℱ σ
k = −[⟨(ρu)<

k ⋅ (Fσ/ρ)
<
k ⟩ + ⟨u<

k ⋅(Fσ)<
k ⟩] is the cumu-

lative energy transferred from the bubble surface tension to the fluid upto k,

2ℱ g
k = ⟨(ρu)<

k ⋅ (Fg/ρ)
<
k ⟩ + ⟨u<

k ⋅(Fg)<
k ⟩ is cumulative energy injected by buoyancy

upto k. In crucial departure from the uniform density flows, we find a non-

zero cumulative pressure contribution 2𝒫k = ⟨(ρu)<
k ⋅ (∇p/ρ)

<
k ⟩. The 𝒫k rep-

resents the “baropycnal work” done by pressure-gradient against sub-scale

mass flux [39].

In the Boussinesq regime (small At), the individual terms in the scale-by-

scale budget simplify to their uniform density analogues: ℰk = ρa⟨u<
k ⋅ u<

k ⟩/2,
Πk = ρa⟨u<

k ⋅(u⋅∇u)<
k ⟩, 𝒟k = −μ⟨|∇u<

k |2⟩, ℱ σ
k = −⟨u<

k ⋅(Fσ)<
k ⟩, ℱ g

k = ⟨u<
k ⋅(Fg)<

k ⟩, and
𝒫k = 0.

5.7.3 Low At (runs R1 − R4)

We first discuss the results for the Boussinesq regime (low At). For scales

smaller than the bubble diameter (k > kd), the energy spectrum (Fig. 5.9)

shows a power-law behavior E(k) ∼ k−β for different Re. The exponent β = 4

for Re = 150, it decreases on increasing the Re and becomes close to β = 3

for the largest Re = 462.

We now investigate the dominant balances using the scale-by-scale en-

ergy budget analysis. In the statistically steady-state 𝜕tℰk = 0, and Πk + ℱ σ
k =

−𝒟k+ℱ g
k (note that 𝒫k = 0 for low At). In Fig. 5.10(a) and 5.10(b) we plot differ-

ent contributions to the cumulative energy budget for Re = 150 and Re = 462

and make the following observations:

1. Cumulative energy injected by buoyancy ℱ g
k saturates around k ≈ kd.

Thus buoyancy injects energy at scales comparable to and larger than

the bubble diameter.

2. Energy flux Πk > 0 around k ≈ kd and it vanishes for k ≫ kd.
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3. Especially for scales smaller than the bubble diameter, the cumulative

energy transfer from the bubble surface tension to the fluid is the dom-

inant energy transfer mechanism.

4. Consistent with the earlier predictions [15], for our highest Re = 462

simulation provides a direct evidence that the balance of total produc-

tion d(Πk + ℱ σ
k )/dk ∼ k−1 with viscous dissipation [d𝒟k/dk = νk2E(k)] gives

the pseudo-turbulence spectra E(k) ∼ k−3 [15, 18, 22].

Our scale-by-scale analysis, therefore, suggests the following mechanism

of pseudo-turbulence. Buoyancy injects energy at scales comparable and

larger to the bubble size. A part of the energy injected by buoyancy is ab-

sorbed in stretching and deformation of the bubbles and another fraction is

transferred via wakes to scales comparable to bubble diameter. Similar to

polymers in turbulent flows [40–42], the relaxation of the bubbles leads to

injection of energy at scales smaller than the bubble diameter.

Note that for low At, Boussinesq regime ρ = ρa, there is no distinction

between a droplet and a bubble. Therefore, our results for low At buoy-

ancy driven bubbly flows are equally valid for a suspension of sedimenting

droplets.

128



Section 5.7 Chapter 5

10
1

10
0

10
1

k/kd

10
6

10
4

10
2

10
0

E
u
u
(k

)/
E
u
u
(k

d
)

Re=150 (R1)
Re=298 (R2)
Re=315 (R3)
Re=462 (R4)
k 3

Figure 5.9: Log-log plot of energy spectra Euuk versus k/kd for our high Re low
At runs R1 - R4. Dashed dotted line indicates the k−3 scaling.
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Figure 5.10: Cumulative contribution of viscous dissipation 𝒟k, energy in-

jected because of buoyancy ℱ g
k and the surface tension contribution ℱ σ

k ver-

sus k/kd for (a) run R1 and (b) run R4. Note that, for k > kd, the balance between

dℱ σ
k /dk and d𝒟k/dk is more prominent in panel (b) compared to (a).
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5.7.4 High At (runs R5 − R7)

Similar to earlier section, here also the energy spectrumand the co-spectrum

shows a scaling of k−3 at high Re = 546 [22] and the spectrum becomes steeper

E(k) ∼ k−3.6 [20] on decreasing the Re = 173 (Fig. 5.11). However, because of

density variations the scale-by-scale energy budget becomes more complex.

Now, in the statistically steady state Πk + ℱ σ
k = 𝒫k − 𝒟k + ℱ g

k .

In Fig. 5.12we plot the scale-by-scale energy budget for our highAt run R6.

We find that the cumulative energy injected by buoyancy and the pressure

contribution ℱ g
k + 𝒫k reaches a peak around k ≈ kd and then decrease mildly

to ϵg. Similar to the low At case, we find a non-zero energy flux for k ≈ kd

and a dominant surface-tension contribution to the energy budget for k ≫ kd.

Finally, similar to last section, for k > kd the net production d(Π+ ℱ σ)/dk ∼ k−1

balances viscous dissipation νk2E(k) to give E(k) ∼ k−3.
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Figure 5.11: Log-log plot of energy spectra (○) Euuk and co-spectrum (□) Eρuuk

versus k/kd for our high Re high At runs R5 - R7. Dashed dotted line indicates

the k−3 scaling.
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Figure 5.12: Cumulative contribution of the viscous dissipation 𝒟k, the con-

tribution due to buoyancy and pressure ℱ g
k − 𝒫k, the energy flux Πk and the

surface tension contribution ℱ σ
k versus k/kd for run R6.

5.7.5 Frequency spectrum of pseudo-turbulence

To investigate the frequency spectrum of pseudo-turbulence, we now con-

duct a time-series analysis similar to Roghair et al. [22] and Prakash et al. [17]

for our high At = 0.8, high Re = 465 run R6. We monitor the time-evolution

of the three components of the velocity and the density ρ for time t = 90τℓ0
,

with sampling time 8 × 10−3τℓ0
, on 323 equally spaced Eulerian points within

our simulation domain. From these signals, we select continuous segments

of liquid velocity fluctuations of size ts ≥ 19τℓ0
and ignore regions where

ρ = ρb. We then use the Welch method, with hamming windows, to ob-

tain the energy spectrum [17, 43]. In Fig. 5.13(a) we plot the liquid velocity

spectrum E( ̃ν) versus ̃ν/ ̃νd and find it to be in excellent agreement with the

experiments of Prakash et al. [17]. In Fig. 5.13(b) we show that the normalized
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energy spectrum is not modified on doubling ts ≥ 38τℓ0
. Similar to Prakash

et al. [17], Alméras et al. [19], Roghair et al. [22] we find that E( ̃ν) ∼ ̃ν−3 for

frequencies ̃ν > ̃νd, where ̃νd = ⟨U⟩/2πd [17].

Figure 5.13: (a) Kinetic energy spectrum of the liquid velocity fluctuations

E( ̃ν) versus ̃ν/ ̃νd for our run R6. We also overlay the spectrum obtained from

the experiments of Prakash et al. [17] and find it to be in excellent agreement

with our numerical simulation. (b) Comparison of the normalized energy

spectrum obtained from liquid velocity segments of length ts ≥ 19τℓ0
(1.9 ⋅ 104

trajectories) and 38τℓ0
(5 ⋅ 103 trajectories).

5.8 Length scales of pseudo-turbulence

We have used bubble diameter as a relevant scale of pseudo-turbulence [16,

17]. Riboux et al. [15] proposed an alternate length scaleΛ ∝ V2
0/g = 4δρd/(3ρfCd0),

where V0 is the single bubble rise velocity, and Cd0 is the drag coefficient of

an isolated bubble. Note that for large At, δρ/ρf ≈ 1. In Table 5.2 we present

values of d and Λ obtained from our numerical simulations R1 − R7. For our

large At runs, we find that bubble diameter is comparable to Λ (d/Λ ≈ 0.4−0.6).
On the other hand, for our small At runs, d/Λ ≈ 4 − 6 indicating that kΛ/kd lies
near the end of the k−3 scaling range. Thus Λ does not capture the beginning

of the k−3 scaling for our low At runs.
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runs R1 R2 R3 R4 R5 R6 R7

Λ 4.0 6.2 4.1 4.3 52.9 38.4 53.3
d/Λ 6.0 3.8 5.4 5.1 0.5 0.6 0.4

Table 5.2: Length scale Λ ∝ V2
0/g = 4δρd/(3ρfCd0) and the ratio d/Λ for our runs

R1-R7.

5.9 Clustering of bubbles

In this section, we study the clustering of bubbles using Voronoï analysis,

similar to Tagawa et al. [44]. In Voronoï tessellations, space is divided into

cells based on the particle positions [45]. All the points inside a Voronoï cell

are closest to the particle inside compared to its neighbors. The only ex-

ception to this rule being the vertices and edges of the Voronoï cell. For

randomly distributed particles, the probability distribution of the volume of

Voronoï cells is described using the following function, with a single fit pa-

rameter Σ [46]

P(x) = 1
Σ(2/Σ2)Γ( 1

Σ2 )
x(1/Σ2−1) exp(−x/Σ2). (5.25)

Here x = 𝒱 / ⟨𝒱 ⟩ is the volume of Voronoï cell scaled by its mean.

For irregularly clustered particles, the standard deviation of the Voronoï

(Σ) volume will be larger than the standard deviation of volumes (Σrnd) cor-

responding to randomly distributed particles. In other words, the indicator

of clustering 𝒞 ≡ Σ/Σrnd > 1, for irregularly clustered particles. For the parti-

cles arranged in a regular lattice, the distribution of Voronoï volume will be

a delta function and 𝒞 < 1. We illustrate the classification of clustering in

Fig. 5.14 using two dimensional Voronoï tessellations.

A detailed analysis of the clustering of bubbles, in a buoyancy-driven flow,

using Voronoï analysis was done by Tagawa et al. [44]. They varied Re, sur-

face tension σ, d/L, and the volume fraction ΦV (5−40%) and observed that the
clustering depends on the bubbles’ deformability.
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Figure 5.14: Schematic representation of clustering of 196 particles using

Voronoï tessellation: (a) randomly distributed particles, (b) irregularly clus-

tered particles, and (c) regular arrangement of particles. For the ease of vi-

sualization, we show tessellation in two-dimensional (d) The representative

probability distribution function of the 3-d Voronoï volumes. For irregularly

clustered particles Σ/Σrnd > 1, and for regular lattice arrangement of particles

Σ/Σrnd < 1. Figure recreated from Tagawa et al. [44].

We investigate clustering in our numerical study on a much dilute bubbly

flows (ΦV = 1.7−2.6%) compared to Tagawa et al. [44]. For the construction of
Voronoï tessellation, we use open source voro++ library [47]. We first gener-

ate 200 configurations of randomly positioned, non-overlapping, Nb bubbles

of diameter d in a box of length L. Using the Voronoi tessellation of these

random configurations, we determine the standard deviation Σrnd. Using the

steady-state bubble configurations, we then estimate Σ for each simulation.
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runs R1 R2 R3 R4 R5 R6 R7

𝒞 1.3 1.3 1.1 1.1 1.3 1.0 0.9

Table 5.3: The clustering indicator 𝒞 for our runs R1-R7.

The clustering indicator 𝒞 for all the simulations is given in Table (5.3). We

observe random or weakly irregular clustering for our runs R1 − R6 (see Ta-

ble 5.3). For our high-Re, high-At run R7, 𝒞 = 0.9, which indicates a weakly
regular lattice arrangement of bubbles.

We finally show the pdf of Voronoï volumes for a few representatives runs

in Fig. 5.15. We find that the pdf is close to that of corresponding random

configuration. For the Voronoï analysis, we are limited by i) the number of

steady-state configurations, and ii) the number of bubbles in the domain,

which are few. Althoughwedonot quote the error in our estimation of𝒞 , it is
probably significant. Within the error, the steady-state bubbles configuration

in all our simulations can be considered random.
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Figure 5.15: The probability distribution of the Voronoï volume (𝒱 / ⟨𝒱 ⟩) for
(a) R1 (Re = 150,At = 0.04) (b) R6 (Re = 465,At = 0.80). The blue filled circles
represent the pdf of (𝒱 / ⟨𝒱 ⟩) for the corresponding random configurations.

The continuous black line shows the fit P(x) (see 5.25).
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5.10 Topological properties of fluid

The velocity-gradient tensor 𝔸 = ∇u determines the local topology of a flow

[48, 49]. If λ’s are the eigenvalues of tensor𝔸, then the characteristic equation
for 𝔸 is

λ3 + Pλ2 + Qλ + R = 0, (5.26)

where P, Q, and R are the three invariants of tensor 𝔸. Since, for incompress-
ible flow,

P ≡ 𝒯 r[𝔸] ≡ 0, (5.27)

the other invariants reduce to

Q ≡ P2 − 𝒯 r[𝔸2]
2

, (5.28)

and

R ≡ −𝒟 et[𝔸]. (5.29)

Here, 𝒯 r [.] denotes trace, and 𝒟 et denotes determinant of a tensor.

The discriminant of 5.26, Δ = Q3 + 27
4 R

2 divides the Q − R plane into two

regions based on real and imaginary λ.
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R
Q

T1T4

T3 T2

T1: UF/C T2: UN/S

T3: SN/S T4: SF/ST

Figure 5.16: Showing the different regions in theQ-Rplane and the schematic

diagram of the flow topologies. Blue dashed line represents D = 0. The

different topologies are: UF = unstable Focus, C = compressingUN= unstable

node, S = saddle, SN = stable node, SF = stable focus, and ST = stretching.

• Δ < 0 implies three real eigenvalues, and the topology is nodal.

• Δ > 0 implies one real and two complex eigenvalues, and the topology

is focal.

Furthermore, the Q = 0 line distinguishes the vorticity (Q < 0) and strain

dominated (Q > 0) regions. The joint probability distribution function (pdf) of

the invariants Q − R determines the flow topology of incompressible flow. In

Fig. 5.16, we show all the flow topologies possible using a schematic diagram.
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Figure 5.17: Representative joint probability distribution of Q∗ = Q/ϵμ and
R∗ = R/ϵ3/2

μ for homogeneous and isotropic turbulence.

In homogeneous isotropic turbulence, the joint probability distribution

function (pdf) of Q − R have a classical ’teardrop’ shape [48, 50, 51]. We show

a representative plot of the joint pdf for an isotropic and homogeneous tur-

bulence in Fig. 5.17. Clearly, in the region where vorticity dominates (Q > 0),

T4 is the most probable topology and in the region where strain dominates

(Q < 0), the most probable topology is T2.

Although the shape of the joint pdf of Q − R is well known for homoge-

neous and isotropic turbulence, the question still remains – what is the flow

topology for a pseudo-turbulent flow? To answer this question, we show the

joint pdf of Q − R in Fig. 5.18 for different runs given in Table (5.1). We shall

first discuss the topology for low Re ∼ 150 [Fig. 5.18(a) and (c)]. Interestingly,

we find topology to be similar for both high and low At. In contrast with the

homogeneous and isotropic turbulence where the topology T4 was favored

over T1 in the vorticity dominated region, we find that both T1 and T4 equally

probable. Also, in the strain dominated region, we find a significant increase

in T3 topology.

As a direct consequence of increased bubble wake interaction, interest-

ingly, upon increasing the Re ∼ 450, for both high and low At, we find the

joint pdf starts to resemble with turbulence with T4 more probable than T1
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Figure 5.18: The joint probability distribution of Q∗ = Q/ϵμ,f and R∗ = R/(ϵμ,f)3/2

for (a) Re = 150, At = 0.04 (R1), (b) Re = 462, At = 0.04 (R4), (c) Re = 172, At = 0.90
(R5) and (d) Re = 465, At = 0.80 (R6).

for Q > 0 and T2 favored over T3 for Q < 0.

5.11 Conclusion

In this chapter, we studied the statistical properties of pseudo-turbulence in

buoyancy-driven bubbly flows using direct numerical simulations. We take

a range of Re ∼ [100 − 600] and At ∼ [0.04 − 0.90]. The Re that we have ex-
plored are consistent with the Re ∼ [300 − 1000] used in the experimental

studies [15–17]. Even though the At in our simulations is much smaller than

the experiments (∼ 0.999), we find that the shape of pdf of the velocity fluc-
tuations is consistent with the experiments. In the kinetic energy spectra,

we show that for high Re and for low and high At, E(k) ∼ k−3 [22]. However,

on reducing the Re, the spectral slope becomes steeper E(k) ∼ k−4 [20]. Our
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scale by scale budget analysis shows that the scaling is because of the vis-

cous dissipation of the energy transferred by surface tension and non-linear

forces at scales smaller than the bubble diameter. We then show the energy

spectra scales with frequency as E( ̃ν) ∼ ̃ν−3, consistent with the experiments

of Prakash et al. [17].

In section 5.9 of this chapter, we study the clustering of bubbles. In a

homogeneous and dilute bubble suspension at high Re, the spatial clustering

of bubbles is not observed in earlier simulations [22, 37] or experiments [15,

52]. In line with the previous studies, we also find the spatial distribution of

the bubbles nearly random for all the simulations.

In the last section 5.10, we study the topological properties of the fluid

in pseudo-turbulence. We contrast our result with the topological struc-

tures observed in homogeneous and isotropic turbulence. The topology

in pseudo-turbulence resembles homogeneous and isotropic turbulence for

our highest Re simulation.

Wefinallywould like to remark on the scaling of energy spectra in pseudo-

turbulence. Experiments on pseudo-turbulence have investigated the liquid

velocity fluctuations in the bubble swarm [14, 16, 17, 53] or the wake [15]. All

these experiments show a robust −3 spectrum. However, Riboux et al. [15]

also observed that the −3 spectrum is followed by nearly half a decade of −5/3
spectrum. Similar observation, albeit for a much smaller scaling range, was

also made by Mendez-Diaz et al. [16]. Consistent with bubble swarm exper-

iments, [14, 17, 53], we do not observe a −5/3 spectrum. A plausible reason

for the observed discrepancy, as indicated by Riboux et al. [15], could be that

strong flows generated in the vicinity of the bubbles are absent in the wake

of the bubble swarm.
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6
Turbulence modulation by large
buoyant bubbles

6.1 Introduction

In the previous chapter, we investigated the statistical properties of pseudo-

turbulence. In this chapter, we study the interaction of pseudo-turbulence

with externally driven turbulence. Pseudo-turbulence is the complex flow

generated by a swarm of bubbles rising in an otherwise quiescent fluid. It

has been studied by several experiments and numerical simulations over the

last two decades [1–5].

A more complex but ubiquitous scenario is where large scale external

forcing leads to a turbulent flow [4, 6, 7]. In the absence of bubbles, a non-

linear transfer of energy (maintaining constant energy flux) from forcing to

dissipation range characterizes turbulence [8–10]. How does the presence

of bubbles modify this flow? The answer, in principle, depends on the ratio

of the bubble diameter to the dissipation scale, the bubble volume fraction,

and its density and viscosity contrast with the ambient fluid.

For sub-dissipation scale bubbles at low volume fraction, bubbles are pas-

sively advected, and the Maxey-Riley (MR) equations describe their dynam-

ics [11, 12]. Indeed, numerical studies using MR equations have investigated
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acceleration statistics of bubbles and found them to be in excellent agree-

ment with the experiments [13–15]. For large bubbles, the MR equations are

no longer valid, and the studies of acceleration statistics use numerical sim-

ulations that fully resolve the bubble-fluid interaction. At moderate volume

fractions and for large bubbles, the bubble-wake interactions are relevant,

and we expect it to have a non-trivial effect on the bubble acceleration as

well as flow statistics.

Experiments with large scale forcing that generates nearly homogeneous,

isotropic flows at large Reynolds numbers show that bubbles dramatically al-

ter the energy spectrum for scales smaller than the bubble diameter [16, 17].

Although the liquid velocity fluctuations have been well-characterized, an

understanding of the energy transfer mechanisms and the Lagrangian statis-

tics of the bubbles remain mostly unexplored.

Direct Numerical Simulation (DNS) studies in this regime are limited to

(a) buoyancy-driven bubbly flows in the absence of external driving, (b) low

Reynolds numbers, (c) neutrally buoyant regime, and (d) wall-bounded flow

to understand the influence of bubbles on the mean flow properties. The

use of low-order finite-difference schemes and the requirement of substan-

tial grid resolution to resolve bubbles at high-density and viscosity ratios,

such as an air-water suspension, make the high Reynolds number simula-

tions untenable.

Recent DNS studies of buoyancy-driven bubbly flow for a wide range of

density and viscosity ratios have revealed that the statistical properties of

pseudo-turbulence are robust [5]. Motivated by these findings, in this chap-

ter, we investigate turbulence modulation in suspensions of weakly buoyant

bubbles. Similar to the experiments, we characterize the flow in terms of the

‘bubblance’ parameter b = ΦVV
2
0/u20, where ΦV is the bubble volume fraction,

V0 is the rise velocity of an isolated bubble in quiescent fluid, and u0 is the rms

velocity of the turbulent flow in the absence of bubbles. The two extreme

limits b = 0 and b = ∞ correspond to pure fluid turbulence and buoyancy-

driven bubbly flow, respectively.
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6.2 Numerical Simulations

We use the Navier-Stokes (NS) equations with a surface tension force to in-

vestigate the suspension of bubbles. Since we are interested in studying the

weakly buoyant regime, we invoke the Boussinesq approximation [5, 18] to

get,

𝜕tu + u ⋅ ∇u = −∇p + ν∇2u + Fσ + Fg + Ft, and (6.1)

∇ ⋅ u = 0. (6.2)

Here u is the hydrodynamic velocity field at position x and time t, p is the

pressure field, ν is the viscosity, the buoyancy force due to gravity Fg ≡
−2Atcg ̂z, the Atwood number At ≡ (ρf − ρb)/(ρf + ρb), g is the acceleration

due to gravity, z is the unit vector in the positive z-direction, ρf (ρb) is the

fluid (bubble) density, c is an indicator function whose value is 1 in the liq-

uid phase and 0 in the bubble phase. The surface tension force is Fσ = κσn,

where κ is the local curvature of the front, σ is the coefficient of surface ten-

sion and n is the unit normal. We apply a large-scale forcing in Fourier space,

Fkt = ϵtuk/ ∑k |uk|2 with |k| ≤ 2, which generates turbulence and ensures con-

stant energy injection rate ϵt.

We use a pseudo-spectral method, described in chapter-2, for the direct

numerical simulation (DNS) of the NS 6.1 and 6.2 in a cube with each side of

length L ≡ 2π. We use periodic boundary conditions, discretize the simula-

tion domain with N3 collocation points, and place Nb = 80 non-overlapping

spherical bubbles of diameter d = 0.46 at random locations. Bubbles are

resolved using a front-tracking method [19]. For time-evolution, we use a

second-order Adams-Bashforth scheme for 6.1 and a second-order Runge-

Kutta scheme for the front positions. A substantial part of the computational

effort undergoes in resolving the front; DNS with the bubbles is four times

slower than the one without them. We initialize the simulation domain with

u = 0 and place the bubbles at random locations such that no two bubbles

overlap. In Table 6.1, we present the parameters used in our DNS. We refer

to chapter-2 for more details on numerical scheme.
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N Reλ ϵν ϵt ⋅ 10−2 ϵg ⋅ 10−3 η b

R0 546 – 0.007 – 7.0 – ∞

R1 512 79 0.009 0.25 6.8 0.02 0.35

R2 512 95 0.012 0.5 6.7 0.018 0.21

R3 512 110 0.015 1.0 6.0 0.015 0.13

Table 6.1: Parameters for our DNS runs R1 − 4, the Taylor-scale Reynolds

number Reλ ≡ u0√15/(ϵtν), ν = 8 ⋅ 10−4 is the viscosity, u0 is the root-mean-

square velocity obtained from DNS in absence of bubbles but with turbulent

driving, η ≡ (ν3/ϵt)
1/4 is the Kolmogorov dissipation scale, ϵν = ν⟨|∇u|2⟩ is the

viscous dissipation rate, the energy injection rates due to turbulent forcing

and buoyancy are ϵt ≡ ⟨u ⋅ Ft⟩ and ϵg ≡ ⟨u ⋅ Fg⟩, respectively. The angular
brackets denote spatio-temporal averaging in the statistically steady-state.

For all the runs R0 − R4, the Galilei number Ga ≡ √δρgd3/ρf/ν = 302, the Bond

number Bo ≡ δρgd2/σ = 1.8, the Atwood number At = δρ/(ρf + ρb) = 0.04, the
bubble diameter d = 0.46, the bubble volume fraction ΦV ≡ Nb(π/6)(d/L)3 =
1.64%, bubble Reynonds number Re = 302, and the bubblance parameter b ≡
ΦVV

2
0/u20, where V0 ≈ 0.8. Note that b = ∞ for buoyancy-driven bubbly flows in

the absence of large scale forcing, and b = 0 corresponds to homogeneous,

isotropic turbulence without bubbles. All the simulations run for at least for

a period of ≈ 5τℓ0
in the steady state, where τℓ0

≡ ℓ0/(2u0) is the large eddy
turn over time. Note that the values of ΦV, Ga, Bo, and Reλ used in our study

are comparable to those used in the experiments [16, 17].

6.3 Results

In Fig. 6.1, we show the representative snapshot of vorticity ωz from our sim-

ulation. We monitor the time evolution of the energy dissipation rate, the

energy injected by buoyancy, and the center-of-mass Xi(t) of each bubble in
the suspension after every δt = 0.08τη time-interval, where i denotes the
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(a)

(b)

Figure 6.1: (a,b) Representative steady-state snapshot of the bubbles and

super-imposed iso-vorticity surfaces (with iso-value ±3⟨ω2
z⟩

1/2) from run (a)

R1 and (b) R3.

bubble index. From the bubble tracks, we obtain the center-of-mass ve-

locity Vi(t) and the acceleration Ai(t) using centered, second-order, finite-
differences.

In the statistically steady-state, the viscous dissipation balances net en-

ergy injected by the large-scale turbulent forcing and buoyancy, i.e., ϵν ≈
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ϵt +ϵg [5]. With increasing Reλ (decreasing b), the large-scale forcing becomes

the dominant energy injection mechanism (see Table 6.1).

In the following, we first investigate the statistical properties of the bubble

rising in the turbulent flow, we then investigate the statistical properties of

the fluid velocity fluctuations. Finally, we present the results for the spectral

properties of the flow by using a scale-by-scale energy budget analysis.

6.3.1 Bubble trajectories and rise velocity

The plots in Fig. 6.2 show representative bubble trajectory in a swarm for

Reλ = 79, b = 0.35 and Reλ = 110, b = 0.13. Clearly the trajectory for lower
bubblence is more curved because of the increased turbulence-bubble in-

teraction.

We characterize the trajectory by using local curvature κt ≡ |A × V|/|V|3.
Consistent with the observation that the trajectories are more curved for

larger Reλ, we find that the probability distribution function (pdf) P(κt) is
broader Fig. 6.3(a). Another consequence of large-scale turbulent stirring is

that the average bubble rise velocity ⟨U⟩ ≡ ∑Nb
i=1V

i ⋅ ̂z/Nb (see Fig. 6.2) increases

with increasing b (decreasing Reλ). Using the definition of Fg and noting that

⟨uz⟩ = 0 in the Boussinesq regime, we obtain ϵg = 2AtgΦV ⟨U⟩ and verify it in
Fig. 6.3(b). A decrease in the rise velocity of the bubbles is consistent with

the observation that the drag on large particles increases with an increase in

the turbulence intensity [20].
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(a)

(b)

Figure 6.2: Typical trajectories of the center-of-mass of bubbles in a turbu-

lent flow for runs (a) Reλ = 79, b = 0.35 (R1) and (b) Reλ = 110, b = 0.13 (R3).
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Figure 6.3: (a) The pdf of the curvature P(κt) for b = ∞ (R0), b = 0.35 (R1),

and b = 0.13 (R4). (b) Plot of ⟨U⟩ versus b. We find that ⟨U⟩ increases with
increasing b or decreasing Reλ. We also show that ⟨U⟩ obtained directly from
the trajectories and from ϵg are in excellent agreement.

The pdf of the bubble velocity fluctuations is nearly Gaussian, and the

normalized pdf of the horizontal components of the acceleration Ah ≡ Ax,y

[Fig. 6.4(a)] iswell approximated by a log-normal distribution P(Ai) = exp(3σ2/2){1−
erf[(ln |Ai/√3|+2σ2)/√2σ]}/4√3 [21] with σ2 = 0.27. Intriguingly, the core of the
pdf fits well with the
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Figure 6.4: The probability distribution function (pdf) of the (a) horizontal

Ah and the (b) vertical Az acceleration. Inset shows the acceleration variance

with varying b.

log-normal distribution even in absence of large-scale driving b = ∞. As

expected, the variance ⟨A2
h⟩ decreases with increasing b (decreasing Reλ).

For a single buoyant bubble of diameter db ≈ 10η in turbulence at Reλ = 32,

Ref. [21] obtained a kurtosis K ≈ 10.3; for a suspension of droplets with d = 7η

at Reλ = 65, Ref. [22] obtained a much smaller value for kurtosis K = 3.94.
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From the log-normal fit to our data, we get K ≡ ⟨A4
h⟩ / ⟨A2

h⟩
2 ≈ 5.3 which

lies within the range of values reported in earlier studies. We find the pdf of

vertical component of acceleration Az is negatively skewed (see Fig. 6.4(b)).

6.3.2 Liquid velocity fluctuations

The pdf of the liquid velocity fluctuations with varying b is show in Fig. 6.5

and 6.6. The case of pseudo-turbulence (b = ∞) has already been discussed

in the previous chapter-5, and earlier studies [5, 23]

Figure 6.5: The probability distribution of the horizontal component of the

liquid velocity fluctuations for different values of b. The black dashed line

indicates a Gaussian distribution.

and we obtain a positively skewed distribution for the vertical component of

the velocity and exponential tails for the horizontal component. In presence

of large scale driving, the turbulent fluctuations overwhelm contribution due

to wakes - velocity variance increases with increasing b (see inset to Fig. 6.5

and 6.6) - and the scaled pdf approaches a Gaussian distribution.
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Figure 6.6: The probability distribution of the vertical component of the

liquid velocity fluctuations for different values of b. The black dashed line

indicates a Gaussian distribution and the brown dashed-dotted line shows

the exponential distribution.

6.3.3 Energy spectrum and flux

Earlier DNS studies [5, 24] have only investigated the nature of the energy

spectrum in the absence of large scale turbulent forcing. These studies, con-

sistent with experiments, confirm the presence of a power-law scaling that

appears because of the balance of net energy production in the wakes with

viscous dissipation.

Experiments on buoyancy-driven bubbly flows in the presence of a large

scale driving show a Kolmogorov spectrum for frequencies smaller than the

bubble frequency and a pseudo-turbulence scaling for higher frequencies

[1, 4, 16]. Using the Taylor hypothesis [25] and noting that bubbles inject en-

ergy at scales comparable to their diameter, we could argue that the flow

resembles homogeneous, isotropic turbulence for wave-numbers k < kd, and
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it resembles pseudo-turbulence for k > kd. Here kd ≡ 2π/d is thewave-number
corresponding to the bubble diameter. In the following, we study the energy

spectrum and the scale-by-scale energy budget to present direct evidence in

support of the above arguments

10−2 10−1 100

kη
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10−2

100

102

E
(k

)η
5/

3
ε−

2
/3

t b=0.13 (R3)

b=0.35 (R1)

Turbulence

k−5/3

k−3

Figure 6.7: Log-log plot of the normalized kinetic energy spectrum kη ver-

sus E(k)η5/3ϵ−2/3
t for different values of b. The wave-number corresponding to

the bubble diameter is marked by green vertical line for b = 0.35 and by red
vertical line for b = 0.13.

In Fig. 6.7, we plot the scaled energy spectrum for different values of b

(Reλ). Consistent with experiments, we observe Kolmogorov scaling E(k) ∼
k−5/3 for k < kd and a pseudo-turbulence scaling E(k) ∼ k−3 for k > kd. Note

that on decreasing b (increasing Reλ), the energy spectrum tends to the ho-

mogeneous, isotropic turbulence spectrum (b = 0).

Following [5, 8], using 6.1 we get the following steady state, scale-by-scale

energy budget equation

Πk + ℱ σ
k = −𝒟k + ℱ g

k + ℱ t
k , (6.3)

158



Section 6.3 Chapter 6

where the energy flux due to advective nonlinearity Πk = ⟨u<
k ⋅(u⋅∇u)<

k ⟩, the
cumulative viscous dissipation 𝒟k = −μ⟨|∇u<

k |2⟩, the energy transfer due to
the surface tension term ℱ σ

k = −⟨u<
k ⋅(Fσ)<

k ⟩, the cumulative energy injected
due to buoyancy ℱ g

k = ⟨u<
k ⋅(Fg)<

k ⟩, the cumulative energy injected due to large
scale forcing ℱ t

k = ⟨u<
k ⋅(Ft)<

k ⟩, and the superscript < denotes a low-pass filter-

ing of eddies of scale 2π/k [8]. By definition, ℱ t
k = ϵt for k ≥ 2.

In Fig. 6.8(a), we plot the energy budget for b = ∞, i.e., buoyancy-driven

flow in absence of large scale forcing (ℱ t
k = 0). The energy is injected by

buoyancyℱ g
k at scales k/kd ≈ 1. Together advection and surface tension trans-

fer this energy to small scales leading to net energy production d(Πk+ℱ σ
k )/dk ∼

k−1 [5]. The balance of total production with viscous dissipation then gives

the E(k) ∼ k−3 spectrum [1, 5].

In the absence of bubbles (ℱ g
k = 0 and ℱ σ

k = 0) but with large scale forcing

b = 0 (Reλ = 110), we recover the energy budget for homogeneous, isotropic

turbulence (see Fig. 6.8(b) [8, 26, 27]). Energy injected at large scales cascades

to small scales in the inertial range while maintaining a constant energy flux

Πk = ϵt. Finally, the viscosity leads to energy dissipation.

In Fig. 6.8(c-d), we plot the scale-by-scale energy budget when buoyancy

injection due to bubbles as well as large-scale driving are present and make

the following observations:

1. For k ≪ kd, the energy injected by large scale force is transferred to

small scales by nonlinear flux. Herewe observe theKolmogorov scaling

E(k) ∼ k−5/3.

2. For k ≫ kd, the surface tension contribution dominates the net pro-

duction and balances viscous dissipation to give the pseudo-turbulence

spectrum.

3. The situation is more complicated for k around kd. Both the nonlinear

flux Πk and the surface tension ℱ σ
k contribute towards net production.

For k > kd, the nonlinear flux dominates for small b, and the surface ten-

sion contribution dominates for large b. Thewave-number atwhich the

nonlinear flux becomes smaller than the surface tension contribution
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Figure 6.8: Scale-by-scale energy budget: plot of the energy flux Πk, cumu-

lative viscous dissipation 𝒟k, the surface tension contribution ℱ σ
k , the cumu-

lative energy injected due to buoyancy ℱ g
k , and the energy injected due to

turbulent forcing ℱ t
k for b = ∞ (a), b = 0(b), b = 0.35 (c), and b = 0.13 (d).

marks the transition from the Kolmogorov E(k) ∼ k−5/3 to the pseudo-

turbulence E(k) ∼ k−3 scaling.

6.4 Conclusion

In this chapter, we presented a dns study of buoyancy-driven bubbly flows

in the presence of turbulence. We show that the statistical properties of the

flow are consistent with the earlier experiments conducted at similar values

of Reλ,Ga and ΦV. The energy spectrum shows a Kolmogorov scaling for

k < kd and a pseudo-turbulence scaling for k > kd. We rationalize the scaling

observed in the energy spectrum by using a scale-by-scale energy budget

analysis. For k < kd, energy flux is the dominant energy transfer mechanism.
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The balance of net production with viscous dissipation leads to the pseudo-

turbulence scaling for k > kd.
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7
Conclusion

In this thesis, we have carried detailed research to address several key prob-

lems in the field of multiphase flows using direct numerical simulations. In

particular, we have focussed on inertial particles and buoyancy-driven bub-

bly flows. Below we summarize the significant findings of the study.

We began by exploring the simplest model of the multiphase flow. The

dispersed phase consists of millions of spherical particles, of size smaller

than η, the Kolmogorov length scale. These particles are inertial, i.e., the

density is much larger than the underlying fluid. Such a system can be a

model of clouds or dust in the atmosphere [1, 2]. At very low mass-loading

(ϕm), the particles do not affect the flow [3–5] (one-way coupling). In chapter

3, we studied the statistics of singularities that occur in the particle velocity

gradients. These singularities, also known as caustics, have major signifi-

cance in accelerating raindrops’ formation in clouds [6]. We showed that the

rate-of-formation of caustics in the flows of heavy inertial particles, advected

by turbulent flows, in two and three dimensions is proportional to exp (−C/St)
in leading order, at small Stokes. Here C is a constant that depends on the

details of the flow.

In chapter 4, we considered the case where the mass-loading is signif-

icant, and back-reaction from the particle can modify the flow (two-way

coupling) [4]. Herewe conducted direct numerical simulation (DNS) study of
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heavy inertial particles (whichwe called dust) immersed in a two-dimensional

turbulent flow. We studied the clustering phenomenon and the gas phase

kinetic energy spectra by varying the Stokes number and the mass-loading

parameter. We showed that the dust-dust correlation dimension (d2) also de-

pends on ϕm. In particular, clustering decreases as mass-loading is increased.

In the kinetic energy spectra of gas, we showed that a new scaling regime

emerges, which we call the dust-dissipative range. The scaling exponent in

this regime is not universal but rather a function of both St and ϕm. Using a

scale-by-scale enstrophy budget analysis, we showed that in the new scaling

regime, viscous dissipation of the gas balances the back-reaction from the

dust.

When the particle size d ≫ η, the shape and deformations also play a

crucial role in the dynamics [2, 7]. Here we studied the statistical proper-

ties pseudo-turbulence generated by the buoyancy-driven bubbly flows and

turbulence modulation in the presence of bubbles. In chapter 5, we inves-

tigated the pseudo-turbulence for At ranging 0.04 − 0.9 and experimentally

relevant Re 150 − 450 [8, 9]. We showed the probability distribution function

(pdf) of the horizontal and vertical liquid velocity fluctuations is in quanti-

tative agreement with the experiments [9]. The energy spectrum shows the

k−3 scaling at high Re and becomes steeper on reducing the Re. Using scale-

by-scale budget analysis, we showed that, for scales smaller than the bubble

diameter, the net transfer because of the surface tension and the kinetic en-

ergy flux balances viscous dissipation to give the k−3 scaling in the energy

spectrum for both low and high At.

In the final chapter 6, we studied the statistical properties of buoyancy-

driven bubbly flows in the presence of large scale driving that generates tur-

bulence. The pseudo-turbulent intensity is characterized using the bub-

blance parameter b [10, 11]. Although our bubbles are weakly buoyant, we

showed that the flow’s statistical properties are consistent with experiments

on air bubbles in the water. We showed that the pdf of the horizontal com-

ponent of the acceleration has a log-normal distribution, and the pdf of the

vertical component is negatively skewed. Finally, we investigate the statis-
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tics of the liquid velocity fluctuations. Consistent with the experiments [12],

we showed that the energy spectrum shows a pseudo-turbulence scaling for

length scales smaller than the bubble diameter and a Kolmogorov scaling for

scales larger than the bubble diameter.

In the future, the research conducted in this thesis can be extended to

study the following problems. For the case of caustics formation, one can

perform a detailed analysis of the path in the phase-space of 𝒯 r [ℤ] and
𝒯 r [𝔸] leading caustic formation in three-dimensions. A similar extension is

also possible to study the scaling of energy spectra in the three-dimensional

particle-laden turbulent flow.

In the case of buoyancy-driven flow, one can investigate the mixing of

scalars in pseudo-turbulence. Experiments of Alméras et al. [12] have shown

that the dispersion of scalars in buoyancy-driven can be modeled as a nor-

mal diffusion process. Albeit the study of Alméras et al. [12] was conducted

for high Re gas bubbles in the water. The direct numerical simulations al-

low for this investigation to be carried at both low and high Re bubbles. A

further extension can be made to study the dispersion of bubbles in pseudo-

turbulence.

The previous investigation of bubbles’ acceleration in an externally driven

flow has observed an offset of ∼ g2 in the vertical component of acceleration

compared to horizontal [13]. In this study, we do not find such a discrepancy.

Thus further investigation by varying At would be helpful to understand the

acceleration pdf.
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