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Preface

. . . there might be hope to ‘break the deadlock’ by extensive, but well-
planned, computational efforts. It must be admitted that the problems
in question are too vast to be solved by a direct computational attack,
that is, by an outright calculation of a representative family of special
cases. There are, however, strong indications that one could name
certain strategic points in this complex, where relevant information
must be obtained by direct calculations. If this is properly done, and
the operation is then repeated on the basis of broader information then
becoming available, etc., there is a reasonable chance of effecting real
penetrations in this complex of problems and gradually developing a
useful, intuitive relationship to it.

– von Neumann

Fluid turbulence is ubiquitous in nature. In most physical situ-
ations the effect of the turbulence is to enhance the dissipation. It
is therefore, not surprising that a lot of effort has gone into devising
new ways to reduce turbulent dissipation. One way by which a dra-
matic reduction in the turbulent dissipation is observed is by adding
small quantities of polymers to the turbulent fluid. The addition of
polymers changes the fluid properties from Newtonian to Viscoelastic.
Understanding the properties of such a viscoelastic turbulent fluid is
a very challenging problem. In Chapters 2 and 3 of this thesis we
conduct direct numerical simulations of forced and decaying turbu-
lence in polymer solutions to unravel the effects of polymer additives
on fluid turbulence.

Fluid turbulence in two dimensions is dramatically different from
its three-dimensional counterpart. One of the major challenges is to
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Preface ix

understand the statistical properties of fluid turbulence in two dimen-
sions. Experimentally, two-dimensional turbulence is realised in thin
layers of fluid. In Chapters 4, 5, and 6 we study different aspects of
turbulence in two-dimensions.

Below we present an overview of different Chapters in this thesis.

CHAPTER 1 We present a brief introduction to the statistical prop-
erties of turbulence and the underlying Navier-Stokes equations.
Topological properties of the three-dimensional fluid flows, the experi-
mental results, and the earlier numerical studies of polymer solutions
are discussed. We then discuss the dramatic change in the statistical
properties of turbulent flows on going from three to two dimensions.
We introduce the modified Navier-Stokes equations to model thin film
of fluids. We discuss earlier experimental studies on thin-films of flu-
ids and introduce the idea of persistence in two-dimensional turbu-
lence.

CHAPTER 2 In this Chapter we investigate the presence of drag-
reduct-ion type phenomenon in homogeneous, isotropic turbulence.
We carry out a high-resolution direct numerical simulation (DNS) of
decaying, homogeneous, isotropic turbulence with polymer additives.
Our study reveals clear manifestations of drag-reduction-type phe-
nomena: On the addition of polymers to the turbulent fluid we obtain
a reduction in the energy dissipation rate, a significant modification
of the fluid energy spectrum especially in the deep-dissipation range,
a suppression of small-scale intermittency, and a decrease in small-
scale vorticity filaments. We show that the analogue of drag reduc-
tion in wall-bounded flows is dissipation reduction in homogeneous,
isotropic turbulence.

CHAPTER 3 In this Chapter we carry forward our study to the case
of statistically steady, forced, homogeneous, isotropic turbulence. Our
study reveals clear manifestations of dissipation-reduction phenom-
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ena: On the addition of polymers to the turbulent fluid, we obtain
a reduction in the energy dissipation rate, a significant modification
of the fluid energy spectrum especially in the deep-dissipation range,
a suppression of small-scale intermittency, and a decrease in small-
scale vorticity filaments.

CHAPTER 4 In this Chapter we present the results of a detailed
direct numerical simulation (DNS) of the two-dimensional Navier-
Stokes equation with the incompressibility constraint and air-drag-
induced Ekman friction. We investigate the combined effects of walls
and such friction on turbulence in forced thin films. We concentrate on
the forward-cascade regime and study the velocity and vorticity struc-
ture functions. To understand the topological properties of two dimen-
sional turbulence we study the probability distribution function of the
Weiss parameter Λ, which distinguishes between regions with centers
and saddles, i.e., vortical regions and strain-dominated regions.

CHAPTER 5 In this Chapter we perform a DNS of the two-dimensi-
onal Navier-Stokes equations. The forcing is chosen such that, at low
Reynolds (Re) numbers, the steady state of the soap film is a square
lattice of vortices. We find that, as we increase Re, this lattice un-
dergoes a series of nonequilibrium phase transitions, first to a crystal
with a different reciprocal lattice and then to a sequence of crystals
that oscillate in time. Initially the temporal oscillations are periodic;
this periodic behavior becomes more and more complicated with in-
creasing Re until the soap film enters a spatially disordered nonequi-
librium statistical steady that is turbulent. We study this sequence
of transitions by using fluid-dynamics measures, such as the Okubo-
Weiss parameter, ideas from nonlinear dynamics, e.g., Poincaré maps,
and theoretical methods that have been developed to study the melt-
ing of an equilibrium crystal or the freezing of a liquid, for instance,
the behavior of the autocorrelation function G(r) in crystalline and
liquid phases.
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CHAPTER 6 In this Chapter we introduce the persistence phenom-
enon in two-dimensional turbulence. We show, in particular, that the
Okubo-Weiss parameter provides us with a natural way for studying
persistence. We distinguish two types of persistence: (A) In the Eu-
lerian framework we consider a point (x, y) and determine how long
the flow at this point remains vortical (extenstional) if the flow at
this point became vortical (extensional) at some earlier time; (B) in
the Lagrangian framework we consider how long a Lagrangian par-
ticle resides in a vortical (extensional) region if this particle entered
that vortical (extensional) region at an earlier time. Our study shows
that, in the Eulerian framework, the persistence PDFs show exponen-
tail tails. In the Lagrangian framework the persistence PDF for the
residence time of the particle in vortical regions shows a power-law
whereas the persistence PDF for the residence time of the particle in
straining regions shows an exponential tail. We also study the auto-
correlation functions of Λ and the velocity derivatives.
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Chapter 1

Introduction

The advection of smoke emanating from a volcanic eruption, the flow
of water through rapids, in a jet, or behind a racing car are all exam-
ples of turbulence in fluids. The above examples cover a wide range of
phenomena and, therefore, obvious questions come to mind: “What is
turbulence? How can we describe it?”

Turbulence is a multifaceted phenomenon. It is generally associ-
ated with a flow or fluid motion in which a large range of length and
time scale are excited. In most physical situations turbulence is gener-
ated by high-speed flows of fluids over walls, past obstacles, through
orifices, or grids. The flow changes from laminar to turbulent flow
via a series of transitions that yield ever more complicated flow pat-
terns. The exact natures of these transitions depend sensitively on
the boundary conditions and external forcing mechanisms. Indeed, a
lot of effort in fluid dynamics has put in to studying the route to tur-
bulence in different flows such as the Taylor-Couette, plane-Poiseuille,
and planar-Couette flows (see, e.g., Refs. [1, 2, 3, 4] and the books by
Drazin [5], Chandrasekhar [6], and Lin [7]).

Once turbulence sets in, the fluid motion can be divided into a mean
flow, generated by the boundary conditions or external forcing, and the
turbulent fluctuations. The statistical properties of these fluctuations
do not depend strongly on the boundary conditions or on the exact na-
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ture of the external forcing if we concentrate at small spatial scales
(much smaller than the length scale at which the fluid is forced) and
if we look far away from boundaries. These turbulent fluctuations are,
then, homogeneous and isotropic to a very good approximation. If the
turbulent flow velocity u is close to or larger than the velocity of sound
c in the fluid (i.e., the Mach number M ≡ u/cs ≥ 0.3) then compress-
ibility effects are important; otherwise the flow can be considered to
be incompressible. We will study incompressible flows.

In this thesis we conduct a detailed study of homogeneous,
isotropic, turbulence in different settings. In Chapters 2 and 3,
we study the effects of polymer additives on, respectively, three-
dimensional decaying and forced homogeneous, isotropic turbulence.
In Chapters 4, 5, and 6 we study the statistical and topological proper-
ties of flows in two dimensional thin layers of fluids, both in Eulerian
and Lagrangian frameworks.

The remaining part of this Chapter is arranged as follows. In Sec-
tion 1.1 we present an introduction to the three dimensional turbu-
lence. In Subsection 1.1.1 we introduce the equations and conser-
vations laws of fluid dynamics for the systems we study. We then
provide, in Subsection 1.1.2, a short introduction to the statistical
and topological properties of three-dimensional turbulence. In Sub-
section 1.1.3 we discuss the non-dimensionalization of the fluid dy-
namics equations. This is followed by an introduction to the three di-
mensional, homogeneous, isotropic turbulence (Subsection 1.1.4 and
1.1.5). In Subsections 1.1.6 we give an overview of the studies on the
effects of polymer additives on turbulent fluids (details are discussed
again in Chapters 2 and 3). We then discuss the dramatic change in
the statistical properties of turbulent flows on going from three to two
dimensions (Section 1.2). In Subsections 1.2.3-1.2.6 we discuss the
turbulence generated in thin-film of fluids (details are discussed again
in Chapters 4-5). Finally, in Subsection 1.2.7 we introduce the idea of
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persistence in two-dimensional flows (details are again discussed in
Chapter 6).

For more detailed accounts of homogeneous, isotropic turbulence
we refer the reader to the books by Frisch [8], Lesieur [9], and the
classic texts by Monin and Yaglom [10] and Batchelor [11].

1.1 Three-dimensional Turbulence

In this Section we give an overview of the equations and the corre-
sponding conservation laws for the fluid systems we consider.

1.1.1 Equations and Conservation Laws

The equations that govern the motion of neutral, uniform-density, in-
compressible fluids were first given by Navier and Stokes and are
known, therefore, as the Navier-Stokes (NS) equations [Eq. (1.1)];
they are:

Du

Dt
= ν∇2u−∇p+ f ; (1.1)

∇ · u = 0; (1.2)

we use units in which the density ρ = 1, D
Dt ≡

∂
∂t + u · ∇ is the ma-

terial derivative, the Eulerian velocity at point x and time t is u, the
kinematic viscosity is ν, the pressure is p, and f denotes an external
body force (per unit volume) imposed on the fluid. The incompress-
ibility condition [Eq. (1.2)] can be used to eliminate the pressure from
Eq. (1.1). The form of the Navier-Stokes equations written in terms
of the velocity u and the pressure p is known as primitive variable
formulation.

The Navier-Stokes equations [Eqs. (1.1) and (1.2)] are density and
momentum conservation laws. By taking the dot product of u with
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Eq. (1.1) and integrating over the volume we get the energy-balance
relation

dE

dt
= −εν + εinj, (1.3)

where the energy E ≡ 1
2V

∫
V |u|

2, the energy-dissipation rate εν ≡ 2νΩ,
the enstrophy Ω ≡ 1

2V

∫
V |ω|

2, and the energy-injection rate εinj ≡
1

2V

∫
V f · u. In a statistically steady state, 〈dE/dt〉 = 0 and εinj = εν.

For the inviscid, unforced case, ν = 0 and f = 0, so Eq. (1.3) yields
energy conservation.

Equations (1.1) and (1.2) can be reformulated in terms of the vortic-
ity and the velocity (this is known as the vorticity-velocity formulation)
by taking the curl of Eq. (1.2):

∂ω

∂t
= ∇× (u× ω) + ν∇2ω; (1.4)

here the vorticity ω = ∇ × u and the velocity at every time step is
obtained by solving the Poisson equation

∇2u = −∇× ω, (1.5)

obtained by taking the curl of the vorticity and by using the incom-
pressibility condition [Eq. (1.2)]. The pressure is eliminated naturally
here. This formulation becomes especially useful in two dimensions
since the vorticity becomes a pseudo-scalar in this case. Specifically,
in two dimensions, the NS equation can be written in terms of the
vorticity ω and the streamfunction ψ:

∂ω

∂t
= ∇× (u× ω) + ν∇2ω; (1.6)

∇2ψ = ω; (1.7)

u ≡
(
−∂ψ
∂y
,
∂ψ

∂x

)
. (1.8)

By taking the dot product of u with Eq. (1.4) and integrating over
the volume we get the helicity-balance relation

dH

dt
= −2νHω, (1.9)
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where H ≡ 1
2V

∫
V u · ω, Hω ≡ 1

2V

∫
V |ω · ∇ × ω|2. In the inviscid limit

the above equation yields helicity conservation.
The Navier-Stokes equation Eq. (1.1) can be modified to study the

motion of dyes or pollutants advected by the fluid. The motion of pas-
sive scalars is modelled by an advection-diffusion equation

Dθ

Dt
= ν∇2θ + fθ, (1.10)

where θ is the passive-scalar field, the advecting velocity field satisfies
the Navier-Stokes equation Eq. (1.1), and fθ is an external force which
mimics the source of the passive scalar. The field θ is passive because
it does not act on or modify u.

The addition of small amounts of polymers or surfactants to the
fluid leads to dramatic changes in the flow properties of the fluid. So-
lutions of fluids with polymers or surfactants provide us with exam-
ples of non-Newtonian fluid. The NS equations coupled to the finitely
extensible nonlinear elastic Peterlin (FENE-P) model for the polymers
is used to study the dynamics of dilute polymer solutions. This model
is defined by the following equations:

∂tu + (u.∇)u = ν∇2u +
µ

τP
∇.[f(rP )C]−∇p; (1.11)

∂tC + u.∇C = C.(∇u) + (∇u)T .C − f(rP )C − I
τP

. (1.12)

Here ν is the kinematic viscosity of the fluid, µ the viscosity parameter
for the solute (FENE-P), τP the polymer relaxation time, ρ the solvent
density, p the pressure, (∇u)T the transpose of (∇u), Cαβ ≡ 〈RαRβ〉
the elements of the polymer-conformation tensor C (angular brack-
ets indicate an average over polymer configurations), I the identity
tensor with elements δαβ, f(rP ) ≡ (L2 − 3)/(L2 − r2

P ) the FENE-P po-
tential that ensures finite extensibility, rP ≡

√
Tr(C) and L the length

and the maximum possible extension, respectively, of the polymers,
and c ≡ µ/(ν + µ) a dimensionless measure of the polymer concentra-
tion [12].
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The Navier-Stokes equations, when coupled with Maxwell’s equa-
tions of electrodynamics, can be used to study the motion of a charged
fluid, such as a plasma; given some approximations [13] this yields
the equations of magnetohydrodynamics (MHD). In the regime where
the external magnetic field is very large, the field acts on the fluid as
an external driving force. In thin layers of, say, soap films, a magnetic
field is coupled with external currents to drive the fluid to a turbulent
state. The motion of fluid in thin layers of, e.g., soap-film is governed
by the two-dimensional incompressible, Navier-Stokes equation with
an additional, air-drag induced Ekman friction term (provided correc-
tions arising from compressibility and Marangoni effects can be ig-
nored [14, 15]). The two-dimensional Navier-Stokes equations, which
we will used to model flow in thin films, can be written in ω − ψ for-
mulation as follows:

Dω

Dt
= ν∇2ω − αω + fω; (1.13)

∇2ψ = ω; (1.14)

u ≡
(
−∂ψ
∂y
,
∂ψ

∂x

)
. (1.15)

Here fω = IB sin(θ) is the Lorentz force which drives the soap-film, I is
the current passing through the soap-film, B is the external magnetic
field, θ is the angle formed between I and B, and α the strength of the
Ekman friction.

This concludes our brief overview of the equations that we have
used in the studies we present in the following Chapters.

1.1.2 Topological Properties of Three-dimensional Flows

In this Section we present a discussion of topological properties of
three-dimensional flows with a special emphasis on the topological
properties in a homogeneous, isotropic state.
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In Fig. 1.1 we show an iso-|ω| plot for the high-Reλ numerical sim-
ulations of Mitsuo, et al. [16] for fluid turbulence.

The isosurfaces consist of tube-like and some sheet-like regions. To
answer the question about how these structures are distributed in a
turbulent flow we need to understand the topological properties of a
three-dimensional flow.

Consider the motion of a particle inside a turbulent fluid. It visits
regions of vorticity and regions that are strain dominated. The motion
of a particle in an inviscid fluid is governed by

ẋ = Ax, (1.16)

where A = ∇u is the velocity-gradient tensor. If λ1, λ2, and λ3 are the
eigenvalues of A, then A satisfies

Aψ = λψ (1.17)

and the eigenvalues λ ≡ (λ1, λ2, λ3) can be determined by solving the
characteristic equation

det(A− λI) = 0, (1.18)

where I is the identity tensor. By expanding the above equation we
get

λ3 + Pλ2 +Qλ+R = 0, (1.19)

where

P = Tr(A),

Q =
1

2
(P 2 − Tr(A2)), and

R =
1

3
(−P 3 + 3PQ− Tr(A3)).

For incompressible flows, P ≡ Tr(A) ≡ λ1 + λ2 + λ3 = 0. Therefore,
for three-dimensional, incompressible flows we have two invariants,
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Figure 1.1: Iso-ω surfaces showing regions where | ω |> ω + 4σ; ω is the vortic-
ity, and ω and σ are its mean value and the standard deviation, respectively. The
size of the display domain is 7482 × 1496η in the vertical and the horizontal direc-
tions; η = 0.00105 is the Kolmogorov dissipation length scale and Reλ = 732 is the
Taylor-microscale Reynolds number. The simulations are done with 20483 colloca-
tion points. The figure is taken from Ref. [16].
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namely, Q = −Tr(A2)/2 and R = −Tr(A3)/3. There are three possibili-
ties for the roots of the characteristic equation: (a) all roots can be real
and distinct; (b) all roots can be real with two of them equal to each
other; and (c) one of the roots can be real and the other two are com-
plex and conjugates of each other. The incompressibility constraint
rules out the possibility of having all roots real and equal. Topological
properties of a flow can now be classified in the QR plane as shown
schematically in Fig. 1.2.

Data for the velocity field from a direct numerical simulation of the
three-dimensional Navier-Stokes equations can be used to determine
the joint probability distribution function (PDF) P (Q,R); this shows a
characteristic tear-drop shape that is shown in Fig. 1.3.

1.1.3 Non-dimensional Parameters

For the case of pressure-driven flows (e.g., the Poiseuille flow) or for
flows in which the forcing is provided by the boundaries (e.g., shear
flows) the natural non-dimensional parameter is the Reynolds num-
ber. On rescaling length by a typical length scale L, velocity by a
typical velocity U , and for f = 0 Eq. (1.1) reduces to

Du

Dt
=
∇2u

Re
−∇p,

where Re ≡ UL/ν is the Reynolds number of the fluid. If we fix the
geometry, then this equation depends only on a single parameter Re.
As we increase Re, the fluid undergoes a series of transitions from a
laminar state to one that is, finally, turbulent. Note that, if we keep
the geometry and shape of our domain fixed, then all the properties
of the flow are governed by a single parameter, namely, the Reynolds
number Re. This is the famous similarity principle of fluid dynamics.

In the presence of an external force acting on the fluid, the natural
normalization is obtained by rescaling length by a typical length scale
L, velocity by L/ν, and force by ||f ||2/Ld/2, where ||f ||2 ≡ [

∫
V f ]1/2, V
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Figure 1.2: Three-dimensional flow topologies indicated schematically in the
QR plane. The topologies are classified as (reading counter clockwise from
the top-right corner) unstable focus/contracting, stable focus/stretching, stable
node/saddle/saddle, and unstable node/saddle/saddle. This sketch is taken from
Ref. [17].
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Figure 1.3: A representative joint PDF P (Q∗, R∗) of R∗ = R/〈SijSij〉3/2 and Q∗ =

Q/〈SijSij〉 calculated from our DNS of the three-dimensional Navier-Stokes equa-
tion. The black curve represents the zero-discriminant (or Vieillefosse) line 27R2/4+

Q3 = 0; here Reλ ≡ 122. The contour levels are logarithmically spaced.

is the volume, and d is the dimension. With the above normalization
Eq. (1.1) reduces to

Du

Dt
= ∇2u−∇p+ G,

where G ≡ L3−d/2

ν2||f ||2 f is the Grashof number. For a given geometrical
shape and a given form of the forcing, G is the only control parameter.

1.1.4 Three-dimensional Homogeneous Isotropic Turbulence

To explain homogeneous, isotropic turbulence we follow the example
of flow past a cylinder given in Chapter-1 of Ref. [8].

Consider the flow past a cylinder at low Reynolds numbers
(Fig. 1.4). The inlet velocity is u = (V, 0, 0), L is the diameter of the
cylinder, and ν is the viscosity of the fluid. The control parameter for
the flow is the Reynolds number Re ≡ V L/ν.



1.1. Three-dimensional Turbulence 12

Figure 1.4: A sketch of flow past a cylinder. The x − y axis are in plane. The flow
is along the x−direction and the z−axis is pointing out of the page. The sketch is
taken from the book of Frisch [8].

At low Re = 0.16 the flow has up-down(y-reversal), time-
translation, and space translation (parallel to the z-axis of the cylin-
der) symmetries (Fig. 1.5).

At large values of the Reynolds number, say Re = 140, a Kármán
vortex street is formed behind the cylinder (Fig. 1.5) and the continu-
ous time symmetry is broken.

Now consider a situation where the flow is generated not by one
but a large number of cylinders arranged in a manner so as to form a
grid. The flow behind every cylinder, at sufficiently large Re, interacts
with that behind the neighbouring cylinder and becomes turbulent.
Figure 1.7 shows such turbulent flow behind a grid.

We now quote the following paragraphs describing homogeneous,
isotropic, turbulence from the book of Frisch:
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Figure 1.5: Flow past a cylinder at Re = 0.16. The photograph is taken from the
book by Frisch [8] and is the same as Fig. 6 on page-11 of the book by Van Dyke [18].

Figure 1.6: Flow past a cylinder atRe = 0.16. The photograph is taken from the book
by Frisch [8] and is the same as Fig. 94 on page-56 of the book by Van Dyke [18].

“Far enough behind the grid (say, 10− 20 meshes) the flow displays
a form of spatial disorder known since Lord Kelvin (1887) as homo-
geneous, isotropic, turbulence because its overall aspect seems not to
change under translations and rotations. This, of course, can only be
a statistical statement.
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Figure 1.7: Homogeneous turbulence behind a grid. The figure is downloaded from
Prof. Nagib’s web page http://fdrc.iit.edu/research/nagibResearch.php.

At very high Reynolds number, there appears a tendency to restore
the symmetries in a statistical sense far from the boundaries.”

By statistical symmetries we mean that the symmetries are re-
stored in the averages of measured quantities. Consider two points
separated by a distance `. Then the velocity difference between these
two points is

δu(r, `) ≡ (u(r + `)− u(r)). (1.20)

The flow is considered to be homogeneous in velocity increments if
〈δu(r + ρ, `)〉 ≡ 〈δu(r, `)〉, for all increments ` and all displacements
ρ that are small compared to the integral scales (at which energy is
pumped into the system). Similarly isotropy means that the statisti-
cal properties of velocity increments are invariant under simultane-
ous rotations of ` and δu.

We present now the following two hypotheses about homogeneous,
isotropic turbulence given by Frisch, op. cit.:

H1 In the limit of infinite Reynolds numbers, all the possible symme-
tries of the Navier-Stokes equation, usually broken by the mecha-
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nism of producing the turbulent flow, are restored in a statistical
sense at small scales and away from the boundaries.

H2 Under the same assumptions as H1, the turbulent flow is self-
similar at small scales. There exists a unique scaling exponent
h ∈ R

〈δu(r, λ`)〉 = λh〈δu(r, `)〉,∀λ ∈ R+ (1.21)

1.1.5 Structure Functions and the Energy Spectrum

The two quantities which are studied exhaustively and for which
some analytical or phenomenological results are known are the order-
p structure functions

Sp(`) ≡< [(u(x + `)− u(x)).(`/`)]p >, (1.22)

and the energy spectrum

E(k) ≡
∫

Ωs

4πk2|uk|2 (1.23)

where Ωs is the solid angle (for specificity we give E(k) for the three-
dimensional case). The energy spectrum is related to the velocity-
velocity autocorrelation by a Fourier transform.

The following cascade picture of turbulence, due to Richardson, has
played an important part in the development of the phenomenology
of turbulence. Consider eddies of various sizes. The largest eddies
of size `0 correspond to the forcing scale. According to the cascade
picture the energy flows through successive generation of eddies, each
of size `n = r`n−1, till it is dissipated at and beyond the Kolmogorov
dissipation scale. Here the subscript n indicates the generation of an
eddy, with 0 denoting the first mother eddy and 0 < r < 1. It is also
assumed that these eddies are space filling as shown in the schematic
diagram of Fig. 1.8. The energy is injected at the forcing scales. In
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Figure 1.8: A schematic diagram of the Richardson cascade that plays an important
role in Kolmogorov’s phenomenology of turbulence.

the inertial range a constant flux is maintained till, finally, the energy
reaches the scales where it is dissipated because of viscous losses.

Kolmogorov made a further assumption that, in the limit of infinite
Reynolds number, all small-scale properties are uniquely and univer-
sally determined by the scale ` and the energy dissipation rate ε. The
dimension of Sp(`) is [L]p[T ]−p. Therefore, by using Kolmogorov’s as-
sumption above we get,

SK41
p (`) ∼ εp/3`p/3, (1.24)

where the superscript K41 stands for Kolomogorov’s phenomenologi-
cal theory [19, 8] of 1941. At large, but not infinite, Reynolds num-
bers, the above scaling form (and its multiscaling generalisations
that are described below) holds for separations ` in the inertial range
ld << ` << L, where ld is the dissipation scale (see below) and L the
length at which energy is injected into the system. In particular, the
second-order structure function scales as

SK41
2 (r) ∼ ε2/3`2/3, (1.25)



1.1. Three-dimensional Turbulence 17

whence we get
EK41(k) ∼ k−5/3. (1.26)

We now define the dissipation length scale ld, at which the dissipation
becomes significant, the Taylor microscale λ, and the integral scale l0,
which corresponds to the sizes of large eddies.

ld ' (ν3/ε)1/4, (1.27)

λ '

√ ∑
k E(k)∑

k k
2E(k)

, and (1.28)

l0 '
∑

k k
−1E(k)∑
k E(k)

(1.29)

From these length scales we can define the Taylor-microscale
Reynolds number Reλ = urmsλ/ν and the integral scale Reynolds num-
ber Re0 = urmsl0/ν.

Furthermore, by using the Kármán-Howarth-Monin relation for
the energy flux [8], Kolmogorov derived the exact relation for the
third-order structure function in homogeneous, isotropic, turbulence,
namely,

S3(`) = −4

5
ε`. (1.30)

This is also called the fourth-fifths law.
In Figure 1.9 we give representative results for the second-order

structure function and the energy spectrum; these show good agree-
ment K41 predictions.

Deviations from the predictions of K41 became apparent when ex-
periments studied high-order structure functions (p > 3) as shown,
e.g., in Fig. 1.10; this figure shows that the exponent ζp, which char-
acterises the inertial-range scaling behaviour of Sp(r), deviates signif-
icantly from ζK41

p = p/3. This deviation of ζp from the simple, scaling
K41 prediction p/3 is referred to as multiscaling. It can be rationalised
in terms of the multifractal model for turbulence. For a detailed dis-
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Figure 1.9: Plots of the second-order structure function and the energy spectrum in
the frequency domain for data from the S1 wind-tunnel at ONERA (see Ref. [8] for
details).

Figure 1.10: Plots of the exponent ζp, which characterises the inertial-range scaling
behaviour of Sp(r), showing significant deviations from ζK41

p = p/3. This plot is the
same as Fig. 8.8 in the book by Frisch, op. cit., to which we refer the reader for
details.

cussion of multifractality we refer the reader to Ref. [8]; we will touch
on it only briefly in some of the studies presented in this thesis.
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1.1.6 Effects of Polymer Additives on Three-dimensional Tur-
bulence

The dramatic reduction of drag by the addition of small concentrations
of polymers to a turbulent fluid continues to engage the attention of
engineers and physicists. Drag reduction was discovered by Toms in
1949. He found that, by the addition of small amounts of polymers,
one can sustain a given flow rate in a pipe with a pressure gradient
that is less than that required in the absence of polymers. Significant
advances have been made in understanding this drag reduction both
experimentally [20, 21, 22] and theoretically [23, 24, 25, 26] in chan-
nel flows or the Kolmogorov flow [27]. In this Section we present an
overview of earlier experimental and numerical studies that have in-
vestigated the effects of polymer additives on turbulence. We then
summarize the results of our simulations and contrast them with
these earlier studies. The details of our numerical studies are given
in Chapters-2 and 3.

1.1.7 Experimental Studies of Fluids with Polymers

In wall-bounded flows polymer additives modify the viscosity in a
scale-dependent manner in such a way that the viscous sublayer
thickens and the mean velocity increases [23, 26]. In particular, poly-
mers modify the log-law in a channel flow and so the mean velocity
increases. The plot in Fig. 1.11 shows the modification of the log-law
profile on the addition of polymers to a channel flow.

In pressure-driven flows (channel or pipe) the percentage drag re-
duction (DR) is defined as

DR = (
∆Pf −∆Pp

∆Pp
)× 100 (1.31)
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Figure 1.11: Plot of mean velocity profiles during drag reduction. The solid lines
approximate the envelope of the buffer layers for increasing drag reduction. The plot
and the caption is taken from Virk, et. al. [20]. Here u+ = U(y)/

√
ν∂yU , y+ = y/δ,

and δ is the thickness of the viscous sublayer.
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Figure 1.12: DR versus c for Polyox WSR-301. from the experiment of Colleyer, et
al. [28]. DR increases, reaches a maximum, and then decreases mildly.

In Fig. 1.12 we present a plot of DR versus the concentration c from
the experiment of Colleyer, et al. [28]. DR increases, reaches a maxi-
mum, and then decreases mildly.

Figure 1.13 shows how the friction factor f ≡ (4a∆p)/(ρLU 2) cha-
nges with the Reynolds number for different polymer concentrations.
Here a is the radius of the pipe, ρ is the fluid density, and U is the
mean velocity. For a given Reynolds number there is a minimum fric-
tion factor or maximum DR that one can attain (this is independent of
the polymer concentration). The curve of the minimum friction factor
as a function of the Re is known as Virk’s maximum-drag-reduction
asymptote.

Polymer additives also lead to dramatic changes in the structure of
a flow in a turbulent jet as shown in Fig. 1.14. In the absence of poly-
mers there is a lot of spray formation; but the addition of polymers
suppresses spray formation and thereby reduces small-scale struc-
tures in the flow.
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Figure 1.13: Pipe friction factor versus the Reynolds number for various polymer
solutions [from Virk, et al., [20]].

Figure 1.14: Turbulent jet of water without (top) and with 50ppm polyethylene ox-
ide(PEO) (bottom) at Re ∼ 225 (from Hoyt et al. [29].).



1.1. Three-dimensional Turbulence 23

Results similar to those described above for a turbulent jet have
also been obtained in the grid-turbulence experiments of McComb, et
al. [30]. Visualisation by a dye injected at the inlet has displayed
that the turbulent structure is considerably reduced on the addition
of polymers as shown in Fig. 1.15 for various polymer concentrations.
The corresponding energy spectra E(k) are shown in Fig. 1.16 for dif-
ferent polymer concentrations. These spectra show that the energy
content of the polymer solution is marginally increased at large spa-
tial scales (low k) for large polymer concentrations whereas it is re-
duced in inertial-range scales. Dissipation-range Fourier modes are
under resolved in this experiment.

A recent experiment [31] has studied the effects of polymer addi-
tives on the second-order structure function S2(r). This study shows
that, at large polymer concentrations, the value of S2(r) is suppressed
in the inertial range. The normalized S2(r) shows that some cross-over
takes place, for small polymer concentrations, at the beginning of the
dissipation range [see Fig. 1.17 for a plot of S2(r) (DNN(r) in the plot)].
However, this is not absolutely conclusive since, in this experiment,
the estimated dissipation length scale for the pure fluid is ηw = 84µm

and the smallest resolved scale in the experiment is r/ηw = 1. Thus
the dissipation range is not very well resolved.

The statistical properties of the fluid turbulence in the presence of
polymer additives have been studied by Liberzon, et al. [32, 33]. The
forcing is produced by four counter-rotating disks. In one case the
disks have baffles (the forcing thus generated is called inertial forc-
ing); in the other case the disks are smooth (the forcing thus gener-
ated is called frictional forcing). Furthermore, in the former case the
average energy input remains constant both in the absence and in the
presence of polymers. The Reynolds number in these experiments is
Re ' 40. For both types of forcing a reduction in the small-scale struc-
ture is observed. In the smooth-disk case the turbulence is generated
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Figure 1.15: Effect of polymer additive(Polyox WSR 301) on the dye traces at con-
centrations (a) c = 0(water), (b) c = 50ppm, (c) c = 100ppm, (d) c = 250ppm, and (e)
c = 500ppm (from McComb, et al., [30]).
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Figure 1.16: Energy spectra E(k) versus k for various polymer concentrations (from
McComb, et al., [30]).
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(a)

(b)

Figure 1.17: The effect of polymer additives on the second-order structure functions
. The Reynolds number of the water flow (before the addition of polymers) is Reλ =

350 (corresponding to We = 6.0 with polymers) and the Kolmogorov length scale is
ηw = 84µm. The structure functions compensated by (a) the inertial-range scaling
prediction and (b) the dissipation-range scaling prediction. The dashed line in (b)
indicates εT (0) as measured in the pure-water flow.(Our caption follows the caption
of Fig. 1 in Ref. [31].)



1.1. Three-dimensional Turbulence 27

Figure 1.18: PDFs of s2 and ω2 for four cases: (a) water flow forced by smooth disks
[solid line(-)]; (b) dilute polymer solution forced by smooth disks [dashed line(–)];
and then the flows forced by baffles: (c) pure water [chain like(-.-)]; and (d) with
polymers [dotted line (...)]. Our caption follows that of Fig. 3 in Ref. [33].

in the boundary layer whereas, if the disk has baffles the turbulence is
not boundary-layer driven. Since a reduction in small-scale structures
is also observed in the inertial-forcing case, it was argued that poly-
mers do modify the bulk fluid turbulence away from the boundaries.
In Fig. 1.18 we present the PDF of the strain squared s2 and ω2 for
these two types of forcing, with and without polymers. Note that the
presence of polymers leads to a suppression of regions of large strain
and large vorticity in the flow. To understand the effect of the polymer
additives on the topological properties of the flow, QR plots (Fig. 1.19)
were analysed in Ref. [33]. Although the typical tear-drop shape of
the QR plot remains on the addition of polymers, its size shrinks.
This gives a very strong indication that the structural properties of
the turbulent flow are changed on the addition of the polymers.

1.1.8 Numerical Studies of Fluids with Polymers

Dilute solutions of polymers are modelled by coupling a constitutive
equation for the polymer conformation tensor with the Navier-Stokes
equations. The constitutive equation we use is the Finitely Extensible
Nonlinear Elastic-Peterlin (FENE-P) equation. A drag-reducing poly-
mer molecule such as PEO consists of a large number of monomers
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Figure 1.19: Joint PDFs P (Q,R) for (a) water with smooth disks; (b) with polymers
and smooth disks; (c) water with baffles; and (d) with polymers and with baffles.
Contour lines are from 0.01 to 1 in steps of 0.1. (Liberzon, et al., Ref. [33].)
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(≈ 104), has a high molecular weight, a large number of time-scales,
and an end-to-end maximal extension (≈ 34µm) smaller than the Kol-
mogorov dissipative scale. In the FENE-P equation the complicated
polymer molecule is modelled by a dumbbell with a single relaxation
time τP and a finite maximal extension L. The contribution of the
polymer to the fluid is modelled by an additional stress term that is
added to the Navier-Stokes equation [Eq. (1.1)]. For the details of
such modelling we refer the reader to Refs. [34, 35]. Some simula-
tions have also used the Oldroyd-B equation as a polymer model. The
Oldroyd-B model is a special case of the FENE-P model with L = ∞.
Although the FENE-P model appears over simplified, it has been used
successfully in channel-flow simulations to obtain the modification of
the log-law profile observed in experiments [25, 36, 37].

In this thesis we restrict our discussion to numerical studies of ho-
mogeneous, isotropic turbulence in the presence of polymer additives
by using direct numerical simulations. For a discussion on earlier
shell model studies we refer the reader to Refs. [38, 39]. For issues
regarding the numerical schemes and their implementation we refer
the reader to Chapter 2. The first numerical studies on the effect
of polymers on homogeneous, isotropic turbulence were conducted in
Ref. [40]; stochastic forcing was used and the forcing-scale Reynolds
number was Re = (L3f)1/2/νT , with L the linear size of the box, and
νT the total viscosity (the sum of the polymer and the fluid viscosities)
kept fixed. The polymer was modelled by using a FENE-P model and
an artificial diffusivity term was added to the FENE-P equations for
stability. The main results of this study are: (a) A reduction of vortic-
ity filaments on the addition of polymers; (b) an overall reduction in
the dissipation rate with polymers. The energy input in these simula-
tions changes with change in parameters, hence a direct comparison
with the experiments cannot be attempted.
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In a series of numerical experiments Vaithianathan,et al., have pro-
posed new numerical schemes and a RANS-type model [12, 41, 42] to
study the coupled NS+FENE-P equations in the presence of shear and
for the case of homogeneous, isotropic turbulence. They have found
the following: (a) A suppression of the energy spectrum on the addi-
tion of polymers; (b) an increases in the polymer extension with an
increase in the polymer relaxation time.

In another study Berti, et al., have modelled the polymers by a
linear viscoelastic model. Their study also shows attenuation of the
spectrum in the inertial range; but they have found a mild increase
in the viscous dissipation with an increase in the polymer relaxation
time.

We have conducted very detailed, high-resolution direct numerical
simulations, both for forced and decaying homogeneous, isotropic fluid
turbulence in the presence of polymer additives. For decaying turbu-
lence our study shows that: (a) The addition of polymers leads to dissi-
pation reduction; (b) the energy spectrum is attenuated at most of the
scales except in the deep-dissipation range where the polymers inject
energy back into the fluid; (c) small-scale intermittency is reduced on
the addition of polymers; (d) there is a reduction in large-vorticity and
large-strain regions on the addition of polymers. This is in agreement
with the experiments of Liberzon, et al., op. cit..

Our study of forced fluid with polymer additives is divided into two
parts. In the first part we study the effect of polymers on the turbu-
lent fluid at moderate Reynolds numbers, comparable to those in the
experiments of Liberzon, et al., op. cit.. The forcing scheme used is
such that the energy injection, and hence the total dissipation, is held
at a constant value, both with and without polymers. Our results
are in qualitative agreement with those of Liberzon, et al., it op. cit.
In the second part we have looked at the modification of the energy
spectrum in the presence of polymer additives. These simulations are
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conducted at a low Reynolds number as a well-resolved dissipation
range is required to uncover the modification of the spectrum in the
deep dissipation range. In agreement with our earlier study of de-
caying turbulence, we find that the energy spectrum is attenuated at
most spatial scales except in the deep dissipation range where the
polymers inject energy back into the fluid.

1.2 Flow in two dimensions

When the motion of the fluid is confined to a plane the flow is two-
dimensional. Consider the situation in which u ≡ u(x, y), p ≡ p(x, y),
and f ≡ f(x, y) are independent of the z-direction. By writing the
equations for the different components of u in Eq. (1.1) and Eq. (1.2)
we get

∂ux
∂t

+ ux
∂ux
∂x

+ uy
∂ux
∂y

= ν(
∂2ux
∂x2 +

∂2ux
∂y2 )− ∂p

∂x
+ fx, (1.32)

∂uy
∂t

+ ux
∂uy
∂x

+ uy
∂uy
∂y

= ν(
∂2uy
∂x2 +

∂2uy
∂y2 )− ∂p

∂y
+ fy, (1.33)

∂uz
∂t

+ ux
∂uz
∂x

+ uy
∂uz
∂y

= ν(
∂2uz
∂x2 +

∂2uz
∂y2 ) + fz, (1.34)

∂ux
∂x

+
∂uy
∂y

= 0. (1.35)

We observe now that the equation for the time evolution of uz is simi-
lar to the equation of a passive scalar. It does not affect the motion of
the velocities ux and uy. Therefore, when the motion is constrained to
be in a plane, the time-evolution of ux and uy completely determines
the dynamics in the plane. By defining the vorticity ω ≡ (∂xuy − ∂yux)
and using ux ≡ −∂ψ/∂y and uy ≡ ∂ψ/∂x, we get

∂ω

∂t
+ ux

∂ω

∂x
+ uy

∂ω

∂y
= ν(

∂2ω

∂x2 +
∂2ω

∂y2 ) + fω, (1.36)

∇2ψ = ω, (1.37)
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where fω = (∂xfy−∂yfx) and ψ is the streamfunction. In the above for-
mulation (conventionally called the streamfunction-vorticity formula-
tion) the incompressibility constraint [Eq. (1.2)] is satisfied by con-
struction. Note that in two dimensional flows the vortex stretching
mechanism is absent, namely, ω · ∇u = 0.

1.2.1 Conservation Laws

In addition to the energy conservation, there is an additional balance
equation for enstrophy. The energy and enstrophy conservation laws
follow from the balance equations

dE

dt
= −2νΩ, and (1.38)

dΩ

dt
= −2νP, (1.39)

where P ≡ 1
2V

∫
V |∇ × ω|2. The limit ν → 0 leads to energy and en-

strophy conservation. [In the two-dimensional case, integrals of all
powers of ω are conserved in the unforced, inviscid limit.]

1.2.2 Topological Properties of Two-dimensional Flows

In Section 1.1.2 we presented a way of studying the topological prop-
erties of three-dimensional flows. For two-dimensional flows we note
that A2 = − det(A)I, where A is the velocity-derivative matrix. There-
fore P = R = 0 (by incompressibility) and Q = − det(A) is the only
invariant of two-dimensional turbulence in the inviscid case. This
invariant is often the Okubo-Wiess parameter and is conventionally
denoted by the symbol Λ; if Λ = − det(A) > 0, the flow is vorticity
dominated, whereas, if Λ = − det(A) < 0, the flow is strain dominated.
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Figure 1.20: A sketch showing the forward and the inverse cascades
in the energy spectrum for two-dimensional turbulence. This figure is
taken from the talk of Prof. G. Boeffetta that is available at the URL
http://personalpages.to.infn.it/b̃offetta/Seminars/conformalturbo.htm.

1.2.3 Two-dimensional Turbulence

According to Frisch, op. cit., the study high-Reynolds number so-
lutions of Eq. (1.37) is two-dimensional turbulence. Because of the
additional conservation of enstrophy, there is a dual cascade in two-
dimensional turbulence. There is an inverse energy cascade, from
forcing scales to large spatial scales, and a forward cascade of enstro-
phy, from forcing scales to small spatial scales, as suggested first by
Kraichnan [43]. By using dimensional arguments it was predicted
that, in the inverse-cascade regime, E(k) ∼ k−5/3, whereas, in the
forward-cascade regime, E(k) ∼ k−3. These scaling laws were inde-
pendently predicted by Kraichnan, Leith, and Batchelor [43, 44, 45].
A schematic sketch of the energy spectrum, showing the two cascade
regimes in two-dimensional turbulence, is given in Fig. 1.20. From
the conservation laws given in Section 1.2.1 we find that, in the limit
ν → 0, Ω attains a constant value, whereas E → 0. Thus there is
a dissipative anomaly for the enstrophy but no dissipative anomaly
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for the energy in two-dimensional turbulence. By contrast, three-
dimensional fluid turbulence displays a dissipative anomaly for the
energy in so far as the energy dissipation rate seems to asymptote to
a positive number as Re→∞, i.e., ν → 0.

1.2.4 Quasi-two-dimensional Turbulence: Ekman Friction

Experiments can only realise quasi-two-dimensional flows. Such flows
have an additional dissipative mechanism that inhibits the inverse
cascade of the energy and steepens the slope of the energy spectrum
in the forward-cascade region. This additional dissipative mechanism
is modelled by adding a linear drag term (called the Ekman friction)
to the Navier-Stokes equations:

Du

Dt
= ν∇2u− αu + f , and (1.40)

∇ · u = 0, (1.41)

here α is the Ekman friction coefficient. The origin of the Ekman
friction and its effect on the topological properties of the fluid are dis-
cussed in the next Section and in Chapter-4. Because of the Ekman
friction the energy spectrum in the forward cascade regime steepens
to E(k) ∼ k−(3+δ) and the enstrophy flux shows, at variance with pure
two-dimensional turbulence, a power-law decay k−δ, with δ > 0 [46].
Furthermore [46], at the dissipation wavenumber kd ∼ ν−1 the enstro-
phy flux is stopped by a viscous dissipation, with a viscous dissipation
rate εω = νδ, the enstrophy dissipation vanishes in the inviscid limit
ν → 0, since δ > 0. Therefore, in quasi-two-dimensional turbulence
with Ekman friction there is neither a dissipative anomaly nor an en-
strophy anomaly.

In the inverse-cascade regime, where the energy scales as E(k) ∼
k−5/3, from dimensional arguments, similar to those in K41 (see Sec-
tion 1.1.5), we get Sp(r) ∼ ε2/3r2/3. In the forward-cascade regime,
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where the energy scales as E(k) ∼ k−3+α, the velocity field is smooth
so Taylor expansion yields Sp(r) ∼ rp.

1.2.5 Two-dimensional Turbulence in Thin Films

The first experimental realisation of two-dimensional turbulence was
obtained in atmospheric-turbulence experiments [44] where a k−3

spectrum was observed. More recently, quasi-two dimensional turbu-
lence has been realized in laboratory flows of thin layers of soap films
or other conducting fluids. In the former case, the experimental appa-
ratus consists of a soap film suspended on a wire-frame. To study de-
caying two dimensional turbulence, the flow is driven by gravity and
passed through a wire comb to generate turbulence behind a grid [47].
Since a soap film is an electrolyte solution, for forced-turbulence stud-
ies, the soap film is suspended above an array of magnets and a cur-
rent is passed through it. This generates a Lorentz force that acts
as a forcing mechanism for the soap film. For a detailed overview
of two-dimensional turbulence theory, numerical simulations, and ex-
periments we refer the reader to Refs. [48, 49, 50, 51]. Since we are
interested in forced-turbulence experiments, we concentrate on the
electromagnetically forced soap films of Refs. [52, 53, 54, 55, 56].

A sketch of the forced, quasi-two-dimensional turbulence experi-
ments of Refs. [52, 53, 54, 55, 56] is shown in Fig. 1.21. In all the
soap-film experiments, the soap-film is in contact with the air out-
side. The friction between the soap-film and air leads to an additional
air-drag induced dissipative mechanism (also called air-drag induced
Ekman friction) that extracts energy from large scales and inhibits
the inverse cascade of energy. In Ref. [53] it was shown that dissi-
pation because of the air-drag induced Ekman friction is as large as
the viscous dissipation. In Ref. [54, 55] topological properties of two-
dimensional turbulence were studied by using the Okubo-Weiss pa-
rameter Λ; the turbulent kinetic energy was maintained at a constant
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Figure 1.21: Sketch of the experimental apparatus used in the studies of Refs. [52,
53, 54, 55, 56] (this figure from the Ph.D. thesis of M. Rivera.)

Figure 1.22: The PDFs (a) P (Λ) versus Λ and (b) P (Λ/Λrms) versus Λ/Λrms for
different values of the Ekman friction (γ = 0.28(diamond), γ = 0.56(triangle),
γ = 0.97(circle).) from Ref. [54].

value for different values of the Ekman friction α (or γ, to use the no-
tations of the experiments to which we refer). The plot in Fig. 1.22
shows the PDF P (Λ) and the normalized PDF P (Λ/Λrms) for different
values of γ. The normalization of the PDF leads to the overlap of all
the distributions; and the PDF of Λ shows a cusp singularity at Λ = 0.

Another set of experiments [55] studied the joint distributions of
Λ with the longitudinal and the transverse component of the velocity.
These joint distribution indicate that, for large Λ, large transverse
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Figure 1.23: Joint PDF of Λ and (a) the longitudinal velocity difference and (b) the
transverse velocity difference. This figure is extracted from Ref. [52].

velocity gradients are more probable than large longitudinal velocity
differences (Fig. 1.23).

The experiments of Refs. [56] have studied Eulerian and Lagran-
gian velocity structure functions of order 1 ≤ p ≤ 6. In the inverse-
cascade regime they find that the Eulerian structure functions show
simple scaling whereas in the forward-cascade regime there is small
deviation from simple scaling. The corresponding Lagrangian struc-
ture functions show significant deviations from simple-scaling predic-
tions. To the best of our knowledge there has been no experimental
investigation of the vorticity structure functions in forced soap-film
turbulence experiments. Numerical studies with periodic boundary
conditions and with very high Reynolds numbers [46, 57] have ob-
served multiscaling of the vorticity structure functions.

In this thesis we have conducted a detailed direct numerical simu-
lation (DNS) of the two-dimensional Navier-Stokes equation with the
incompressibility constraint and air-drag-induced Ekman friction. We
have investigated the combined effects of walls and such friction on
turbulence in forced thin films. We have concentrated on the forward-
cascade regime and have extracted the isotropic parts of velocity and
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vorticity structure functions and thence the ratios of multiscaling ex-
ponents. Our study shows velocity structure functions display simple
scaling whereas their vorticity counterparts show multiscaling; and
the probability distribution function of the Okubo-Weiss parameter Λ,
which distinguishes between regions with centers and saddles, is in
quantitative agreement with experiments. The details of the numeri-
cal simulations and the results is given in Chapter 4.

1.2.6 Turbulence-induced Melting in a Vortex Crystal

In Section 1.2.2 we had discussed how the topological properties of a
two-dimensional fluid can be quantified by the Okubo-Weiss param-
eter Λ. Recently an experiment was conducted a on two-dimensional
soap-film with an external forcing [58]. This forcing generates a cellu-
lar flow pattern with a square lattice of vortices with alternating sign.
The corresponding Λ field is a square array of alternating regions of
positive (vortex cores) and negative (strain-dominated or extensional
flow) Λ. On increasing the Reynolds number, this array undergoes
a transition and finally becomes turbulent. Snapshots of the veloc-
ity, vorticity, and the Λ field from these experiments [58] is shown in
Fig. 1.24. This study considered the regions of large curvatures as
topologically special points. The radial distribution function [13] of
these points showed crystal-like behaviour at low Reynolds numbers;
but, at large Reynolds number when the fluid became turbulent, the
behaviour became like that of a liquid (Fig. 1.25).

An earlier numerical study [59] investigated the transition to tur-
bulence in a square array of forced vortices from a purely dynamical-
systems perspective. The control parameter was the Grashof number.
On increasing the Grashof number they found the formation of large-
scale structures. Recently Brons, et al. [60] conducted a numerical
simulation that mimicked the experiments of Ref. [58] and studied
the rate of annihilation of topologically special points.
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Figure 1.24: Veloctiy, vorticity, and the logarithm of the curvature (Λ) fields for
Re = 32(a,d), 93(b,c), and 245(c,f). In (a-c) the dark red regions correspond to regions
of large vorticity whereas dark blue regions correspond to regions of large negative
vorticity. In (d-f) regions with large curvature are marked red whereas regions of
small curvatures are marked blue (our caption and figure follow Ref. [58]).
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t

Figure 1.25: The radial distribution function of topologically special points, shown
for Re = 32(�), 93(o), and 245(4); this is from Ref. [58].

We perform a DNS of the two-dimensional Navier-Stokes equa-
tions. The forcing is chosen such that, at low Reynolds (Re) num-
bers, the steady state of the soap film is a square lattice of vortices.
We find that, as we increase Re, this lattice undergoes a series of
nonequilibrium phase transitions, first to a crystal with a different
reciprocal lattice and then to a sequence of crystals that oscillate in
time. Initially the temporal oscillations are periodic; this periodic be-
havior becomes more and more complicated with increasing Re until
the soap film enters a spatially disordered nonequilibrium statistical
steady that is turbulent. We study this sequence of transitions by
using fluid-dynamics measures, such as the Okubo-Weiss parameter,
ideas from nonlinear dynamics, e.g., Poincaré maps, and theoretical
methods that have been developed to study the melting of an equilib-
rium crystal or the freezing of a liquid, for instance, the behavior of
the pair-correlation function G(r) in crystalline and liquid phases.
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1.2.7 Persistence of particles in vortical regions

For a nonequilibrium fluctuating field persistence is the probability
P0(τ) that sign of the field at a point in space does not change upto
time τ [61]. This probability can be analytically determined for a
number of models, e.g., simple diffusion equation with Gaussian ran-
dom initial conditions [61, 62]. Such questions have also been studied
for several other models including, reaction-diffusion systems, fluc-
tuating interfaces, granular medium, and population dynamics. In
all these cases the persistence probability shows power-law decay for
large τ , i.e., Pθ(τ) ∼ τ θ where θ is negative and is often called the
persistence exponent [63, 64].

We have investigated the presence of persistence exponent in two-
dimensional turbulence. We perform a DNS of the two-dimensional
Navier-Stokes equations and choose Kolmogorov forcing to mimic
soap-film experiments. We evaluate the persistence times and au-
tocorrelation functions for the Okubo-Weiss parameter Λ in Eulerian
and Lagrangian frameworks. Our study reveals qualitatively differ-
ent behaviours for the probability distribution functions for persis-
tence times in different frames. In the Eulerian case, the PDF for
residence time in vortical regions shows exponential decay whereas
in the Lagrangian case it shows power law tail (details in Chap. 6).
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Chapter 2

Effect of polymer additives on
decaying turbulence

In this chapter we investigate the presence of drag-reduction type
phenomenon in homogeneous, isotropic turbulence. A shorter version
of this Chapter was published in Physical Review Letters [1].

The existence of drag reduction by polymer additives, well estab-
lished for wall-bounded turbulent flows, is controversial in homoge-
neous, isotropic turbulence. We carry out a high-resolution direct nu-
merical simulation (DNS) of decaying, homogeneous, isotropic turbu-
lence with polymer additives. Our study reveals clear manifestations
of drag-reduction-type phenomena: On the addition of polymers to
the turbulent fluid we obtain a reduction in the energy dissipation
rate, a significant modification of the fluid energy spectrum especially
in the deep-dissipation range, a suppression of small-scale intermit-
tency, and a decrease in small-scale vorticity filaments. The analogue
of drag reduction in wall-bounded flows turns out to be dissipation
reduction in homogeneous, isotropic turbulence.

2.1 Introduction

The dramatic reduction of drag by the addition of small concentra-
tions of polymers to a turbulent fluid continues to engage the atten-

47
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tion of engineers and physicists. Drag reduction was discovered by
Toms in 1949; he found that on the polymers to a turbulent flow in
a pipe, the pressure difference required to maintain the required vol-
umetric flow rate decreases, i.e., the drag is reduced and a percent-
age drag reduction can be obtained from the percentage reduction in
the pressure gradient. Subsequently, significant advances have been
made in understanding drag reduction both experimentally [2, 3, 4]
and theoretically [5, 6, 7, 8, 9] in channel flows or the Kolmogorov
flow [10]. In wall-bounded flows the effect of the polymer additives
is to modify the viscosity in a scale dependent manner in such a
way that the viscous sublayer thickens and the mean velocity in-
creases [5, 8, 9]. However, the effect of polymers on the turbulence
away from the walls, i.e., the regime where the turbulence is homoge-
neous and isotropic [1, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]
remains controversial. Some experimental [19, 20, 21, 22], numerical
[1, 13, 14, 15, 16, 17, 18, 24], and theoretical [11, 12] studies have
suggested that drag reduction should occur even in homogeneous,
isotropic turbulence; but other studies have refuted this claim [23].
Recent experiments have also looked at how the polymers affect the
topological properties of the turbulent fluid by comparing the proba-
bility distribution of the strain and its tensorial products. These stud-
ies clearly show that the effect of the polymer additives is to suppress
small-scale structures in turbulent flows [25, 26].

We present the results of our extensive direct numerical simulation
(DNS) of decaying, homogeneous, isotropic turbulence in the presence
of polymer additives. Our results are divided into three Parts.

In Part-I (Sec. 2.5.1), we monitor the decay of turbulence from ini-
tial states in which the kinetic energy of the fluid is concentrated at
small wave vectors; this energy then cascades down to large wave vec-
tors where it is dissipated by viscous effects; the energy-dissipation
rate ε attains a maximum at tm, roughly the time at which the cas-
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cade is completed. An earlier shell-model study [15] has suggested
that this peak in ε can be used to quantify drag reduction by poly-
mer additives. Since shell models are far too simple to capture the
complexities of real flows, we have studied decaying turbulence in
the Navier-Stokes (NS) equation coupled to the Finitely Extensible
Nonlinear Elastic Peterlin (FENE-P) model [27] for polymers. Our
study, designed specifically to uncover drag-reduction-type phenom-
ena, shows that the position of the maximum in ε depends only mildly
on the polymer concentration c; however, the value of ε at this maxi-
mum falls as c increases. We use this decrease of ε to define the per-
centage dissipation reduction DR in decaying homogeneous, isotropic
turbulence.

In Part-II (Secs. 2.5.2-2.5.3), we study the effect the polymer ad-
ditives on the energy spectrum for various polymer concentrations c.
We find that, on the addition of polymers (c 6= 0 ), the energy at the
intermediate wave-numbers is lesser than the energy content for the
pure fluid (c = 0), whereas in the deep dissipation range it is larger
than in the pure fluid.

In Part-III (Secs. 2.5.4-2.5.5), we look at the effects of polymer addi-
tives on the structural properties of turbulent flows. We calculate the
probability distribution function (PDF) of the modulus of the vortic-
ity, the strain, and the eigenvalues of the strain tensor as a function
of the polymer concentration. We show that regions of large strain
and vorticity are suppressed on the addition of polymers. This is in
agreement with the experimental studies of Liberzon, et al. [25, 26].
We further quantify the above observations by looking at the hyper-
flatness and also the isosurfaces of the modulus of the vorticity with
and without polymers. The addition of polymer reduces the growth
in this hyperflatness at small length scales; large-|ω| tubes, which ap-
pear in isosurface plots, are also depleted in the presence of polymers.
We also study the effect of the polymer concentration and polymer re-
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laxation time on the polymer extension. Our study reveals that the
polymer extension increases on increasing the Weissenberg number
We whereas it decreases on increasing the polymer concentration c.

2.2 Model and Equations

The polymeric fluid solution is modelled by the Navier-Stokes equa-
tions for the fluid coupled with the Finite Extension Nonlinear
Elastic-Peterlin (FENE-P) equation for the polymer additives. The
polymer contribution to the fluid is modelled by an extra stress term
in the NS equations. The FENE-P equation approximates a polymer
molecule by a nonlinear dumbbell with an upper bound on the maxi-
mum extension and with a single relaxation time. The NS and FENE-
P (henceforth NSP) equations are

Dtu = ν∇2u +
µ

τP
∇.[f(rP )C]−∇p; (2.1)

DtC = C.(∇u) + (∇u)T .C − f(rP )C − I
τP

. (2.2)

Here u(x, t) is the fluid velocity at point x and time t, incompressibil-
ity is enforced by ∇.u = 0, Dt = ∂t + u.∇, ν is the kinematic viscosity
of the fluid, µ the viscosity parameter for the solute (FENE-P), τP the
polymer relaxation time, ρ the solvent density (set to 1), p the pres-
sure, (∇u)T the transpose of (∇u), Cαβ ≡ 〈RαRβ〉 the elements of the
polymer-conformation tensor C (angular brackets indicate an average
over polymer configurations), I the identity tensor with elements δαβ,
f(rP ) ≡ (L2 − 3)/(L2 − r2

P ) the FENE-P potential that ensures finite
extensibility, rP ≡

√
Tr(C) and L the length and the maximum pos-

sible extension, respectively, of the polymers, and c ≡ µ/(ν + µ) a
dimensionless measure of the polymer concentration [24]. c = 0.1 cor-
responds, roughly, to 100ppm for polyethylene oxide [2].
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2.3 Numerical Scheme

We consider homogeneous, isotropic, turbulence, so we use periodic
boundary conditions and solve Eq. (2.1) by using a massively paral-
lel pseudospectral code [28, 29], which we have developed. We use
N 3 collocation points in a cubic domain (side L = 2π). We elimi-
nate aliasing errors by the 2/3 rule [28, 29], to obtain reliable data at
small length scales, and use a second-order, slaved Adams-Bashforth
scheme for time marching (Appendix A.2 and A.4). For Eq. (2.2) we
use an explicit sixth-order central-finite-difference scheme (Appendix
A.1) in space and a second-order Adams-Bashforth method for tem-
poral (Appendix A.3) evolution. The numerical error in rP must be
controlled by choosing a small time step δt, otherwise rP can become
larger than L, which leads to a numerical instability; this time step
is much smaller than what is necessary for a pseudospectral DNS of
the NS equation alone. Table 2.1 lists the parameters we use. We pre-
serve the symmetric-positive-definite (SPD) nature of C at all times by
using [24] the following Cholesky-decomposition scheme: If we define

J ≡ f(rP )C, (2.3)

Eq. (2.2) becomes

DtJ = J .(∇u) + (∇u)T .J − s(J − I) + qJ , (2.4)

where

s = (L2 − 3 + j2)/(τPL
2), (2.5)

q = [d/(L2 − 3)− (L2 − 3 + j2)(j2 − 3)/(τPL
2(L2 − 3))],

j2 ≡ Tr(J ), and

d = Tr[J .(∇u) + (∇u)T .J ].

Since C and hence J are SPD matrices, we can write J = LLT ,
where L is a lower-triangular matrix with elements `ij, such that `ij =
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0 for j > i, and

J ≡

 `2
11 `11`21 `11`31

`11`21 `2
21 + `2

22 `21`31 + `22`32

`11`31 `21`31 + `22`32 `2
31 + `2

32 + `2
33

 . (2.6)

Equation (2.4) now yields (1 ≤ i ≤ 3 and Γij = ∂iuj) the following:

Dt`i1 =
∑
k

Γki`k1 +
1

2

[
(q − s)`i1 + (−1)(i mod 1)s`i1

`2
11

]
+ (δi3 + δi2)

`i2
`11

∑
m>1

Γm1`m2

+ δi3Γi1
`2

33

`11
, for i ≥ 1;

Dt`i2 =
∑
m>2

Γmi`m2 −
`i1
`11

∑
m>2

Γm1`m2

+
1

2

[
(q − s)`i2 + (−1)(i+2)s

`i2
`2

22

(
1 +

`2
21

`2
11

)]
+ δi3

[`2
33

`22

(
Γ32 − Γ31

`21

`11

)
+ s

`21`31

`2
11`22

]
, for i ≥ 2;

Dt`33 = Γ33`33 − `33

[∑
m<3

Γ3m`3m

`mm

]
+

Γ31`32`21`33

`11`22

− s`21`31`32

`2
11`22`33

+
1

2

[
(q − s)`33

+
s

`33

(
1 +

∑
m<3

`2
3m

`2
mm

)
+

s`2
21`

2
32

`2
11`

2
22`33

]
. (2.7)

The SPD nature of C is preserved by Eq. (2.7) if `ii > 0, which we
enforce explicitly [24] by considering the evolution of ln(`ii) instead of
`ii.
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2.4 Initial conditions

We use the following initial conditions (superscript 0): C0
mn(x) = δmn

for all x; and u0
m(k) = Pmn(k)v0

n(k) exp(ιθn(k)), with m,n = x, y, z,
Pmn = (δmn − kmkn/k2) the transverse projection operator, k the wave-
vector with components km = (−N/2,−N/2 + 1, . . . , N/2), k = |k|, θn(k)

random numbers distributed uniformly between 0 and 2π, and v0
n(k)

chosen such that the initial kinetic-energy spectra are either of type
I, with EI(k) = k2 exp(−2k4), or of type II, with EII(k) = k4 exp(−2k2).
Physically both these initial conditions correspond to states in which
the fluid energy is concentrated, to begin with, at small k (large length
scales); and all the polymers are in the coiled state at t = 0.

2.5 Results

We now present the results that we have obtained from our DNS. In
addition to u(x, t), its Fourier transform uk(t), and C(x, t) we moni-
tor the vorticity ω ≡ ∇ × u, the kinetic-energy spectrum E(k, t) ≡∑

k−1/2<k′≤k+1/2 |u2
k′(t)|, the total kinetic energy E(t) ≡

∑
k E(k, t), the

energy-dissipation-rate ε(t) ≡ ν
∑

k k
2E(k, t), the cumulative probabil-

ity distribution of scaled polymer extensions PC(r2
P/L

2), the hyperflat-
ness F6(r) ≡ S6(r)/S3

2(r), where Sp(r) ≡ 〈{[u(x + r)−u(x)] ·r/r}p〉 is the
order-p longitudinal velocity structure function, the PDF of the strain
and the modulus of the vorticity, the eigenvalues of the strain tensor,
and the angular brackets denote an average over our simulation do-
main at tm, the time at which the energy cascade is completed. For
notational convenience, we do not display the dependence on c explic-
itly.
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2.5.1 Time evolution of the energy dissipation rate

In decaying homogeneous, isotropic fluid turbulence simulations with
type-I or type-II initial conditions, where energy is stored initially
in the first few Fourier modes, the energy dissipation rate increases,
reaches a peak at a time t = tm, and then decreases. The time t = tm
corresponds to the cascade completion. In this Section we study the
effect of the polymer additives on the time evolution of the energy
dissipation rate ε. Figure 2.1 shows that ε first increases with time,
reaches a peak, and then decreases; for c = 0 this peak occurs at
t = tm. The position of this peak changes mildly with c but its height
goes down significantly as c increases. This suggests the following
natural definition [15] of the percentage dissipation reduction for de-
caying homogeneous, isotropic turbulence:

DR ≡
(
εf,m − εp,m

εf,m

)
× 100; (2.8)

here (and henceforth) the superscripts f and p stand, respectively, for
the fluid without and with polymers and the superscript m indicates
the time tm. Figure 2.2 shows plots of DR versus c, for the Weissenberg
number, a ratio of the polymer relaxation time and typical shearing
time in the flow, We ≡ τP

√
εf,m/ν ' 0.35, and versusWe, for c = 1/11 '

0.1. DR increases with c in qualitative accord with experiments on
channel flows (where DR is the drag reduction that is defined via a
normalized pressure difference); but it drops gently as We increases,
in contrast to the behavior seen in channel flows (in which τP is varied
by changing the polymer). We will come back to this mild increase in
the energy dissipation rate with We in the next chapter.

2.5.2 Energy spectra

In this Section we study the effects of the polymer additives on the
fluid energy spectrum with varying polymer concentration. As a check
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Figure 2.1: Temporal evolution of the energy dissipation rate ε (run NSP-256B) for
concentrations c = 0.1(−−) and c = 0.4(solid line), with τ ≡

√
2E(t = 0)/3L2.
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Figure 2.2: Percentage drag-reduction DR versus c (run NSP-192); the inset shows
the mild variation in DR with We (runs NSP-96).
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Figure 2.3: Log-log plots of the energy spectrum E(k) versus the wave vector k

for our runs NSP = 128A (black circle) and NSP = 256A (black line) for c = 0.1 and
τP = 1. The corresponding plots for the pure NS runs for N = 128 (red circles) and
N = 256 (red line) are also shown for comparison.

on the numerical resolution we compare our DNS for runs NSP− 128A

and NSP− 256A (see Table 2.1); in the latter the grid resolution is in-
creased but all other parameters are kept the same. The plots in
Fig. 2.3 show superimpositions of the spectra obtained from our runs
different resolutions. The agreement between spectra obtained from
runs with different resolutions indicate that our numerical simula-
tions are well resolved. Polymer additives have a dramatic effect on
the dissipation range, so we restrict ourselves to moderate Reynolds
numbers for which we can resolve the dissipation range well.
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We find that the polymers affect the fluid spectrum not only in the
inertial range but also in the deep dissipation range. At low Reynolds
number where the dissipation range is well resolved, for small con-
centrations (c ' 0.1) the spectra with and without polymers differ sub-
stantially only in the deep dissipation range, where Ef,m(k)� Ep,m(k).
As c increases, to say c ' 0.4, Ep,m(k) is reduced relative to Ef,m(k) at
intermediate values of k [Fig. 2.4]; however, deep in the dissipation
range Ef,m(k)� Ep,m(k).

Figure 2.5 is a large-Re analog of Fig. 2.5. Given that Re is larger
here than in run NSP− 256A, we have not been able to resolve enough
of the dissipation range in this case to detect the effects of polymer
additives on this range. At small k we observe a small increase in
the spectrum on the addition of the polymers (see inset of Fig. 2.5).
In the inertial lengths the polymer energy spectrum is suppressed in
comparison to the fluid energy spectrum.

2.5.3 Time evolution of the energy

In decaying turbulence, the total kinetic energy E(t) of the fluid falls
as t increases; the rate at which it falls increases with c (Fig. 2.6),
which suggests that the addition of polymers increases the effective
viscosity of the solution. This is not at odds with the decrease of ε with
increasing c since the effective viscosity because of polymers turns out
to be scale-dependent. We confirm this by obtaining the kinetic-energy
spectrum Ep,m(k) for the fluid in the presence of polymers at t = tm.
We now define [14] the effective scale-dependent viscosity

νe(k) ≡ ν + ∆ν(k). (2.9)

From the scale-by-scale energy balance of Eq. (2.1) in Fourier space
we get
DEk

Dt
= −ν

∑
k−1/2<k′≤k+1/2

k2|uk|2 +
µ

τP

∑
k−1/2<k′≤k+1/2

uk′ · (∇ · J )−k′, (2.10)
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Figure 2.4: Plots of the energy spectra Ep,m(k) or Ef,m(k) versus k (run NSP-192)
for c = 0.1(−−) and c = 0.4(solid line) [Ep,m(k) is unchanged if we use N = 256,
with all other parameters the same (run NSP-256A)]; inset: polymer contribution
to the scale-dependent viscosity ∆ν(k) versus k for c = 0.1(−−); ∆ν(k) = 0 (solid
line) is also shown for reference. The corresponding plot with c = 0 (o−) is shown
for comparison.
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Figure 2.5: Plots of the energy spectra Ep,m(k) or Ef,m(k) versus k (run NSP-256B)for
different polymer concentrations. The inset shows the small increase in the spec-
trum, on the addition of polymers, at small k.
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Figure 2.6: Temporal evolution of the total fluid energy E for concentrations c =

0.1(−−) and c = 0.4(solid line) (runs NSP-256B). The plot for c = 0 (o−) is shown for
comparison.
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where (∇ · J )k is the Fourier transform of ∇ · J . To obtain a scale-
dependent viscosity we replace the second term inside the summa-
tion on the RHS of Eq. (2.10) by a scale-dependent viscosity ∆ν(k) ≡
ν(k)|uk|2. On comparison with Eq. (2.10) we get

∆ν(k) ≡ −µ
∑

k−1/2<k′≤k+1/2

uk′ · (∇ · J )−k′/[τPk
′2Ep,m(k′)]. (2.11)

The inset of Fig. 2.4 shows that ∆ν(k) > 0 for k < 15, but ∆ν(k) < 0

around k = 20. This explains why Ep,m(k) is suppressed relative to
Ef,m(k) at small k, rises above it in the deep-dissipation range, and
crosses over from its small-k to large-k behaviours around the value
of k where ∆ν(k) goes through zero.

2.5.4 Small scale structure: the hyperflatness and Iso-|ω| sur-
faces

A good measure of the intermittency in turbulence is the hyperflat-
ness F6(r), which is defined by the following ratio of the sixth-order
velocity structure function to the second-order velocity structure func-
tion:

F6(r) = S6(r)/(S2(r))
3. (2.12)

For a Gaussian random variable F6(r) = 15. In Fig. 2.7 we plot F6(r)

versus r without and with polymers. This plot shows that F6(r) grows
as r → 0, signalling small-scale intermittency at dissipation range
scales. Note that the addition of polymers slows down the growth of
F6(r) as r → 0: This provides evidence for the reduction of small-scale
intermittency. Furthermore, the iso-|ω| surfaces shown in Fig. 2.8
show that, if no polymers are present, these surfaces are filamen-
tary [30] for large |ω|; however, the addition of polymers suppresses
a significant fraction of these filaments.
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Figure 2.7: The hyper-flatness F6(r) as a function of r (run NSP-256B) and con-
centration c = 0.4(solid line). The corresponding plot with c = 0 (o−) is shown
for comparison. For the run NSP-256B the Kolmogorov scale η ≡ (ν3/εf,m) at the
cascade completion is η = 0.036.
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Figure 2.8: Constant-|ω| isosurfaces for |ω| = 〈|ω|〉 + 2σ at tm without (a) and with
(b) polymers, (run NSP-256B) and c = 0.4; 〈|ω|〉 is the mean and σ the standard
deviation of |ω|.
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2.5.5 Small-scale structures: structural studies

We now study how the polymers affect the structure of homogeneous,
isotropic turbulence and make specific comparisons with the experi-
ments of Liberzon et al. [25, 26]. In particular, we plot the probability
distribution function (PDFs) of the vorticity [P (|ω|)] and the enstrophy
production [P (ωiωjSij)] in Figs. 2.9 and 2.10. These figures show that
the addition of polymers causes a decrease in the regions of high vor-
ticity and the enstrophy production. This is in qualitative agreement
with the results of Refs. [25, 26] (see Fig. 2 of Ref. [25] and Fig. 3 of
Ref. [26]).

The eigenvalues of the rate of strain tensor Sij = (∂iuj + ∂jui)/
√

2

are denoted by Λn, n = 1, 2, 3, they provide a measure of local stretch-
ing and compression of the fluid. In the present study, the eigenvalues
are arranged as Λ1 > Λ2 > Λ3. By using incompressibility condition
we get

∑
i Λi = 0; therefore, for an incompressible fluid, one of the

eigenvalues (Λ1) should be positive and one should be negative (Λ3).
The intermediate eigenvalue Λ2 can be either positive or negative. In
Figs. 2.11 and 2.12 we plot the PDFs of the eigenvalues of the strain
tensor. Note that the tail of the PDFs, indicating events of large ex-
tension or compression, shrink on the addition of the polymers. This
indicates that the addition of the polymers leads to a substantial de-
crease regions of large strains. The above results are in remarkable
qualitative agreement with the experimental results of Refs. [25] for
a turbulent flow with weak mean velocity (see Fig. [3(b)] of Ref. [25]).

We use a rank-order method [31] to obtain the cumulative PDF
of scaled polymer extensions, namely PC(r2

P/L
2). We find that, as c

increases (Fig. 2.13), the extension of the polymers decreases. We have
checked that, in the passive-polymer version of Eqs. (2.1) and (2.2), the
extension of polymers is much more than in Fig. 2.13.
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Figure 2.9: The plots of P (|ω|) versus |ω|, for our run NSP-256B, with [c = 0.4 (blue)]
and without [c = 0 (red)] polymer additives. The plots is normalized such that the
area under the curve is unity.
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Figure 2.10: The plots of P (ωiωjSij) versus ωiωjSij, for our run NSP-256B, with
[c = 0.4 (blue)] and without [c = 0 (red)] polymer additives. The plots are normalized
such that the area under the curve is unity.
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Figure 2.11: Semilog plot of the PDF P (Λ1) versus the first eigenvalue Λ1 of the
rate of strain tensor for the run NSP − 256B, with [c = 0.4 (black)] and without [c =

0.0 (red)] polymer additives. The plot is normalized such that the area under the
curve is unity.
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Figure 2.12: Semilog plot of the PDF P (Λ2) versus the second eigenvalue Λ2 of the
rate of strain tensor for the run NSP − 256B, with [c = 0.4 (black)] and without [c =

0.0 (red)] polymer additives. The plot is normalized such that the area under the
curve is unity.
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Figure 2.13: The cumulative PDF of scaled polymer extension PC(r2
P/L

2) versus
r2
P/L

2 for c = 0.1(−−) and c = 0.4 (solid line) (run NSP-256B). Note that increasing
the polymer concentration leads to a shrinking of the PDF. The maximum exten-
sion (the points where the PDFs make an intercept at the x-axis) for c = 0 is around
a decade more than that of c = 0.4.
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2.6 Conclusion

Our study contrasts clearly dissipation-reduction phenomena in ho-
mogeneous, isotropic, turbulence and drag reduction in wall-bounded
flows. In both these cases the polymers increase the overall viscos-
ity of the solution (see, e.g., Fig. 2.4 and Ref.[14]). In wall-bounded
flows the presence of polymers inhibits the flow of the stream-wise
component of the momentum into the wall, which, in turn, increases
the net throughput of the fluid and thus results in drag reduction, a
mechanism that can have no analog in homogeneous, isotropic turbu-
lence. However, the decrease of ε(t) with increasing c (Fig. 2.2) yields
a natural definition of DR [Eq. (2.8)] for this case 1. Thus, if the term
drag reduction must be reserved for wall-bounded flows, then we sug-
gest the expression dissipation reduction for homogeneous, isotropic,
turbulence. We have shown that νe must be scale-dependent; its coun-
terpart in wall-bounded flows is the position-dependent viscosity of
Refs. [5, 8]. Furthermore, as in wall-bounded flows, an increase in c

leads to an increase in DR (Fig. 2.2). In channel flows an increase in
We leads to an increase in DR, but we find that DR falls marginally
as We increases (Fig. 2.2). The reduction in the small-scale inter-
mittency (Fig. 2.7) and in the constant-|ω| isosurfaces (Fig. 2.8) is
in qualitative agreement with channel-flow studies [3], where a de-
crease in the turbulent volume fraction is seen on the addition of the
polymers, and water-jet studies [32], where the addition of the poly-
mers leads to a decrease in small-scale structures. Furthermore, we
find that the PDFs of the moduli of the vorticity, the tensor product
ωiωjSij, and the distribution of the eigenvalues of the rate-of strain
tensor are in qualitative agreement with the experiments of Liber-
zon, et al. [25, 26]. We hope our work will stimulate more experi-

1In some steady-state simulations [24, 13] DR is associated with Ep(k) > Ef (k), for small k. We
obtain this for type II, but not type I, initial conditions; but Eq. (2.8) yields drag reduction for both
of these initial conditions.



2.6. Conclusion 72

mental studies of dissipation-reduction phenomena in homogeneous,
isotropic turbulence.

In next Chapter we investigate such phenomena for forced, statis-
tically steady, homogeneous, isotropic turbulence.
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N δt L ν τP c

NSP-96 96 1.0× 10−2 100 10−2 0.1− 3 0.1, 0.2, 0.3, 0.4

NSP-192 192 1.0× 10−2 100 10−2 1 0.1, 0.4

NSP-128A 128 1.0× 10−2 100 10−2 1 0.1

NSP-256A 256 1.0× 10−2 100 10−2 1 0.1, 0.4

NSP-256B 256 4.0× 10−3 100 10−3 1 0.1, 0.4

Table 2.1: The parameters N , δt, L, ν, τP and c for our four runs NSP− 96, NSP− 192,
NSP− 128A, NSP− 256A, and NSP− 256. NSP− 96, NSP− 192, NSP− 128A, NSP− 256A use
type I initial conditions; NSP− 256B uses an initial condition of type II. We also carry
out DNS studies of the NS equation with the same numerical resolutions as our NSP
runs. Re ≡

√
20Ef,m/

√
3νεf,m and We ≡ τP

√
εf,m/ν; NSP− 96: Re = 47.1 and We =

0.03, 0.17, 0.24, 0.28, 0.31, 0.41, 0.48, 0.55, 0.62, 0.68, 1.03; NSP− 128A, NSP− 192, and NSP− 256A:
Re = 47.1 and We = 0.35; NSP− 256B: Re = 126.6 and We = 0.76. The Kolmogorov length
scale η ≡ (ν3/ε)1/4. For our runs NSP− 192, η ≈ 5.3δx and for our runs NSP− 256A and
NSP− 256B, η ≈ 1.5δx where δx = L/N is the grid resolution.



Appendix A

A.1 Finite-difference schemes

The second-order, fourth-order, and sixth-order explicit finite-
difference approximations of the derivative of a function f ∈ R1 that
we use are:

f ′ = (−fi−1 + fi+1)/(2∆x), (A1)
f ′ = (fi−2 − 8fi−1 + 8fi+1 − fi+2)/(12∆x), and (A2)
f ′ = (−fi−3 + 9fi−2 − 45fi−1 + 45fi+1 − 9fi+2 + fi+3)/(60∆x). (A3)

A.2 Time marching scheme for Navier-Stokes
equation

In this Appendix we illustrate the numerical scheme used for the time
evolution of the Navier-Stokes equations. For simplicity, we consider
a much simpler ordinary differential equation

dq

dt
= −αq + f(t) (A4)

for which we have the identity

eα(t+δt)q(t+ δt)− eαtq(t) =

∫ t+δt

t

eαsf(s)ds. (A5)

74
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The slaved scheme is obtained by writing similar equations for q(t)
and q(t− δt), and then adding them up to obtain the exact relation

q(t+ δt) = e−2αδtq(t− δt) +

∫ t+δt

t−δt
e−α(t+δt−s)f(s)ds (A6)

We now replace f(s) under the integral by f(t) to obtain the slaved-
frog scheme,

qn+1 = e−2αδtqn−1 +
1− e−2αδt

α
fn. (A7)

The slaved-Adam-Bashforth scheme replaces f(s) under the integral
by (3/2)f(t)− (1/2)f(t− δt), to yield

qn+1 = e−2αδtqn−1 +
1− e−2αδt

α
[(3/2)fn − (1/2)fn−1]. (A8)

We use Adams-Bashforth method Appendix A.3 for the time evo-
lution of the polymer-conformation tensor [Eq. (2.7)]; Spatial deriva-
tives are evaluated by using a sixth-order finite-difference scheme of
Appendix A.1.

A.3 Adams-Bashforth method

In this Appendix we illustrate the numerical scheme used for the time
evolution of the polymer conformation tensor. For simplicity, we con-
sider a much simpler equation:

dq

dt
= f(q, t) (A9)

The Adams-Bashforth scheme for Eq. (A9) is

qn+1 = qn + [(3/2)fn − (1/2)fn−1]δt. (A10)

A.4 Pseudo-spectral method

In this Appendix we illustrate the pseudo-spectral method that we
have used to solve the Navier-Stokes equation. Our discussion follows
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the book of Canuto et al. [28]. Recall, the three dimensional Navier-
Stokes equations are

∂u

∂t
= (u× ω)−∇p+∇2u, (A11)

∇ · u = 0, (A12)

where u(x, t) and ω is the velocity and the vorticity field at the posi-
tion x and at time t, ν is the viscosity, and p(x, t) is the pressure at
the position x and at time t. We use a cubic domain with periodic
boundary conditions for u, ω, and p, and N 3 collocation points (side
L = 2π).

Since the fields are periodic, substituting the Fourier series repre-
sentations for

u(x, t) =
∑
k

ûk(t) exp(ιk · x), (A13)

ω(x, t) =
∑
k

ω̂k(t) exp(ιk · x), and (A14)

p(x, t) =
∑
k

p̂k(t) exp(ιk · x), (A15)

in Eqs. [(A11) and (A12)] we get
∂uk

∂t
= ̂(u× ω)k − ιkpk − νk

2uk, (A16)

ιk · uk = 0. (A17)

Here ̂(u× ω)k is the Fourier transform of the nonlinear advection term
in Eq. (A11). We remove the pressure term by taking dot product of
Eq. (A16) with ιk and using Eq. (A17) to get,

∂uk

∂t
= P · ̂(u× ω)k − νk

2uk, (A18)

where P ≡
(
I − kk

k2

)
is the transverse projection operator which en-

sures incompressibility. The nonlinear term ̂(u× ω)k involves con-
volution operation of uk and ωk in Fourier space. Evaluating convo-
lutions numerically is computationally very expensive therefore, the
following method is used to evaluate the convolution:
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1. We inverse Fourier transform uk and ωk to real space,

2. We then take the product of N = u× ω,

3. The Fourier transform of N gives ̂(u× ω)k.

With ̂(u× ω)k and uk known at every time step we use the method
outlined in Appendix A.2 to time integrate Eq. (A18).

Since the convolution term is evaluated in the real space before
taking its Fourier transform, the above method of numerically solving
the Navier-Stokes equations is called a pseudo-spectral method.

The errors in the pseudo-spectral method occur mainly because of
the procedure described above to evaluate the nonlinear term and are
known as aliasing errors. To understand the origin of these aliasing
errors, we consider the example problem of calculating the Fourier
transform ŵk of a scalar w(x) = f(x)g(x) where f(x) and g(x) are two
scalars (see Section-3.2 of Ref. [28]). On an N -point collocation grid,
with xj, j = 0, · · · , N − 1, the product becomes:

wj = fjgj, (A19)

where wj ≡ w(xj), fj ≡ f(xj), and fj ≡ f(xj). Introducing discrete
Fourier transforms

fj =

N/2−1∑
m=−N/2

f̂m exp(ιmxj), (A20)

gj =

N/2−1∑
n=−N/2

ĝn exp(ιnxj), and (A21)

ŵk =
1

N

N−1∑
j=0

wj exp(−ιkxj), (A22)
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where k = −N/2, · · · , N/2 − 1 and xj = 2πj/N , and using Using the
discrete orthogonality relation

1

N

N−1∑
j=0

exp(ιkxj) =

{
1 if k = Np, p = 0,±1,±2, · · ·
0 otherwise

we get,
ŵk =

∑
m+n=k

f̂mĝn +
∑

m+n=k±N

f̂mĝn. (A23)

The first term on the right-hand side is the convolution whereas, the
second term on the right-hand side is the aliasing error. This aliasing
error can be removed by setting the coefficients f̂m and ĝn to zero for
all |m|, |n| ≥ N/3. In three dimensions this can be ensured by setting
all the Fourier modes for which k =

√
k2
x + k2

y + k2
z ≥ N/3 to zero. This

de-aliasing technique is referred to as the 2/3-rule.
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Chapter 3

Effect of polymer additives on
statistically steady turbulence

In the last Chapter we carried out a study that revealed the effects
of polymers on decaying turbulence; in this Chapter we carry for-
ward our study to the case of statistically steady, forced, homogeneous,
isotropic turbulence. As in the last Chapter, our study reveals clear
manifestations of dissipation-reduction phenomena: On the addition
of polymers to the turbulent fluid, we obtain a reduction in the energy
dissipation rate, a significant modification of the fluid energy spec-
trum especially in the deep-dissipation range, a suppression of small-
scale intermittency, and a decrease in small-scale vorticity filaments.

3.1 Introduction

A recent experiment [1] has studied the effects of polymers on the
second-order longitudinal velocity structure function at very high
Reynolds numbers (Reλ ' 200 − 350). This experiment shows that
the inertial-range exponent is not modified by the polymers but the
energy content of the dissipation range is dramatically reduced. In
another set of experiments, Liberzon, et al.; have studied the effects
of polymer additives on statistically steady turbulence at moderate
Reynolds number (Reλ ' 40). These experiments have investigated

82



3.1. Introduction 83

how the polymers affect the topological properties of the turbulent
fluid by measuring the PDFs of the strain and its tensorial products.
They have shown thereby that polymer additives suppress small-scale
structures in turbulent flows [2, 3].

These experimental studies have motivated us to extend our DNS
of decaying fluid turbulence with polymer additives to the case of
forced, homogeneous, isotropic turbulence. Our study is divided into
two parts.

In Part-I (Secs. 3.5.1-3.5.3), we carry out a numerical study of sta-
tistically steady forced turbulence at moderate Reynolds numbers
(Reλ ' 80). The forcing used is designed such that the energy injected
into the fluid remains fixed [4], both with and without polymers, to
mimic the experiments of Liberzon, et al. [2, 3]. We find that, on the
addition of polymers, the steady-state energy and the energy dissipa-
tion rate are reduced. This dissipation reduction (defined for decaying
turbulence in our earlier work [5]) increases with an increase in c (or
We) at fixedWe (or at fixed c). In the energy spectrum we find that the
fluid energy content at small wavevectors is marginally increased on
the addition of polymers, but it decreases for intermediate wavevec-
tors. In this study we are not able to resolve the deep-dissipation
range because of the relatively low grid-resolution, N = 256 i.e., 2563

collocation points, and moderate Reynolds numbers Reλ ' 80. We also
study the structural properties of the fluid with and without polymers
and show that the effect of the polymers is to suppress the large-
vorticity and large-strain events. We find our results to be in qual-
itative agreement with the experiments of Liberzon, et al. [2, 3]. Fi-
nally, we have also studied the effect of the polymer relaxation time
τP on the polymer extensions. As in our study of decaying turbulence,
we find that the polymer extension increases with an increase in the
polymer relaxation time.
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In Part-II (Sec. 3.6) we carry out the highest-resolution direct nu-
merical simulation of statistically steady forced fluid turbulence with
polymer additives that has been attempted so far. The fluid is driven
by an external stochastic forcing [6]. Our study has been designed
to uncover the effect of polymers on the deep-dissipation range, so
our Reynolds numbers are small Reλ ' 16. On comparing the en-
ergy spectrum, with and without polymers, we find that the polymers
suppress the energy content in the dissipation range but, in the deep-
dissipation range, the energy content of the fluid in the presence of
polymers is increased. Finally, we calculate the second-order velocity
structure function S2(r) directly from the energy spectrum. In con-
trast to the velocity energy spectrum in Fourier space, which shows
an increase in the energy content at deep-disspation-range wavevec-
tors: S2(r) with polymers is smaller than S2(r) without polymers in
this range.

3.2 Model and Equations

As in Chapter-2 we model the polymeric fluid solution by using the
Navier-Stokes equations for the fluid coupled with the Finitely Exten-
sible Nonlinear Elastic-Peterlin (FENE-P) equation for the polymer
additives. The polymer contribution to the fluid is modelled by an
extra stress term in the NS equations. The FENE-P equation approx-
imates a polymer molecule by a nonlinear dumbbell, which has a sin-
gle relaxation time and an upper bound on the maximum extension.
The NS and FENE-P (henceforth NSP) equations are

Dtu = ν∇2u +
µ

τP
∇.[f(rP )C]−∇p+ f ; (3.1)

DtC = C.(∇u) + (∇u)T .C − f(rP )C − I
τP

. (3.2)

Here u(x, t) is the fluid velocity at point x and time t, incompressibility
is enforced by∇.u = 0, Dt = ∂t+u.∇, ν is the kinematic viscosity of the
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fluid, µ the viscosity parameter for the solute (FENE-P), τP the poly-
mer relaxation time, ρ the solvent density (set to 1), p the pressure,
f(x, t) the external forcing at point x and time t, (∇u)T the transpose of
(∇u), Cαβ ≡ 〈RαRβ〉 the elements of the polymer-conformation tensor
C (angular brackets indicate an average over polymer configurations),
I the identity tensor with elements δαβ, f(rP ) ≡ (L2 − 3)/(L2 − r2

P ) the
FENE-P potential that ensures finite extensibility, rP ≡

√
Tr(C) and

L the length and the maximum possible extension, respectively, of the
polymers, and c ≡ µ/(ν + µ) a dimensionless measure of the polymer
concentration [7]; c = 0.1 corresponds, roughly, to 100ppm for polyethy-
lene oxide [8]. Table 3.1 lists the parameters of our simulations.

3.3 Numerical Scheme

In earlier numerical studies of homogeneous, isotropic turbulence
with polymer additives it was shown that sharp gradients are formed
in the time-evolution of the polymer conformation tensor which can
lead to dispersion errors [7, 9]. To avoid these dispersion errors, shock-
capturing schemes were used to evaluate the polymer-advection term
[(u · ∇)C] [9]. In our simulations we have modified the Cholesky–
decomposition scheme (see Ref. [7] and Sec. 2.3 of the last Chapter),
which preserves the symmetric positive definite nature of the tensor
C, to incorporate the large gradients of the polymer conformation ten-
sor. This is easily achieved by evaluating the polymer-advection term
[(u · ∇)`] by using the Kurganov-Tadmor shock capturing scheme (see
Appendix B.2).

3.4 Initial conditions

We use the following initial conditions (superscript 0): C0
mn(x) = δmn

for all x; and u0
m(k) = Pmn(k)v0

n(k) exp(ιθn(k)), with m,n = x, y, z,
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Pmn = (δmn − kmkn/k2) the transverse projection operator, k the wave-
vector with components km = (−N/2,−N/2 + 1, . . . , N/2), k = |k|,
θn(k) random numbers distributed uniformly between 0 and 2π, and
v0
n(k) chosen such that the initial kinetic-energy spectrum is E(k) =

k4 exp(−2.0k2). Physically this initial conditions correspond to a state
in which the fluid energy is concentrated, to begin with, at small k
(large length scales). For our run NSP− 512, initially the polymers
are in a coiled state. The simulation runs for 45Teddy and a steady
state is reached in 10Teddy. For our runs NSP− 256A and NSP− 256B we
conduct a pure-fluid simulation till a steady state is reached (around
10−15Teddy, where Teddy ≡ urms/lint, urms is the root-mean-square veloc-
ity and lin ≡

∑
k k
−1E(k)/

∑
k E(k) is the integral length scale.). Once a

steady state is reached we add the polymers to the fluid at 27Teddy. The
statistics for the polymers are collected after another 5 − 6Teddy have
elapsed so that transients die down. We collect data for averages for
25Teddy for our runs NSP− 256A and NSP− 256B.

3.5 Results

We now present the results that we have obtained from our DNS. In
addition to u(x, t), its Fourier transform uk(t), and C(x, t), we mon-
itor the vorticity ω ≡ ∇ × u, the kinetic-energy spectrum E(k, t) ≡∑

k−1/2<k′≤k+1/2 |u2
k′(t)|, the total kinetic energy E(t) ≡

∑
k E(k, t), the

energy-dissipation-rate ε(t) ≡ ν
∑

k k
2E(k, t), the probability distribu-

tion of scaled polymer extensions P (r2
P/L

2), the PDF of the strain and
the modulus of the vorticity, and the eigenvalues of the strain tensor.
For notational convenience, we do not display the dependence on c

explicitly.
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3.5.1 Time evolution of E and ε

In this Subsection we study the effects of polymer additives on the
time evolution of the energyE and the energy dissipation rate ε for our
runs NSP− 256A and NSP− 256B. Figure 3.1 shows the time evolution
of the energy. The polymers are added to the fluid at t = 27Teddy. We
find that the addition of polymers leads to a new steady state. For
We = 3.5 and We = 7.1 the average energy of the fluid with polymers
is reduced in comparison to the average energy of the fluid without
polymers.

By using Eq. (3.1), the energy-balance equation for the fluid with
polymer additives is:

dE

dt
= εν + εP + εinj,

where

εν = −ν 1

V

∫
u · ∇2u,

εP = (
µ

τP
)

{
1

V

∫
u · ∇[f(rP )C]

}
,

εinj =
1

V

∫
f · u.

In the steady state dE
dt = 0 and the energy injected is balanced by

the fluid dissipation rate εν and the polymer dissipation εP . Our sim-
ulations are designed to keep energy injection fixed. Therefore, we
can now address the question of how the dissipation gets distributed
between the fluid and polymer subsystems in forced turbulence. In
Fig. 3.2 we present plots of εν(t) versus t for We = 3.5 and We = 7.1.
The polymer concentration is kept fixed at c = 0.1. We find that the
averages εν decreases on increasing We.

This suggests the following natural definition of the percentage dis-
sipation reduction for forced, homogeneous, isotropic turbulence:

DR ≡
(
〈εf〉 − 〈εp〉
〈εf〉

)
× 100%; (3.3)
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Figure 3.1: Temporal evolution of the energy E versus t/Teddy (runs NSP-256A

and NSP-256B) for Weissenberg numbers We = 3.5 (blue circles) and We = 7.1

(black dashed line). The corresponding plot for the pure fluid case is also shown for
reference (red line). The polymers are added to the fluid at t = 27Teddy.
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Figure 3.2: Temporal evolution of the energy dissipation rate ε versus t/Teddy (runs
NSP-256A and NSP-256B) for Weissenberg number We = 3.5 (blue circles) and
We = 7.1(black dashed line). The corresponding plot for the pure fluid case is also
shown for reference (red line). The polymers are added to the fluid at t = 27Teddy.
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here (and henceforth) the superscripts f and p stand, respectively, for
the fluid without and with polymers. The increase in DR with We

clearly indicates that the polymer dissipation increases with and in-
crease in We. By using the above definition, we find that, in contrast
to our decaying-turbulence studies (Chapter 2 and Ref. [5]), DR in-
creases with an increase in the Weissenberg number. For We = 3.5,
DR ' 30% and, for We = 7.1, DR ' 50%. We believe that this increase
of DR with We arises because the polymer extension and, therefore,
the polymer stresses are much stronger in forced turbulence in com-
parison to decaying turbulence. The plot in Fig. 3.3 shows the cumu-
lative PDF of the scaled polymer extension (see Figure 2.13 in the last
Chapter for a comparison with decaying turbulence).

3.5.2 Energy spectra

In this Section we study effects of the polymer additives on the fluid
energy spectrum for two different values of We. We find that the en-
ergy content of the intermediate wave-vectors decreases with an in-
crease in the Weissenberg number. At small k, we observe a small
increase in the spectrum on the addition of the polymers, but this
increase is within our numerical errorbars, so we cannot draw any
conclusion from it.

3.5.3 Small scale structures

We now study how polymers affect the structure of homogeneous,
isotropic turbulence and make specific comparisons with the exper-
iments of Liberzon, et al. [2, 3]. In particular, we plot the PDFs of
the modulus of the vorticity |ω| and the local energy dissipation rate
εloc =

∑
i,j(∂iuj + ∂jui)

2/2 in Figs. 3.5. We find that the addition of
polymers causes a decrease in the regions of high vorticity and high
dissipation [Figs. 3.5]. Furthermore, on normalising any |ω| or εloc by
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Figure 3.3: Log-log plot of the cumulative PDF of scaled polymer extension
PC(r2

P/L
2) versus r2

P/L
2 for We = 3.5 (- -) (run NSP-256A) and We = 7.1 (solid line)

(run NSP-256B). Note that increasing the polymer Weissenberg leads to larger poly-
mer extensions. The plots are made from the polymer configuration at t = 60Teddy.
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Figure 3.4: Log-log plots of the energy spectra Ef (k) and Ep(k) versus k (runs
NSP-256A and NSP-256B) for different polymer Weissenberg numbers We =

3.5 (square), We = 7.1 (star) and c = 0.1 with two-standard-deviation error bars.
The corresponding pure-fluid spectrum (circles) is shown for comparison.
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their standard deviations, the PDFs of the pure fluid and those with
the polymers collapse onto each other (Figs. 3.6). The above results
are in qualitative agreement with the results of Refs. [2, 3] (see Fig. 2

of Ref. [2] and Fig. 3 of Ref. [3]).
In the high-Reλ, high-resolution, DNS studies [10, 11], it is found

that iso-|ω| surfaces are filamentary for large values of ω. In Fig. 3.7
we plot iso-|ω| surfaces for the fluid with (c = 0.1; We = 3.5 or 7.1) and
without polymer additives. In the absence of polymers, the large-|ω|
surfaces are filamentary in agreement with earlier studies [5, 10]. On
the addition of polymers a significant fraction of these filaments are
suppressed.

The eigenvalues of the rate-of-strain tensor Sij = (∂iuj + ∂jui)/
√

2

(denoted by Λn, n = 1, 2, 3) provide a measure of the local stretching
and compression of the fluid. In our study, the eigenvalues are ar-
ranged as Λ1 > Λ2 > Λ3. By using the incompressibility condition we
get

∑
i Λi = 0; therefore, for an incompressible fluid, one of the eigen-

values (Λ1) should be positive and one should be negative (Λ3). The
intermediate eigenvalue Λ2 can be either positive or negative. In Figs.
(3.8) and (3.9) we plot the PDFs of the eigenvalues of the S. As in
our earlier study on decaying turbulence (see Chapter 2), the tails of
the PDFs shrink on the addition of polymers. This indicates that the
addition of the polymers leads to a substantial decrease in the regions
of large strain. The above result is in qualitative agreement with the
experiments of Liberzon, et al. [2] (see Fig. 3(b) of Ref. [2]).

In Chapter 1 we have shown that the topological properties of a
three-dimensional turbulent fluid can be classified by the Q − R plot,
where Q = −Tr(A2)/2 and R = −Tr(A3)/3 are the invariants of the
velocity-gradient tensor ∇u. In Fig. 3.10 we plot the joint PDFs
P (R,Q) for the fluid with and without polymers; although the qual-
itative structure of the PDFs remains the same, the regions of large R
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Figure 3.5: Semilog plots of the PDFs P (|ω|) versus |ω| (top panel) and P (εloc) versus
εloc (bottom panel), for our run NSP-256B, with [c = 0.1, We = 7.1 (dashed line)] and
without [c = 0 (red)] polymer additives.
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Figure 3.6: Semilog plots of the scaled PDFs P (|ω|/σ) versus |ω|/σ (top panel) and
P (εloc/σ) versus εloc/sigma (bottom panel), where σ is the standard deviation for the
respective fields, for our run NSP-256B, with [c = 0.1, We = 7.1 (dashed line)] and
without [c = 0 (line)] polymer additives. The plots are normalized such that the area
under the curve is unity.
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Figure 3.7: Constant-|ω| isosurfaces for |ω| = |ω| + 2σ at t ≈ 60Teddy without
(Top) and with polymers [Middle We = 3.5 (NSP-256A) and Bottom We = 7.1 (run
NSP-256B)]; |ω| is the mean and σ the standard deviation of |ω|.



3.5. Results 97

Figure 3.8: Semilog plots of the PDF P (Λ1) versus the first eigenvalue Λ1 of the
strain-rate tensor S for the run NSP−256B, with [We = 7.1 (dashed line)] and without
[c = 0 (line)] polymer additives. The plot is normalized such that the area under the
curve is unity.
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Figure 3.9: Semilog plots of the PDF P (Λ2) versus the second eigenvalue Λ2 of the
strain-rate tensor S for the run NSP−256B, with [We = 7.1 (dashed line)] and without
[c = 0 (line)] polymer additives. The plot is normalised such that the area under the
curve is unity.
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and Q are dramatically reduced on the additions of polymers. This is
another indicator of the reduction of small-scale structures.

3.6 Effects of polymer additives on the deep dissi-
pation range

In the previous Section we have studied the effects of the polymer ad-
ditives on the structural properties of the fluid at moderate Reynolds
numbers. In this section we investigate the effects of polymer ad-
ditives on the deep-dissipation range. To uncover such dissipation-
range effects, we conduct a very high-resolution, low-Reλ = 16 DNS
study NSP− 512. The parameters used in our run NSP− 512 are given
in Table 3.1. The fluid is driven by using a stochastic forcing of Ref. [6].
In Fig. 3.11 we plot the fluid energy spectrum with and without poly-
mer additives. The behaviour of the energy spectrum is similar to
that in our decaying-turbulence study (see Chapter 1 and Ref. [5]).
We find that, on the addition of polymers, the energy content of the
intermediate wave-vectors is decreases, whereas the energy content
at large wave-vectors is increased. Furthermore, to check whether
the rise in the energy spectrum in the deep-dissipation range is be-
cause of the aliasing errors, we also plot the corresponding enstrophy
spectrum k2E(k) versus k in Fig. 3.12. Since this also decays at large
k we conclude that we have resolved the dissipation range adequately.

For homogeneous, isotropic turbulence, the relationship between
the second-order structure function and the energy spectrum is [12]

S2(r) =

∫ ∞
0

[
1− sin(kr)

kr

]
E(k)dk. (3.4)

By using Eq. (3.4) and the data in Fig. 3.11 we have obtained the
second-order structure function S2(r) for our run NSP− 512. We find
that the addition of polymers leads to a decrease in the magnitude of
S2(r). In our simulations we are able to reach much smaller values of
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Figure 3.10: The joint probability distribution P (R,Q) for the fluid with (top) and
without (bottom) polymer additives. Note that P (R,Q) shrinks on the addition of
polymers; this indicates a depletion of small-scale structures. The contour levels
are logarithmically spaced and are drawn at values 1.3, 2.02, 2.69, 3.36, 4.04, 4.70, 5.38,
and 6.05.
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N δt L ν τP c We

NSP-256A 256 5.0× 10−4 100 5× 10−3 0.5, 1 0.1 3.5

NSP-256B 256 5.0× 10−4 100 5× 10−3 0.5, 1 0.1 7.1

NSP-512 512 1.0× 10−2 100 10−2 0.1 1.0 0.9

Table 3.1: The parameters N , δt, L, ν, τP and c for our four runs NSP− 256A, NSP− 256B

and NSP− 512. We also carry out DNS studies of the NS equation with the same numerical
resolutions as our NSP runs. Taylor micro-scale Reynolds number Reλ ≡

√
20Ef/

√
3νεf

and We ≡ τP
√
εf/ν; NSP− 256A and NSP− 256B: Reλ ≈ 80 and NSP− 512: Reλ ≈ 16; the

Kolmogorov length scale η ≡ (ν3/εf )1/4. For our runs NSP− 256A− B, η ≈ 1.07δx and for
our runs NSP− 512, η ≈ 19δx where δx ≡ L/N is the grid resolution of our simulations. The
integral length scale lint ≡ (3π/4)

∑
k−1E(k)/(

∑
E(k)) and Teddy ≡ urms/lint; NSP− 256A and

NSP− 256B: lint ≈ 1.3 and Teddy ≈ 1.2, for NSP− 512: lint ≈ 2.05 and Teddy ≈ 4.0.

Figure 3.11: Log-log plots of the energy spectrum E(k) versus the wave vector k for
our run NSP = 512 (black circle) for c = 0.1 and τP = 1. The corresponding plot for
the pure fluid (red line) is also shown for comparison.
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Figure 3.12: Log-log plots of the enstrophy spectrum k2E(k) versus the wave vector
k for our run NSP = 512 (black circle) for c = 0.1 and τP = 1. The corresponding plot
for the pure fluid (red line) is also shown for comparison.
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r/η than has been possible in earlier studies on these systems. How-
ever, because we have concentrated on dissipation-range, we cannot
resolve the inertial range. Note that, unlike Ef(k), where a cross-over
is observed on the addition of polymer, we do not observe any cross-
over in the plot of S2(r). This can be understood by realizing that S2(r)

mixes the information in Ef(k) from large and small k [13]. This be-
haviour of S2(r) is similar to the experimental observations of Ref. [1];
this reference resolves much larger length scales than we do, but not
small ones.

3.7 Conclusion

In this Chapter we have carried forward our decaying-turbulence
study with polymer additives to the case of statistically steady turbu-
lence. We find that the average viscous dissipation decreases on the
addition of polymers. This allows us to extend the definition of dissi-
pation reduction to the regime of statistically steady turbulence. We
find that the dissipation reduction increases with an increase in the
Weissenberg number We at fixed polymer concentration. The PDFs of
the moduli of the vorticity, the tensor product ωiωjSij, the distribution
of the eigenvalues of the rate-of-strain tensor, and the QR-plot are in
qualitative agreement with the experiments of Liberzon, et al. [2, 3].
In the deep-dissipation range, the energy spectrum shows a behaviour
similar to that in our earlier decaying turbulence study [14]. We have
carried out a high-resolution study in the dissipation range too. By
using the energy spectrum have also calculated S2(r) and find trends
in qualitative agreement with the experiments.
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Figure 3.13: Plot of the compensated energy spectrum S2(r)/r2/3 versus r/η with
(black circles) and without (red circles) polymer additives for our run NSP− 512. In
contrast to the energy spectrum we do not observe any cross over in the structure
function.



Appendix B

B.1 Finite-difference schemes

The second-order, fourth-order, and sixth-order explicit finite-
difference approximations of the derivative of a function f ∈ R1 that
we use are:

f ′ = (−fi−1 + fi+1)/(2∆x), (B1)
f ′ = (fi−2 − 8fi−1 + 8fi+1 − fi+2)/(12∆x), and (B2)
f ′ = (−fi−3 + 9fi−2 − 45fi−1 + 45fi+1 − 9fi+2 + fi+3)/(60∆x). (B3)

B.2 Kurganov-Tadmor scheme

In this Appendix we illustrate the Kurganov-Tadmor (KT) numerical
scheme used for solving the advection term in the FENE-P equation.
We then solve the problem of advection of polymers in two dimen-
sional Taylor-Green flow and show that the KT scheme resolves the
gradients properly 1 whereas the use of sixth-order, centered, explicit
finite difference scheme leads to spurious modes which pollute the
large wave-vectors.

For simplicity, let us consider one dimensional conservation law:

∂u

∂t
=
∂f(u)

∂x
. (B4)

1by adding numerical diffusion at the regions of large gradients
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where u, f(u) ∈ R. Using the KT scheme the above equation is dis-
cretized on a grid of length L (with grid points j = 0, · · · , N − 1 and
grid spacing δx = L/N as:

du

dt
= −

Hj+1/2 −Hj−1/2

δx
,

Hj+1/2 =
f(u+

j+1/2)− f(u−j+1/2)

2
−
aj+1/2[u

+
j+1/2 − u

−
j+1/2]

2
,

u±j+1/2 = uj+1 ∓
δx

2
(∂xu)j+1/2±1/2,

aj+1/2 = maxu∈[u−j+1/2,u
+
j+1/2]|∂uf(u)|.

As a test problem, we now study the effect of different spatial
discretization schemes of the polymer advection term. The analy-
sis is conducted in two dimensions. We consider Taylor-Green flow
[ux = sin(x) cos(y), uy = − cos(x) sin(y)] as the velocity field at all
times. We study the polymer extension spectrum and the contours
of the polymer extensions, once a steady state is reached. For one
run we evaluate the polymer advection term using a sixth order cen-
tered finite-difference scheme, whereas, in another run we evaluate
the polymer advection term using a KT scheme. The plot in Fig. B1
shows the polymer spectrum EP (k) ≡

∑
k−1/2≤k′k+1/2 |(rP )k′|2 and the

corresponding contours for the polymer extensions r2
P as a function of

the increasing grid resolution N . We make the following observations:

1. The explicit scheme leads to spurious modes at large-k. These
spurious modes move to larger wave-vectors on increasing the
resolution.

2. The shock capturing scheme resolves the structures even at low
resolutions and the large-k spectrum is also well resolved.
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Figure B1: Left: Polymer extension spectrum using sixth-order explicit finite-
differences for the advection term (circles) and the polymer spectrum obtained by
using KT scheme for the advection term (dots); Middle: the corresponding contours
of r2

P for the scheme which uses sixth-order finite differences for the advection term;
Right: contours of r2

P for the scheme which uses KT scheme for the advection term.
The different resolutions used are (a) N = 64 (top), (b) N = 128 (middle), and (c)
N = 512 (bottom). We keep τP = 0.4 fixed.
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Chapter 4

Statistically steady turbulence in
thin films with Ekman friction

In this chapter we present the results of a detailed direct numerical
simulation (DNS) of the two-dimensional Navier-Stokes equation with
the incompressibility constraint and air-drag-induced Ekman friction.
This chapter follows the version of the paper that we have just pub-
lished in the New Journal of Physics, 11, 073003, (2009). Our DNS
has been designed to investigate the combined effects of walls and
such friction on turbulence in forced thin films. We concentrate on the
forward-cascade regime and show how to extract the isotropic parts
of velocity and vorticity structure functions and thence the ratios of
multiscaling exponents. We find that velocity structure functions dis-
play simple scaling whereas their vorticity counterparts show multi-
scaling; and the probability distribution function of the Okubo-Weiss
parameter Λ, which distinguishes between regions with centers and
saddles, is in quantitative agreement with experiments.

4.1 Introduction

The pioneering work of Kraichnan [1, 2, 3] showed that fluid turbu-
lence in two dimensions (2D) is qualitatively different from that in
three dimensions (3D): in the former we have an infinity of extra con-
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served quantities, in the inviscid, unforced case; the first of these is
the enstrophy. It turns out, therefore, that 2D turbulence displays
an inverse cascade of energy, from the length scale at which the force
acts to larger length scales, and a forward cascade of enstrophy, from
the forcing length scale to smaller ones; by contrast, 3D turbulence is
characterized by a forward cascade of energy [4]. Kraichnan’s pre-
dictions were first confirmed in atmospheric experiments in quasi-
two-dimensional, stratified flows [5]; subsequent experiments have
studied systems ranging from large-scale geophysical flows to soap
films [5, 6, 7, 8, 9, 10, 11, 12]. The latter have proved to be especially
useful in characterizing 2D turbulence.

We present the first direct numerical study (DNS) that has been
designed specifically to explore the combined effects of the air-drag-
induced Ekman friction α and walls on the forward cascade in 2D tur-
bulence; and we employ the Kolmogorov forcing used in many soap-
film experiments [9, 10, 11, 12]. Since we use the two-dimensional
Navier-Stokes equation with the incompressibility constraint, we can-
not explore the effects of changes in the thickness of soap-films,
Marangoni stresses, and compressibility [13, 14]. Nevertheless, as
we show in detail below, our study is able to reproduce several
results that have been obtained in the soap-film experiments of
Refs. [9, 10, 11, 12].

In particular, if we use values of α that are comparable to those
in experiments, we find that the energy dissipation rate because of
the Ekman friction is comparable to the energy dissipation rate that
arises from the conventional viscosity. We show how to extract the
isotropic parts [15] of velocity and vorticity structure functions and
then, by using the extended self-similarity (ESS) procedure [16], we
obtain ratios of multiscaling exponents whence we conclude that ve-
locity structure functions show simple scaling whereas their vorticity
counterparts display multiscaling. Most important, our probability
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distribution function (PDF) of the Okubo-Weiss parameter Λ [17, 18]
is in quantitative agreement with that found in experiments [10, 11].

The remaining part of this Chapter is organized as follows. Sec-
tion 4.2 contains a description of the model we use and the numerical
methods we employ. Section 4.3 is devoted to our results: In Sec-
tion 4.3.1 we examine the temporal evolution of the energy and the
dissipation rates because of the viscosity and Ekman-friction; in Sec-
tion 4.3.2 we study the structure functions of the velocity and the vor-
ticity in the forward-cascade regime; and in Section 4.3.3 we study the
topological properties of two-dimensional turbulence and their depen-
dence on the Ekman friction. The concluding Section 4.4 contains a
discussion of our results and suggestions for some experiments that
should be conducted to confirm our numerical findings.

4.2 Model and Numerical Technique

Soap-film dynamics is governed by the equations derived in Refs. [13,
14]. These equations account for mass, momentum, and soap-
film-concentration conservation, and the boundary condition for the
free, air-film interfaces. However, for the low-Mach-number flows,
which are relevant to the experiments of Refs. [6, 9, 10, 11, 12],
these equations reduce to the incompressible, 2D Navier-Stokes equa-
tions [13, 14] albeit with an extra Ekman friction term. The experi-
ments of Ref. [9] showed the validity of these equations by testing the
Karman-Howarth-Monin relation.

Thus we use the 2D, incompressible Navier-Stokes equations with
an additional Ekman friction term to model soap-film dynamics [9,
14]:

(∂t + u · ∇)ω = ν∇2ω − αω + Fω/ρ; (4.1)
∇2ψ = ω. (4.2)
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Here u ≡ (−∂yψ, ∂xψ), ψ, and ω ≡ ∇× u are, respectively, the velocity,
stream function, and vorticity at the position x and time t; we choose
the uniform density ρ = 1; α is the Ekman friction coefficient, ν is
the kinematic viscosity, and Fω ≡ kinjF0 cos(kinjy), a Kolmogorov-type
forcing term, with amplitude F0, and injection wave vector kinj (the
injection length scale `inj ≡ 2π/kinj). We impose no-slip (ψ = 0) and
no-penetration (∇ψ · n̂ = 0) boundary conditions on the walls, where
n̂ is the outward normal to the wall. If we non-dimensionalize x by
k−1
inj, t by k−2

inj/ν, and Fω by 2π/(kinj||Fω||2), with ||Fω||2 ≡ (
∫
A |Fω|

2dx)1/2

and A the area of the film, then we have two control parameters,
namely, the Grashof [19] number G = 2π||Fω||2/(k3

injρν
2) and the non-

dimensionalized Ekman friction γ = α/(k2
injν). For a given set of

values of G and γ, the system attains a nonequilibrium statistical
steady state after a time t/τ ' 2.8, where τ = L/urms is the box-
size time, L the side of our square simulation domain, and urms the
root-mean-square velocity. In this state the Reynolds number Re ≡
urms/(kinjν), the energy, etc., fluctuate; their mean values, along with
one-standard-deviation error bars, are given in Tables 4.1 and 4.2 that
list the values of the parameters in our runs R1-7.

We use a fourth-order Runge-Kutta scheme (Appendix C.1) with
step size δt = 10−4 for time marching in Eq. (4.1) and evaluate spa-
tial derivatives via second-order and fourth-order, centered, finite dif-
ferences, respectively, for points adjacent to the walls and for points
inside the domain (Appendix C.2). The Poisson equation Eq. (4.2) is
solved by using a fast-Poisson solver [20] (see Appendix C.3) and ω is
calculated at the boundaries by using Thom’s formulae [21] that are
given below:

ωi,1 = 2ψi,2/δ
2
x (bottom wall),

ωi,N = 2ψi,N−1/δ
2
x (top wall),

ω1,j = 2ψ2,j/δ
2
x (left wall),

ωN,j = 2ψN−1,j/δ
2
x (right wall),
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N α F0 γ G(×104) Re E

R1 1025 0.45 45 0.25 3.5 23.3± 0.4 15.1± 0.5

R2 1025 1.25 45 0.71 3.5 19.6± 0.3 10.7± 0.3

R3 1025 1.25 60 0.71 4.7 24.0± 0.5 15.9± 0.6

R4 2049 0.45 45 0.25 3.5 23.2± 0.4 15.1± 0.5

R5 2049 1.25 45 0.71 3.5 19.6± 0.4 10.8± 0.4

R6 2049 1.25 60 0.71 4.7 23.8± 0.4 15.9± 0.6

R7 3073 0.45 45 0.25 3.0 26.5± 0.4 20.0± 1.0

Table 4.1: Parameters for our runs R1-7: N , the number of grid points along each
direction, γ, G, Re (we use ν = 0.016, `inj = 0.6, and a square simulation domain with
side L = 7, uniform grid spacing δx = δy = L/N , area A, and boundary ∂A), and the
time-averaged kinetic energy E.

where 1 ≤ (i, j) ≤ N are the Cartesian indices of points in our simula-
tion domain with N ×N grid points.

To evaluate spatiotemporal averages, we store ψ(x, tn) and ω(x, tn),
with tn = (4 + n∆)τ , n = 0, 1, 2, . . . , nmax, and 96 ≤ nmax ≤ 200; ∆ = 0.28

for runs R1-6 and ∆ = 0.13 for run R7.

4.3 Results

Our results are of three types and are given, respectively, in Sec-
tions 4.3.1, 4.3.2, and 4.3.3. We begin with a short overview of these
before we present details. In Section 4.3.1 we study the time evo-
lutions of the kinetic energy E(t) ≡ (

∫
A u2dx)/A, viscous energy-

dissipation rate εν(t) ≡ −ν(
∫
A |ω|

2dx)/A, and energy-dissipation rate
because of the Ekman friction εe(t) = −2αE(t) and their time averages
E ≡ 〈E(t)〉, εν ≡ 〈εν(t)〉, and εe ≡ 〈εe(t)〉. We show that there are im-
portant qualitative differences, not emphasized earlier, between runs
in which G is held fixed and those in which Re is held fixed (by vary-
ing G and γ). In particular, for runs with constant G, εν turns out to
be independent of the Ekman friction, whereas, for runs in which Re
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εν εe Λ̃(×102) b δb(×10−2)

R1 −28± 2 −13.6± 0.5 5.3± 0.3 0.32± 0.01 3.1± 0.1

R2 −28± 1 −26.8± 0.9 4.8± 0.2 0.33± 0.01 3.1± 0.1

R3 −40± 2 −39.9± 1.4 7.2± 0.4 0.33± 0.01 2.8± 0.1

R4 −28± 2 −13.6± 0.4 5.3± 0.3 0.31± 0.01 3.2± 0.2

R5 −28± 1 −27.0± 1.0 4.8± 0.2 0.33± 0.01 3.1± 0.1

R6 −40± 2 −40.0± 1.5 7.2± 0.4 0.33± 0.01 3.1± 0.1

R7 −26± 2 −17.8± 0.6 5.0± 0.4 0.31± 0.01 3.7± 0.3

Table 4.2: Parameters for our runs R1-7: viscous-energy-dissipation
rate εν , the energy-dissipation rate because of Ekman friction εe, Λ̃ ≡
[〈(∂xu′y)2 (∂yu′x)

2〉]1/2, b ≡ −〈∂xu′y∂yu′x〉/Λ̃, and the boundary-layer thickness
δb ∝ 〈(

∮
∂A
ω2/

∮
∂A

((∇ω).n̂)2)1/2〉 [22, 23]. Angular brackets denote time av-
erages whereas overbars indicate spatial averages over the whole simulation
domain.

is held fixed, E remains fixed. In Section 4.3.2 we present a detailed
analysis of velocity and vorticity structure functions with a view to
elucidating their scaling and multiscaling properties. We then carry
out a detailed study of the topological properties of 2D turbulence in
Section 4.3.3 and compare our simulations with experimental results.
In particular, we examine the dependence of the PDF P (Λ) on γ and
we study the joint PDFs of velocity and vorticity differences with Λ.
We obtain excellent agreement with experiments.

4.3.1 Energy and dissipation

Figures 4.1(a)-(f) show the time evolution of E(t), normalized by NE ≡
(νkinj)

2, and εν(t) and εe(t), normalized by N ≡ −k4
injν

3. The mean
values E, εν, and εe, given in Table 4.1, are comparable to those in ex-
periments; note that εν and εe are of similar magnitudes. By compar-
ing data from runs R1 (red circles) and R2 (black lines) in Figs. 4.1(a),
(c), and (e) we see that, if we fix G and increase γ, E decreases, εν re-
mains unchanged (within error bars), and εe increases. If we change
both G and γ, we can keep the mean Re fixed, as in runs R1 and R3 in
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Figure 4.1: Representative plots from runs R1 (red circles), R2 (black lines), and R3

(black squares), showing the time evolution of E(t)/NE [(a) and (b)], εν(t)/N [(c) and
(d)], and εe(t)/N [(e) and (f)]. In (a), (c), and (e) we keep G fixed and vary γ (γ = 0.25

(red circles) andγ = 0.71 (black line)). In (b), (d), and (f) we maintain Re ' 21.2 by
varying γ (γ = 0.25 (red circles) and γ = 0.71 (black squares)) and G.
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Table 4.1, by compensating an increase in γ with an increase in G (cf.
Ref. [10]); in Figs. 4.1(b), (d), and (f) we see, by comparing runs R1 (red
circles) and R3 (black squares), that E remains unchanged (within er-
ror bars), whereas both εν and εe increase as γ and G increase in such
a way that Re is held fixed.

4.3.2 Structure functions of the velocity and the vorticity

Since Kolmogorov forcing is inhomogeneous, we use the decomposi-
tion ψ = 〈ψ〉 + ψ′ and ω = 〈ω〉 + ω′, where the angular brackets de-
note a time average and the prime the fluctuating part. The inhomo-
geneous forcing Fω and the no-slip boundary conditions that we use
generate the patterns shown via the pseudocolor plots of the time av-
erages of 〈ψ〉 and 〈ω〉 [Figs. 4.2(a) and (b)] respectively 1. We use
u′x ≡ −∂yψ′, u′y ≡ ∂xψ

′, and ω′ to calculate the order-p velocity and
vorticity structure functions Sp(rc,R) ≡ 〈|(u′(rc + R)− u′(r)) · R/R|p〉
and Sωp (rc,R) ≡ 〈|ω′(rc + R)− ω′(r)|p〉, respectively, where R has mag-
nitude R and rc is an origin. Figures 4.3(a) and (c) show pseudo-
color plots of S2(rc,R) and Sω2 (rc,R), respectively, for rc = (2, 2); other
values of rc yield similar results so long as they do not lie near the
boundary layer (Table 4.1) of thickness δb (rc is chosen at least 5δb
away from all boundaries). We now calculate S2(R) ≡ 〈S2(rc,R)〉rc and
Sω2 (R) ≡ 〈Sω2 (rc,R)〉rc, where the subscript rc denotes an average over
the origin (we use rc = (i, j), 2 ≤ i, j ≤ 5, where rc indicates the dis-
placement vector relative to origin of the simulation domain); these
averaged structure functions [Figs. 4.3(b) and (d)] are nearly isotropic
for R < `inj but not so for R > `inj.

To obtain the isotropic parts in an SO(2) decomposition of these
structure functions [15] we integrate over the angle θ that R makes

1Experiments [9, 10, 11] achieve homogeneity via a periodic, square-wave forcing with amplitude
F0; this introduces another time-scale in the problem; to avoid this complication we work with a
time-independent force.
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Figure 4.2: Representative pseudocolor plots of (a) the time-averaged streamfunc-
tion 〈ψ〉 and (b) the time-averaged vorticity 〈ω〉 for our run R7.
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Figure 4.3: Pseudocolor plots of (a) S2(rc,R), for rc = (2, 2), (b) S2(R) (average of
S2(rc,R) over rc), (c) Sω2 (rc,R), for rc = (2, 2), and (d) Sω2 (R) (average of Sω2 (rc,R)

over rc).
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Figure 4.4: Log-log ESS plots of the isotropic parts of the order-p velocity structure
functions Sp(R) versus S2(R); p = 3 (blue line with circles), p = 4 (green line with
triangles), p = 5 (red line with squares), and p = 6 (cyan line with stars); plots
of the local slope χp (see text), in the forward-cascade inertial range: (a) χp versus
log10 S2(R) and (b) plots versus p of the exponent ratios ζp/ζ2 and error bars from the
local slopes (see text), along with the KLB prediction (red line). All plots are for run
R7.
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with the x axis to obtain Sp(R) ≡
∫ 2π

0 Sp(R)dθ and Sωp (R) ≡
∫ 2π

0 Sωp (R)dθ.
Given Sp(R) and Sωp (R) we use the extended-self-similarity (ESS)
procedure [16] to extract the multiscaling-exponent ratios ζp/ζ2 and
ζωp /ζ

ω
2 , respectively, from the slopes (in the forward-cascade inertial

range) of log-log plots of Sp(r) versus S2(r) [Fig. 4.4] and Sωp (R) versus
Sω2 (R) [Fig. 4.5] 2.

The insets Figs. 4.4(a) and Figs. 4.5(a) show, respectively, plots
of the local slopes χp ≡ d log10 Sp(R)/d log10 S2(R) versus log10 S2(R)

and χωp ≡ d log10 S
ω
p (R)/d log10 S

ω
2 (R) versus log10 S

ω
2 (R) in the forward-

cascade regime; the mean values of χp and χωp , over the ranges shown,
yield the exponent ratios ζp/ζ2 and ζωp /ζ

ω
2 that are plotted versus p in

Figs. 4.4 and Figs. 4.5, respectively, in which the error bars indicate
the maximum deviations of χp and χωp from their mean values. The
Kraichnan-Leith-Batchelor (KLB) predictions [1, 2, 3] for these expo-
nent ratios, namely, ζKLBp /ζKLB2 ∼ rp/2 and ζω,KLBp /ζω,KLB2 ∼ r0, agree
with our values for ζp/ζ2 but not ζωp /ζω2 : velocity structure functions do
not display multiscaling [Fig. 4.4 (b)] whereas their vorticity analogs
do [note the curvature of the plot in Fig. 4.5 (b)]. This is in conso-
nance with the results of DNS studies with periodic boundary condi-
tions [24, 25, 26, 27]. Indeed, if we use the same values of γ as in
Ref. [24], we obtain the same exponent ratios (within error bars); thus
our method for the extraction of the isotropic parts of the structure
functions suppresses boundary and anisotropy effects efficiently.

4.3.3 Topological properties of soap-film turbulence

For an inviscid, incompressible 2D fluid the local flow topology can
be characterized via the Okubo-Weiss criterion [17, 18] that uses the
invariant

Λ ≡ (ω2 − σ2)/4, (4.3)
2We employ ESS since forward-cascade inertial ranges have very modest extents even in the

largest DNS studies [24, 25] that use periodic domains and hyperviscosity.
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Figure 4.5: Log-log ESS plots of the isotropic parts of the order-p vorticity structure
functions Sωp (R) versus Sω2 (R); p = 3 (blue line with circles), p = 4 (green line with
triangles), p = 5 (red line with squares), and p = 6 (cyan line with stars); plots of
the local slope χωp (see text), in the forward-cascade inertial range: (a) χωp versus
log10 S

ω
2 (R) and (b) plots versus p of the exponent ratios ζωp /ζω2 and error bars from

the local slopes (see text). All plots are for run R7.
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where σ2 ≡
∑

i,j σijσji and σij ≡ (∂iuj + ∂jui)/
√

2. This criterion pro-
vides a useful measure of flow properties even if ν > 0 as noted in
the experiments of Ref. [10]: Regions with Λ > 0 and Λ < 0 corre-
spond, respectively, to centers and saddles as we show in Fig. 4.6 by
superimposing, at a representative time, a pseudocolor plot of Λ on
contours of ψ; an animated version of this plot is given as a multime-
dia file mov lam.mpg (MPEG file, 3.5MB, in the attached CDROM).
This result is in qualitative accord with experiments [see, e.g., Fig. 1

of Ref. [10] and also earlier DNS studies [17, 18], which do not use
Ekman friction]. In Fig. 4.7 we compare the scaled PDFs P2(Λ/Λrms)

with data obtained from points near the walls (black curve) and from
points in the bulk (red curve); the clear difference between these, not
highlighted before, indicate that the regions of large Λ are suppressed
in the boundary layers.

This is because near-wall regions (say within one-boundary-layer
thickness δb from the walls) are dominated by the strain, i.e.,
σ2 > ω2 as shown in Fig. 4.8. For the temporal evolution of the
σ2, ω2, and Λ fields in the region near the wall see the movie
mov snw sig2 omg2 lam
.mpg (see the attached CDROM). This explains the skewness of the
near-wall P2(Λ/Λrms) in Fig. 4.7. For the following discussion, to anal-
yse the topological properties of the flow in the bulk, we evaluate Λ

from the fluctuating part of the streamfunction.
Figures 4.9 (a) and (d) show the PDF P1(Λ) and the scaled PDF

P2(Λ/Λrms) for runs R4 (red line) and R5 (blue dashed line), with γ =

0.25 and γ = 0.71, respectively, and G = 3.5 × 104; by comparing these
figures we see that both P1 and P2 overlap (within error bars) for runs
R4 and R5. We believe this is because, in fixed-G runs like R4 and R5, εν
does not change [Table 4.1] even though γ changes. By contrast, if we
compare P1 and P2 [Figs. 4.9 (c) and (d)] for runs R4 (red line) and R6

(blue dashed line), in which the mean Re is held fixed by tuning both γ
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Figure 4.6: (a) Representative pseudocolor plot of Λ superimposed on a contour plot
of the stream function ψ in the statistical steady state. Contours of ψ > 0 are shown
as continuous lines whereas contours of ψ < 0 are indicated by dashed lines. Regions
with Λ > 4000 are shown in dark-red color and with Λ < −2400 in dark-blue color.
For intermediate values of Λ, the colors used are as indicated in the color bar. For
the temporal evolution of the Λ field see the movie mov lam.mpg (MPEG file, 3.5MB,
in the attached CDROM) from our DNS. (b) A representative plot of the velocity field
in the left corner of the simulation domain; the border with the red boundary is of
width 2δb and the two square boxes show one center and one saddle. Both plots are
for the run R7.
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Figure 4.7: The PDF P2(Λ/Λrms) obtained from points in the bulk δb < x, y < L −
δb (red line) and from points within a distance δb from the boundaries (black line)
for our run R7. One-standard-deviation error bars are indicated by lightly shaded
regions that straddle the curves of P2(Λ/Λrms).
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Figure 4.8: Representative pseudocolor plot of log10(σ2) (top frame), log10(ω2) (mid-
dle frame), and Λ (bottom frame) in a region that is one-boundary-layer thick, i.e.,
of width δb, and which lies near the bottom wall. The plot shows that, although
log10σ

2 and log10ω
2 have very similar profiles, in most of the region log10σ

2 > log10ω
2.

This explains the skewness of the near-wall P2(Λ/Λrms). Regions with Λ > 1000

and log10σ
2, log10ω

2 > 4 are shown in dark red and regions with Λ < −1000

and log10σ
2, log10ω

2 > −4 are shown in dark blue. For intermediate values of
log10σ

2, log10ω
2, and Λ, the colors used are as in the color bar.
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Figure 4.9: Plots of (a) P1(Λ) versus Λ and (b) P2(Λ/Λrms) versus Λ/Λrms for fixed G
and γ = 0.25(red line) and γ = 0.71(blue dashed line) [runs R4 and R5]; plots of (c)
P1(Λ) versus Λ and (d) P2(Λ/Λrms) versus Λ/Λrms [runs R4 and R6 with Re ' 23.5] and
γ = 0.25(red line) and γ = 0.71(blue dashed line) and points (black dots) extracted
from Fig. 2(d) of Ref. [10]. The fluctuating part of the velocity is used to calculate Λ.
One-standard-deviation error bars are indicated by the shaded regions.
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and G, we find, in agreement with experiments [10], that the PDFs P1

do not agree for these runs, but the PDFs P2 overlap within error bars.
Our results for P2 in Fig. 4.9(d) are in quantitative agreement with
experiments: we have obtained the points in this plot by digitizing
data points [see http://www.frantz.fi/software/g3data.php] in Fig. 2(d)
of Ref. [10]; the errors in these points are comparable to the spread
of data in [10]. The differences between Figs. 4.9(a) and (b) can be
understood by the following heuristic argument: For homogeneous,
isotropic turbulence

Λ = (ω2 − σ2)/4 = 0

because the spatial averages of ω2 and σ2 are both 2|εν|/ν. Even for
the flow we consider the PDFs of Figs. 4.9(a)-(d) yield Λ ' 0 whence
ω2 ' σ2. On taking the square and then the spatial average of Eq. (4.3)
we get

Λ2 = [ω4 + σ4 − 2ω2σ2]/16;

and if we make the approximations ω4 ' 3ω22
and σ4 ' 3σ22

then

Λ2 ' 3|εν|2

2ν2 (1− 2ω2σ2

ω4 + σ4
),

Λ2 ' 0.33
3|εν|2

2ν2 ,whence

Λrms =

√
Λ2 − (Λ)2 ' |εν|/ν, (4.4)

where the second line in Eq. (4.4) follows from the last column of Table
4.3; this Table shows the degree to which the approximations made
above agree with the the results from our DNS.

Note that in all our runs R1− 7 ν = 0.016. So, if we hold the Grashof
number G fixed (runs R4 and R5), then |εν| is independent of γ [Fig.
4.1(c) and Table4.2] and, therefore, Λrms [Eq. (4.4)] is also independent
of γ. In contrast, if we hold Re fixed (runs R4 and R6), |εν| increases
with increasing γ [Fig. 4.1(d) and Table 4.2] so Λrms [Eq. (4.4)] also
increases as γ increases. This explains why the the unscaled PDFs P1
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Figure 4.10: Plots of conditional expectation values, with one-standard-deviation
error bars, of σ2(black dots) and ω2(blue circles) for a given Λ for our run R5. A com-
parison of this figure with Fig. 3 of Ref. [10] shows that our results are in excellent
qualitative agreement with the experiments.

of Fig. 4.9(a) overlap (G fixed) but those in Fig. 4.9(c) do not (Re fixed).
Only when we normalise Λ by Λrms do the scaled PDFs P2 overlap
[Figs. 4.9(b) and (d)].

Conditional expectation values of σ2 and ω2, for a given value of
Λ, also agree well with experiments as can be seen by comparing
Fig. 4.10 with Fig. 3 of Ref. [10].

We also present in Figs. 4.11 (a-c) pseudocolor plots of the joint
PDFs of

δω(r) ≡ ω′(x + rêx)− ω′(x),

δuL(r) ≡ u′x(x + rêx)− u′x(x), or
δuT (r) ≡ u′y(x + rêx)− u′y(x) (4.5)
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with Λ′ ≡ det(M). Here

Mαβ ≡ 1

Ar

∫
Ω
mαβdr, (4.6)

Ar ≡
∫

Ω
dr, and (4.7)

mαβ ≡ ∂αu
′
β, (4.8)

Ω a circular disc with center at x + (r/2)êx and radius r/2, and r

in the forward-cascade regime. In Figs. 4.11(a-c) we present pseu-
docolor plots of the joint PDFs P (δω(r = 0.12),Λ′/Λ′rms), P (δuL(r =

0.12),Λ′/Λ′rms), and P (δuT (r = 0.12),Λ′/Λ′rms). Figures 4.11(b-c) are in
striking agreement with Figs. 1-2 of Ref. [11]. Figure 4.11(a) predicts
that regions of large δω and small Λ′/Λ′rms (and vice-versa) are corre-
lated; this result awaits experimental confirmation.

Finally, we calculate

Λ̃ ≡ [〈(∂xu′y)2 (∂yu′x)
2]1/2 and (4.9)

b ≡ −〈∂xu′y∂yu′x〉/Λ̃ (4.10)

(see Table 4.2). Our simulations yield b ' 0.3 which is the same as that
obtained in the experiments for the Kolmogorov forcing in Table I of
Ref. [10]. We find 530 ≤ Λ̃ ≤ 720, which is close to the experimental
range 712 ≤ Λ̃ ≤ 1282; our values of Λ̃ are somewhat smaller than
those in experiments since our Reynolds numbers are not as large as
in these experiments. We find δb, the boundary-layer thickness, to be
small and it does not depend significantly on α (δb ∼ 0.031 ± 0.001),
which suggests that the bulk-flow properties are only weakly affected
by the boundaries in such a soap-film.

4.4 Conclusion

Some earlier numerical studies of 2D, wall-bounded, statistically
steady turbulent flows [22, 23] use forcing functions that are not
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ω2

σ2

ω4

3ω2
2

σ4

3σ2
2

ω2σ2

ω4+σ4

R4 1± 10−5 1.4± 0.2 1.0± 0.2 0.32± 0.03

R5 1± 10−5 1.1± 0.1 0.8± 0.1 0.34± 0.03

R6 1± 10−5 1.3± 0.1 0.9± 0.1 0.32± 0.02

R7 0.99± 10−4 1.7± 0.3 1.3± 0.1 0.34± 0.03

Table 4.3: The ratios ω2

σ2
, ω4

3ω2
2 , σ4

3σ2
2 , ω2σ2

ω4+σ4
obtained from our DNS.

Figure 4.11: Pseudocolor plots of (a) the joint PDF P (δω(r = 0.12),Λ′/Λ′rms), (b) the
joint PDF P (δuL(r = 0.12),Λ′/Λ′rms), and (c) the joint PDF P (δuT (r = 0.12),Λ′/Λ′rms)

for our run R7. The contours and the shading are for the logarithms of the joint
PDFs. A comparison of (b) and (c) with Figs. 1(b) and 2 of Ref. [11] show that our
results agree very well with experiments.
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of the Kolmogorov type; furthermore, they do not include air-drag-
induced Ekman friction. Other numerical studies, which include the
Ekman friction and Kolmogorov forcing, employ periodic boundary
conditions [24, 25, 28]. To the best of our knowledge our study of
2D turbulent flows is the first one that accounts for the Ekman fric-
tion, realistic boundary conditions, and Kolmogorov forcing. We show
that, for values of α that are comparable to those in experiments,
the energy dissipation rate because of the Ekman friction is compa-
rable to the energy dissipation rate that arises from the conventional
viscosity. We extract the isotropic part of the structure functions in
the forward-cascade regime. We find that velocity structure function
exponent ratios show simple scaling whereas their vorticity counter-
parts show multiscaling. We also study the topological properties of
two-dimensional turbulence by using the Okubo-Weiss criterion and
we find excellent agreement with PDFs that have been obtained ex-
perimentally. We hope our results will stimulate experimental stud-
ies designed to extract (a) the isotropic parts of structure functions
(and thereby to probe the multiscaling of vorticity structure func-
tions [Fig. 4.5 (b)] or (b) the PDF P2(Λ/Λrms) (Fig. 4.7) near soap-film
boundaries.

In Ref. [29] it was argued that, if the Ekman friction is nonzero and
in the limit of vanishing viscosity, the third-order velocity structure
function shows an anomalous behavior. In our calculations of struc-
ture functions of odd orders, we have employed moduli of velocity in-
crements; without these moduli the error bars are too large in our
wall-bounded DNS to obtain good statistics for structure functions of
odd order. Thus we cannot compare our results directly with those of
Ref. [29]. The main point of our study is to mimic, as closely as pos-
sible, parameters and boundary conditions in soap-film experiments
such as those of Ref.[12]. Hence our viscosity is much higher (and the
Reynolds number much lower) than in the DNS of Ref. [27], which was
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designed to investigate some of the issues raised in Ref. [29]. There-
fore, a direct comparison of our structure-function results with those
of Ref. [27] is not possible especially for odd orders because, as men-
tioned above, we use moduli of velocity increments. We have, however,
checked that our velocity structure functions show simple scaling as
in the experiments of Ref. [12]; it would be interesting to explore if
these experiments can be extended to confirm the multiscaling of vor-
ticity structure functions that we describe above; such experimental
studies might well benefit from the procedures we have used to extract
the isotropic parts of structure functions.



Appendix C

C.1 Numerical scheme

In this appendix we describe the fourth-order Runge-Kutta (RK4)
scheme that is used for the time evolution of Eq. (4.1).

Figure C1: A schematic diagram of the equispaced spatial grid in a square domain
used in our simulations. The grid spacings along the x and y directions are δx =

δy = L/N .
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In Fig. C1 we show a schematic diagram of the equispaced grid
used in our simulations. We have used no-slip and no-penetration
boundary conditions at the wall. In terms of the streamfunction these
boundary conditions are ψ = 0 and ∇ψ · n̂ = 0. In the interior of
the domain (2, 2) ≤ (i, j) ≤ (N − 1, N − 1) we solve the vorticity evo-
lution Eq. (4.1) equation by using a fourth-order Runge-Kutta (RK4)
scheme as follows:

ω1 = ωn + δtR(ωn,un)/2;

∇2ψ1 = ω1;

ω2 = ωn + δtR(ω1,u1)/2;

∇2ψ2 = ω2;

ω3 = ωn + δtR(ω2,u2);

∇2ψ3 = ω3;

k4 = −δtR(ω3,u3);

ωn+1 = (−ωn + ω1 + 2ω2 + ω3) + k4/6;

∇2ψn+1 = ωn+1.

Here ω1, ω2, and ω3 are the intermediate values of ω at the interme-
diate time steps of the RK4 scheme. The superscripts n and n + 1

indicate the discrete time indices such that t at the nth iteration step
is t ≡ nδt, and R(ω,u) = −u.(∇ω) + ν∇2ω.

At every step of the RK4 scheme, first the vorticity is updated at
the interior nodes (1 ≤ (i, j) ≤ N − 1). Next the Poisson equation,
with boundary condition ψ = 0 at the walls, is solved to obtain ψ (see
Appendix C.3). Finally, the vorticity at the walls is updated by using
Thom’s formulae [21] and Eq. (4.3). This completes the numerical
solution procedure that we use to solve Eq. (4.1).
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C.2 Finite-difference schemes

In this Appendix we describe the finite-difference schemes we use for
first and second derivatives. The centered second- and fourth-order
explicit finite-difference approximations of the derivative of a function
f ∈ R1 are:

f ′ = (−fi−1 + fi+1)/(2∆x); (C1)
f ′ = (fi−2 − 8fi−1 + 8fi+1 − fi+2)/(12∆x). (C2)

The centered second- and fourth-order explicit finite-difference ap-
proximations of the second derivative of a function f ∈ R1 are:

f ′′ = (−fi−1 − 2f(i) + fi+1)/(∆x)2; (C3)
f ′′ = (−fi−2 + 16fi−1 − 30fi + 16fi+1 − fi+2)/(12(∆x)2). (C4)

C.3 The Poisson-equation solver

In Appendix C.1 we discussed the numerical procedure to solve
Eq. (4.1). To implement the numerical scheme discussed in Appendix
C.1 we need to solve the Poisson equation

∂xxψ + ∂yyψ = ω, (C5)

with the Dirichlet boundary condition ψ = 0 at the walls at every time
step. The numerical scheme used by us is similar to the one discussed
on pages 849− 852 of Ref. [20].

We take the sine transform (see Appendix C.4) of Eq. (C5) along the
x-direction to get

−(nπ/L)2ψ̂n(y) + ∂yyψ̂n(y) = ω̂n(y), (C6)

where n = 0, . . . , N − 1 and the caret denotes the sine transform. If we
now use the second-order, centered, finite-difference approximation
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for the derivative Appendix C.2 on our simulation grid, we get,

ψ̂n,j+1 − [2 + (nπ/L)2(δy)2]ψ̂n,j + ψ̂n,j−1 = ω̂n,j(δy)2. (C7)

For a fixed value of n, Eq. (C7) is a linear system of the form
AX = B, where the tridiagonal matrix A has the elements
Aα,α = −[2 + (nπ/L)2(δy)2], Aα,α+1 = Aα+1,α = 1, and all other el-
ements of A are 0. The column vectors X and B have the elements
ψ̂n,j and ω̂n,j(δy)2, respectively. We solve the above tridiagonal system
for all n = 0, · · · , N − 1 by using the Thomas tridiagonal matrix
algorithm (see page-43 of Ref. [20]) or
http://www.cfd-online.com/Wiki/Tridiagonal matrix algorithm - TDMA (Thomas algorithm).

The final step involves taking the inverse sine transform (see Ap-
pendix C.4) along the x-direction to get ψ.

C.4 Fast sine transforms

We use the FFTW3 software (http://www.fftw.org/fftw3\_doc)
to take the sine transforms in Appendix C.3. Below give the definition
of sine transform as given in the FFTW3 manual.

Consider a real array X of length N . Its sine transform to a real
array Ŷ of length N is:

Ŷn = 2
N−1∑
j=0

Xj sin[π(j + 1)(n+ 1)/(N + 1)], (C8)

and the corresponding inverse sine transform is

Xj =
1

N + 1

N−1∑
n=0

Ŷn sin[π(j + 1)(n+ 1)/(N + 1)]. (C9)
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Chapter 5

Turbulence-induced melting of a
nonequilibrium vortex lattice in a
forced soap film

We perform a DNS of the two-dimensional Navier-Stokes equations.
The forcing is chosen such that, at low Reynolds (Re) numbers, the
steady state of the soap film is a square lattice of vortices. We find
that, as we increase Re, this lattice undergoes a series of nonequilib-
rium phase transitions, first to a crystal with a different reciprocal lat-
tice and then to a sequence of crystals that oscillate in time. Initially
the temporal oscillations are periodic; this periodic behavior becomes
more and more complicated with increasing Re until the soap film
enters a spatially disordered nonequilibrium statistical steady that
is turbulent. We study this sequence of transitions by using fluid-
dynamics measures, such as the Okubo-Weiss parameter, ideas from
nonlinear dynamics, e.g., Poincaré maps, and theoretical methods that
have been developed to study the melting of an equilibrium crystal or
the freezing of a liquid, for instance, the behavior of the autocorrela-
tion function G(r) in crystalline and liquid phases.

140
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5.1 Introduction

A crystal melts into a disordered liquid when the temperature is
raised beyond the melting point TM ; and when the liquid is cooled
below TM it freezes again. This melting or freezing transition, one
of the most common equilibrium phase transitions, has been studied
extensively; and the Ramakrishnan-Yussoff density-functional the-
ory [1, 2, 3, 4], which uses a suitable variational free energy, has led
to a good understanding of such freezing. It is natural to ask whether
there are nonequilibrium analogues of this transition. One example
is shear-induced melting of colloidal crystals [5]. In this Chapter we
investigate another example of a nonequilibrium transition in which
dynamically generated turbulence plays the role of temperature and
disorders a crystal consisting of an array of vortices, of alternating
sign, imposed on a thin fluid film by an external force.

Recent experiments [6, 7] have explored this transition from a low-
Reynolds-number nonequilibrium vortex crystal, imposed on a thin
fluid film by a force that is periodic in space, to a high-Reynolds-
number, disordered, nonequilibrium liquid-type phase. This problem
has been studied earlier by using linear-stability analysis [8, 9] and
direct numerical simulations (DNS) [10, 11]. The former is well-suited
to the study of the first instability of the vortex crystal with increas-
ing Reynolds numberRe; the latter have (a) studied the route to chaos,
by using techniques from nonlinear dynamics [10, 11] to analyse the
temporal evolution of this system, or (b) have mimicked [12] the ex-
periments of Ref. [6] to study the creation and annihilation of vortices.

In this Chapter we revisit the problem of turbulence-induced melt-
ing of the vortex by conducting a direct numerical simulation of the
two-dimensional Navier-Stokes equations. We show how to combine
methods from turbulence, nonlinear dynamics, and statistical physics
to elucidate the nature of nonequilibrium phases and transitions in
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this system. Our approach leads to a characterisation of these transi-
tions in terms of order parameters like those in the density-functional
theory of freezing [1, 2, 3, 4].

In particular, we use the two-dimensional (2D) Navier-Stokes equa-
tion with Ekman friction to model the thin fluid films used in experi-
ments [6, 7, 13]; as we have shown in Chapter-4 and Ref. [14], this is
a good model for flows in such thin films so long as the Mach number
is small and the corrections arising from the finite thickness of the
film and from the Marangoni effect can be neglected [15, 16]. We force
this 2D NS equation in a manner that mimics the forcing used in ex-
periments and which yields, at low Re, a stationary, periodic array of
vortices of alternating signs; we will refer to this array as the vortex
crystal.

We then investigate the stability of this array as we increase the
amplitude of the force and, therefore, the Reynolds number. We
use methods from nonlinear dynamics, including time-series analy-
sis, power spectra, and Poincaré-type maps, to examine the temporal
behaviour of this system as it undergoes a sequence of transitions.
This part of our study complements the work of Refs. [10, 11].

Furthermore, we elucidate the natures of the transitions from the
spatially ordered crystal to the disordered, turbulent state by borrow-
ing ideas from the density-functional theory of the freezing of a liquid
into a crystal [1, 2, 3, 4]. Since the density field of a crystal is periodic,
this theory uses the coefficients in the Fourier decomposition of the
density as order parameters. Specifically, in a conventional crystal, ρ
admits the Fourier decomposition

ρ(r) =
∑
G

ρG exp(ıG · r), (5.1)

where the sum is over the vectors G of the reciprocal lattice; in the
density-functional theory of freezing [1, 2] the Fourier coefficients ρG

are taken to be the order parameters of the liquid-to-crystal transi-
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tion since their mean values vanish in the liquid phase for all nonzero
reciprocal lattice vectors G; moreover, ρG=0 is the mean density and,
because most liquids are nearly incompressible, it shows a very small
change at this transition. Spatial correlations in the isotropic liquid
phase can be characterized conveniently by the autocorrelation func-
tion g(r) = 〈[ρ(x + r)ρ(x)]〉, where the angular brackets denote Gibb-
sian thermal averages and the overline denotes spatial averaging over
x; the Fourier transform of g(r) is related [1, 2] to the static structure
factor S(k). [The crystalline phase is not isotropic so the arguments of
g and S are vectors in that phase.]

We use the Okubo-Weiss field Λ ≡ det(A) as the analogue of the
density ρ(r) in the density-functional theory of freezing; here A is the
velocity-derivative matrix that has components Aij ≡ ∂iuj, with uj
the jth component of the velocity. As we have shown in Chapter-4,
Λ distinguishes between vortical regions and strain-dominated ones;
it is positive in the former and negative in the latter. Thus, in the
nonequilibrium vortex crystal, Λ(r) is a periodic function; so, like ρ(r)

in a conventional crystal, it admits the Fourier decomposition

Λ(r) =
∑
k

Λ̂k exp(ık · r), (5.2)

where the sum is over the reciprocal-lattice vectors k and it is natural
to think of Λ̂k as the order parameters that characterise the vortex
crystal. In terms of these order parameters we can define the ana-
logue of the static structure factor S(k) for a conventional crystal; for
the vortex crystal this is the two-dimensional spectrum

EΛ(k) ≡ 〈Λ̂kΛ̂−k〉; (5.3)

here the angular brackets do not imply a Gibbsian thermal average,
as in equilibrium melting, but denote an average over the nonequi-
librium statistical steady state of our system. The autocorrelation
function

G(r) = 〈Λ(x + r)Λ(x)〉, (5.4)
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is related to EΛ(k) by a spatial Fourier transform. The turbulent
phase is isotropic so G depends only on r ≡| r |; and it characterises
the short-range order in the system exactly as g(r) does in an isotropic
liquid.

We also make comparisons with the recent experiments of Ref. [6].
Our main results are: (i) For the parameter range explored by us,
on increasing the Reynolds number we observe a series of transitions
from steady states with structures larger than the forcing state, to
time periodic solutions, and finally for large values of Reynolds num-
ber spatio-temporal chaos sets in; (ii) In agreement with the ear-
lier numerical simulations [10, 17] we observe the formation of large
scale-structures and periodic orbits. We quantify the above by not only
looking at the projection of Poincaré sections in Fourier space and the
Fourier analysis of the time series but also by EΛ and the autocorrela-
tion function G(r).

5.2 Equations

In this section we give an overview of the model and the numerical
methods we use. The 2D Navier-Stokes (NS) equations can be written
in the following non-dimensional form [17]:

(∂t + u · ∇)ω = ∇2ω/Ω− αω + Fω; ∇2ψ = ω. (5.5)

Here u ≡ (−∂yψ, ∂xψ), ψ, and ω ≡ ∇ × u are, respectively, the ve-
locity, stream function, and vorticity at the position x and time t; we
choose the uniform density ρ = 1; α is the Ekman friction coefficient,
ν is the kinematic viscosity, and Fω ≡ −n3[cos(nx) + cos(ny)]/Ω, is the
force with injection wave vector n. We denote the x and y compo-
nents of the velocity as u1 ≡ u and u2 ≡ v, respectively. The above
non-dimensional form of the 2D NS equations is obtained by using
the normalizations of Ref. [17] given which we have Ω ≡ nFamp/(ν

2k3),
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and α = nνα′k/Famp, where Famp is the forcing amplitude, α′ is the
Ekman friction, and lengths are non-dimensionalised via a factor k/n
with k a wave vector or inverse length. The spatially periodic force
Fω yields, at low Ω, a vortex crystal that is also referred to as a cellu-
lar flow. A linear-stability analysis of this flow indicates that it has a
primary instability [9] at a critical Reynolds number Rec ≡

√
2 which

translates into a threshold value Ωs,n ≡ nRec. This primary instability
yields another vortex crystal, which is steady in time but whose unit
cell is larger than that of the original vortex crystal [9, 18].

We solve Eq. (5.5) numerically by using a pseudo-spectral code with
a 2/3 dealiasing cut-off and a second-order Runge-Kutta scheme for
time marching (Appendix D.1) with a time step δt = 0.01. We use N 2

collocation points; in most of our studies we use N = 128; we have
checked in representative cases that our results are unchanged if we
use N = 256. Our main goal has been to obtain long time series for
several variables (see below) to make sure that the temporal evolu-
tion of our system is obtained accurately; most of our runs are at least
as long as 3 × 106δt. We monitor the time-evolution of (a) the kinetic
energy E(t) ≡ u2, (b) the stream function ψ, (c) the vorticity ω, (d)
the Okubo-Weiss parameter Λ, and (e) the k = (1, 0) component of
the Fourier transform v̂ of the y component v of u. Given these time
series we obtain EΛ(k) at representative times and G(r), which is ob-
tained by averaging over 20 configurations of Λ(x, y) separated from
each other by 105δt, after transients in the first 106 time steps have
been removed. From the time series of E(t) we obtain its temporal
Fourier transform E(f) and thence the spectrum | E(f) | that helps us
to distinguish between periodic, quasiperiodic, and chaotic temporal
behaviours. We also augment this charaterisation by using Poincaré-
type sections in which we plot =v̂(1,0) versus <v̂(1,0) at successive times
(see, e.g., Ref. [17] for the Kolmogorov flow).
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As we show below, the vortex crystal melts, as we increase Ω, via a
complicated sequence of transitions. The principal effect of the Ekman
friction is to delay the onsets of these transitions; we have checked
this explicitly in some cases. However, to make contact with ear-
lier linear-stability and DNS studies of this problem, the results we
present below have been obtained with no Ekman friction. Our quali-
tative conclusions are not affected by this.

So long as Ω < Ωs,n, the steady-state solution [17], indicated by
the subscript s, of Eq. (5.5) is ωs,n = −n[cos(nx) + cos(ny)]. We ex-
amine the destabilisation of this state, with increasing Ω, for two
representative values of n, namely, n = 4 and n = 10; for both
these cases we choose the initial velocity field to have the form ω =

ωs,n + 10−4∑2,2
m1=0,m2=0[sin(m1x+m2y) + cos(m1x+m2y)]m2

2/
√

(m2
1 +m2

2);
and then we let the system evolve under the application of the force
Fω. We increase Ω from 2.26Ωs,n to 3.67Ωs,n in steps of 0.5, for n = 4(runs
R4-1 to R4-7 in Table 5.1), and from 1.9Ωs,n to 19.44Ωs,n in steps of 1,
for n = 10 (runs R10-1 to R10-4 in Table 5.1). We have benchmarked
our numerical scheme by comparing our results with those of Ref. [17],
which deals with a Kolmogorov flow imposed by an external force of
the form Fω = n cos(ny).

5.3 Initial state and the Λ field

For an inviscid, incompressible 2D fluid the local flow topology can
be characterized via the Okubo-Weiss criterion [19]. This criterion
provides a useful measure of flow properties even if viscosity and Ek-
man friction are present, as noted in earlier experiments and simu-
lations [13, 14, 20]: Regions with Λ > 0 and Λ < 0 correspond, re-
spectively, to centers and saddles [19]. In particular, for Ω < Ωs,n, we
obtain the Λ field, with alternating centres and saddles, arranged in a
two-dimensional square lattice, which we illustrate via pseudocolour
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n Ω Comments

R4− 1 4 Ω < Ωs,n Square array

R4− 2 4 Ωs,n < Ω ≤ 6.5 Steady state, large structures

R4− 3 4 Ω = 8.202 Periodic orbit

R4− 4 4 9.05 < Ω < 15.3 Steady state, large structures

R4− 5 4 15.3 < Ω < 17.3 Periodic orbits

R4− 6 4 Ω = 17.8 Quasiperiodic + chaos

R4− 7 4 Ω ≥ 18.3 Chaotic

R10− 1 10 Ω < Ωs,n Square array

R10− 2 10 Ωs,n < Ω < 22.6 Steady state

R10− 3 10 24 < Ω < 28 Periodic orbits

R10− 4 10 Ω ≥ 29 Chaotic

Table 5.1: Table indicating the values of Ω and the route to chaos observed in our
simulations.

plots for n = 4 and n = 10 in Figs. 5.1 (a) and (b), respectively. [These
patterns are reminiscent of a two-dimensional version of a perfectly
ordered binary alloy, with two kinds of atoms, whose analogues here
are centers and saddles.] We show corresponding pseudocolour plots
of ψ in Figs. 5.2 (a) and (b), respectively.

5.4 Results

In this section we present the results for our numerical simulations
for n = 4 and n = 10 for the ranges of parameters given in Table 5.1.
In the first subsection we present our results for n = 4; the next sub-
section contains our results for n = 10.

5.4.1 The case n = 4

When we increase Ω beyond Ωs,n, the steady-state solution ωs,n be-
comes unstable. From the range of values of Ω in our runs R4− 2

(Table 5.1) we observe that a new steady state is attained, which we



5.4. Results 148

Figure 5.1: Pseudocolour plots, illustrating the vortex crystal for Ω < Ωs,n, of the
Okubo-Weiss field Λ for (a)n = 4, and (b) n = 10. Given our colour bar, vortical
regions, i.e., centres, appear red whereas strain-dominated regions, i.e., saddles,
appear dark blue.
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Figure 5.2: Pseudocolour plots, illustrating the vortex crystal for Ω < Ωs,n, of the
streamfunction field ψ for (a)n = 4, and (b) n = 10.
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illustrate, for Ω = 6.5, via pseudocolour plots of ψ and Λ in Figs. 5.3(a)
and (b), respectively. The new steady state is also a vortex crystal;
however, it is different from the original vortex crystal as can be seen
especially clearly by comparing the pseudocolour plots of ψ in Figs. 5.2
(a) and 5.3(a). This difference also shows up as a very slight distor-
tion of the crystalline structure in the pseudocolour plot Λ shown in
Fig. 5.3(b). To use the language of solid state physics, this is an exam-
ple of a very weak structural phase transition. Normally such a phase
transition is mirrored in new superlattice peaks that appear in the
reciprocal-space spectrum EΛ in addition to the dominant peaks as-
sociated with the original crystal structure; however, given the weak-
ness of the distortion, such superlattice peaks are not visible, given
our resolution in Fig. 5.3(c). Clear examples of such superlattice peaks
appear as we increase Ω as we show below.

At Ω = 8.202, a new regime appears (runs R4− 3). The time-series
of the energy E(t) now shows a periodic array of spikes. This regime
has no analogue in a conventional crystal; indeed it is a crystal that
oscillates periodically in time and, to that extent, it can be thought
of as a spatiotemporal crystal. The time between successive spikes is
very large (' 104δt) as shown by the plot of E(t) in Fig. 5.4(a); this is
why our DNS runs must be very long to distinguish this state from one
that is steady; we have also checked that the time between successive
spikes is the same (to three-figure accuracy) for N = 64 and N =

128. In Figs. 5.4(b) and (c) we show pseudocolour plots of ψ and Λ,
respectively; the former shows a large-scale undulation and the latter
some deformation relative to the original crystal. This deformation is
also mirrored in the distortion, relative to Fig. 5.3(c), of the dominant
peaks in the reciprocal-space spectrum EΛ(k) shown in Fig.5.4(d).

For runs R4− 4, i.e., 9.05 ≤ Ω < 15.3, we find a new crystalline
state that is steady in time. It has a large-scale spatial undulation
relative to the original vortex crystal as illustrated, for Ω = 11.3, by
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Figure 5.3: Pseudocolour plots for Ω = 6.5 of (a) the streamfunction ψ and (b) the
Okubo-Weiss parameter Λ with superimposed contour lines. (c) A filled contour
plot the reciprocal-space energy spectrum EΛ showing clear, dominant peaks at the
forcing wave vectors.
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Figure 5.4: The plots for Ω = 8.202 of (a) The time evolution of the energy E(t)

for Ω = 8.202. Pseudocolour plots of (b) the streamfunction ψ and (c) the Okubo-
Weiss parameter Λ with superimposed contour lines. (d) A filled contour plot the
reciprocal-space energy spectrum EΛ showing the distortions of peaks at the forcing
wave vectors.
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the pseudocolour plots of ψ and Λ in Figs. 5.5(a) and (b), respectively.
This undulation leads to a distortion of the dominant peaks in the the
reciprocal-space spectrum EΛ(k) of Figs. 5.5(c), which also shows new
superlattice peaks that occur at smaller values of (kx, ky) relative to
the dominant peaks.

On further increasing Ω we enter a new regime (runs R4− 5, i.e.,
15.3 ≤ Ω < 17.3) in which we have a spatiotemporal crystal, i.e., a
spatially periodic Λ that oscillate in time. The time-series E(t) dis-
plays a periodic array of spikes as shown in Fig. 5.6(a); this leads to
the frequency-space | E(f) | of Fig. 5.6(b). The peaks in this spec-
trum can be labelled as `f0, where ` is a positive integer and f0 is
the fundamental frequency that can be obtained from the inverse of
the temporal separation between successive spikes in Fig. 5.6(a); this
is a clear signature of periodic temporal evolution. The Poincaré-
type map in the (<[ûy(1, 1)],=[ûy(1, 1)]) plane, Fig. 5.6(c), shows that
there is a closed-loop attractor in this case. Pseudocolour plots
of ψ and Λ [ Figs. 5.7(a)-(b)] are similar, respectively, to those in
Figs. 5.5(a)-(b) if we look at their spatial patterns; however, they os-
cillate in time as can be seen most clearly from their animated ver-
sions [mpeg files files psi movie R5.mpeg-lam movie R5.mpeg in the
attached CDROM]. The associated reciprocal-space spectrum EΛ also
oscillates between the spectra shown in Figs. 5.7(c) and (d) as can be
clearly seen from its animated version [avi file lamf movie R5.avi in
the attached CDROM].

The time between successive spikes in E(t) decreases as Ω in-
creases. To quantify this, we define the inter-spike interval Ti as fol-
lows: Ti ≡ ti+1 − ti, where ti is the time at which E(t) crosses, for
the ith time, its mean value, 〈E(t)〉, from below; we can think of i as
the spike index. In Fig. 5.8(a) we plot Ti versus i; this shows that the
mean value of Ti decreases as Ω increases [Fig. 5.8(b)]; furthermore, Ti
oscillates slightly about its mean value for any given value of Ω. The
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Figure 5.5: Pseudocolour plots for Ω = 11.3 of (a) the streamfunction ψ and (b) the
Okubo-Weiss parameter Λ with superimposed contour lines. (c) A filled contour
plot the reciprocal-space energy spectrum EΛ showing clear, dominant peaks, at the
forcing wave vectors, and subdominant superlattice peaks at smaller wave vectors.
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Figure 5.6: Plots for Ω = 15.3 of (a) the time evolution of the energy E(t), (b) | E(f) |
versus the frequency f , and (c) the Poincaré-type section in the (<[ω̂(1, 0)],=[ω̂(1, 0)])

plane.
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Figure 5.7: Pseudocolour plots for Ω = 15.3 of (a) the streamfunction ψ and (b)
the Okubo-Weiss parameter Λ with superimposed contour lines. (c) and (d) Filled
contour plots of EΛ showing the two spectra between which it oscillates in time.
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magnitude of these oscillations, which we have used for the error bars
in Fig. 5.8(b), decreases as Ω increases. We have checked explicitly
that our results here do not change when we increase the resolution
of our pseudo-spectral study from N = 128 to N = 256.

At Ω = 17.8, i.e., run R4− 6, another transition occurs: The time
series of energy E(t) and its frequency spectrum | E(f) | are shown,
respectively, in Figs. 5.9(a) and (b). The latter displays peaks super-
imposed on a noisy background signal; these peaks can be indexed as
f0, f1, f1 − 2f0, f0 − 2f1, and 3f0 − 2f1, within our numerical accuracy
and with f0 = 0.001653 and f1 = 0.001707. Since f0/f1 is not a sim-
ple rational number, we conclude that Fig. 5.9(b) indicates principally
quasiperiodic temporal evolution with a small chaotic admixture, the
former associated with the peaks indexed above and the latter with
the noisy background signal. We believe the chaotic part of the signal
comes from transitions between the elliptical islands in the Poincaré-
type section of Fig. 5.9(c). The plot of the inter-spike interval Ti versus
the spike index i in Fig. 5.9(d) confirms the complicated temporal evo-
lution of this state.

As we increase Ω further (R4− 7) the temporal evolution of the sys-
tem becomes ever more chaotic; this is associated with a disordered
pattern of vortices in space too. Thus we obtain a state with spa-
tiotemporal chaos and turbulence, which is our analogue of the liq-
uid state. We illustrate this for Ω = 50. We begin with the time
series of E(t) and the spectrum | E(f) | in Figs. 5.10(a) and (b), re-
spectively; the latter clearly shows a broad background that is in-
dicative of temporal chaos. This is further confirmed by the nearly
uniform spread of points in the Poincaré-type section [Fig. 5.10(c)]
in the (<[ûy(1, 1)],=[ûy(1, 1)]) plane. The disordered spatial organi-
sation of this state is illustrated by the pseudocolour plots of ψ and
Λ [Figs. 5.11(a)-(b), respectively] and the reciprocal-space spectrum
EΛ(k of Fig. 5.11(c) that shows several new modes in addition to the
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Figure 5.8: Plots of (a) the inter-spike interval Ti versus the spike index i for Ω = 15.3

(blue curve), Ω = 15.8 (green curve), Ω = 16.3 (red curve), Ω = 16.8 (cyan curve), and
Ω = 17.3 (purple curve) and (b) the time mean value of Ti versus Ω (see text for error
bars).
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Figure 5.9: Plots for Ω = 17.8 of (a) the time evolution of the energy E(t), (b) the spec-
trum E(f) versus f , (c) the Poincaré-type section in the plane (<[v̂(1, 0)],=[v̂(1, 0)]),
and (d) the inter-spike interval Ti versus the spike index i.
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original peaks, which are still visible since Fω continues to act on the
system.

Thus we see that turbulence-induced melting of our nonequilibrium
vortex crystal is far richer than its equilibrium counterpart. For the
case n = 4 investigated above it proceeds as described by the com-
ments in Table 5.1. Before we present an analysis of the disordered
state in terms of the spatial autocorrelation function G(r) and the evo-
lution of the order parameters 〈Λ̂k〉 with Ω, we give below a short sum-
mary of our results for n = 10; the route to turbulence is different for
this case.

5.4.2 n=10

Our results for n = 10 are based on the runs R10− 1 to R10− 5 in
Table 5.1.

For Ω < Ωs,n the steady vortex crystal is shown by the pseudo-
colour plot of Λ in Fig. 5.1(b). As we increase Ω beyond Ωs,n we find
in runs R10− 2, (i.e., the range Ωs,n < Ω < 22.6) a new steady state
in which pseudocolour plots of ψ and Λ show large-scale spatial un-
dulations caused by small deformations of the original vortex crystal
[Figs. 5.12 (a) and (b), respectively]; consequently the dominant peaks
in the reciprocal-space spectrum EΛ are slightly distorted.

Around Ω = 24(R10− 3) another transition occurs: the time series
of E(t) is periodic [Fig. 5.13(a)] and its spectrum | E(f) | [Fig. 5.13(b)]
shows one dominant peak, i.e., higher harmonics are nearly ab-
sent. Thus the Poincaré-type plot in the (<[ûy1, 1],=[ûy1, 1]) plane
[Fig. 5.13(c)] displays a simple attractor. The spatial structure of this
state is illustrated by the the pseudocolour plots of ψ and Λ shown,
respectively, in Figs. 5.14(a) and (b); the associated reciprocal-space
spectrum EΛ is shown in Fig. 5.14(c). Given the temporal behaviour
of this state, these structures, in real or reciprocal space, oscillate in
time at the frequency given by the temporal evolution of E(t). For
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Figure 5.10: Plots for Ω = 50 of (a) the time evolution of the energy E(t), (b) the spec-
trum | E(f) | versus f , and (c) the Poincaré-type section in the (<[v̂(1, 0)],=[v̂(1, 0)])

plane.
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Figure 5.11: Pseudocolour plots for Ω = 50 of (a) the streamfunction ψ and (b) the
Okubo-Weiss parameter Λ with superimposed contour lines. (c) A filled contour plot
the reciprocal-space energy spectrum EΛ which shows that a large number of modes
are excited.
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Figure 5.12: Pseudocolour plots for Ω = 22.62 of (a) the streamfunction ψ and (b)
the Okubo-Weiss parameter Λ with superimposed contour lines. (c) A filled contour
plot the reciprocal-space energy spectrum EΛ showing clear, but slightly distorted,
dominant peaks at the forcing wave vectors.
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Ω = 24 the large spatial structures in ψ oscillate around their mean
positions; but, for 25 ≤ Ω ≤ 28, we find a travelling-wave type pattern,
which reenters our simulation by virtue of the periodic boundary con-
ditions that we use in our pseudo-spectral method. If we compare
the frequency spectra | E(f) | for the cases Ω = 24 and Ω = 28, we
find higher harmonics in the latter but they are all multiples of one
fundamental frequency.

In Fig. 5.15(a) we show plots of Ti versus i (cf. Fig. 5.8(a) for n = 4)
for various values of Ω. From these we obtain the plot of the mean
value 〈Ti〉 versus Ω shown in Fig. 5.15(b). This first decreases, as we
increase Ω, and then increases mildly at Ω = 28.

For Ω ≥ 29 the time-series of E(t) appears chaotic and the associ-
ated frequency spectrum | E(f) | displays a broad background, we as
show in the illustrative Figs. 5.16 (a) and (b) for Ω = 225. The associ-
ated Poincaré-type section in Fig. 5.16(c) confirms that the temporal
behaviour is chaotic. The spatial patterns are also disordered as we
show via the pseudocolour plots of ψ and Λ in Figs. 5.17(a) and (b),
respectively. The corresponding reciprocal-space spectrum EΛ shows
that a large number of modes are excited. Thus we have both spatial
disorder and temporal chaos; as in the case n = 4, the analogue of the
liquid state is a turbulent one with spatiotemporal chaos. However,
given the resolution in Ω that we have been able to obtain in our cal-
culations, the route to this state of spatiotemporal chaos is different
for n = 10 and n = 4 as can be seen from the comments in Table 5.1.

5.5 Order parameters and autocorrelation func-
tions

We now return to ideas borrowed from the density-functional the-
ory [1, 2, 3, 4] of freezing by examining the behaviour of the order
parameters 〈Λ̂k〉 as functions of Ω. Recall that, in equilibrium melt-
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Figure 5.13: The plots for Ω = 24 of (a) the time evolution of energy E(t) versus t,
(b) the power spectrum E(f) versus f , and (c) the Poincaré section =[v̂(1, 0)] versus
<[v̂(1, 0)].
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Figure 5.14: Pseudocolour plots for Ω = 24 of (a) the streamfunction ψ and (b) the
Okubo-Weiss parameter Λ with superimposed contour lines. (c) A filled contour
plot the reciprocal-space energy spectrum EΛ showing clear, dominant peaks at the
forcing wave vectors.
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Figure 5.15: Plots of (a) the inter-spike interval Ti versus the spike index i for Ω = 24

(blue curve), Ω = 25 (purple curve), Ω = 26 (green curve), Ω = 27 (red curve), and
Ω = 28 (cyan curve) and (b) the time mean value of Ti versus Ω (see text for error
bars).
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Figure 5.16: Plots for Ω = 225 of (a) the time evolution of E(t) , (b) the spectrum
| E(f) | versus f , and (c) the Poincaré-type section in the (<[v̂(1, 0)],=[v̂(1, 0)]) plane.
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Figure 5.17: Pseudocolour plots for Ω = 225 of (a) the streamfunction ψ and (b) the
Okubo-Weiss parameter Λ with superimposed contour lines. (c) A filled contour plot
the reciprocal-space energy spectrum EΛ showing that a large number of modes are
excited.



5.6. Conclusions 170

ing, ρG jumps discontinuously from a nonzero value in the crystal to
zero in the liquid at the first-order melting transition. As we have
noted above, the turbulence-induced melting of our vortex crystal is
far more complicated; it proceeds via a sequence of transitions. Thus
〈Λ̂k〉 changes with Ω as shown, respectively, for (a) n = 4 and k = (4, 4)

and (b) n = 10 and k = (10, 10) in Figs. 5.18 (a) and (b); if we sum 〈Λ̂k〉
over the four forcing wave vectors, we obtain a real number that is
<〈Λ̂k〉; we show this in our figures.

The short-range order in the disordered, turbulent phase can be
characterised by the auto-correlation function G(r). Representative
plots are shown, respectively, for n = 4 and n = 10 in Figs. 5.19 (a)-(d).
For the crystalline case we evaluate G(r) along the line connecting
r = (π/2, π/2) and r = (π/2, π); this shows a periodic array of peaks
[Figs. 5.19 (a) and (b) for n = 4 and n = 10, respectively]; the widths of
these peaks are related to the widths of vortical or strain-dominated
regions. In the turbulent phase we present data obtained by a circular
average of G [Figs. 5.19 (c) and (d) for n = 4 and n = 10, respectively];
here the peaks decay over a length scale that indicates the degree of
short-range order. This is similar to the behaviour of spatial correla-
tion functions in a disordered liquid.

5.6 Conclusions

We have carried out a detailed numerical study of turbulence-induced
melting of a nonequilibrium vortex crystal in a forced, thin fluid film.
We use ideas from the density-functional theory of freezing [1, 2, 3, 4],
nonlinear dynamics, and turbulence to characterise this. Ideas from
liquid-state theory have been used by some recent experiments to
analyse the short-range order in the turbulent phase; nonlinear-
dynamics methods, such as Poincaré-type maps, have been used in
the numerical studies of Ref. [10]; experimental studies have used
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Figure 5.18: Plot showing a decrease in 〈Λ̂k〉 with increasing Ω for (a) n = 4 and
k = (4, 4) and (b) n = 10 and k = (10, 10).
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Figure 5.19: Plots of G(r) in (i) crystalline state: (a) n = 4,Ω < Ωs,n and (b) n =

10,Ω < Ωs,n and (ii) melt state: (c) n = 4, Ω = 20.81 and (d) n = 10,Ω = 225.
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the curvature of Lagrangian trajectories to identify extrema in vor-
tical and strain-dominated regimes. To the best of our knowledge,
there is no study that brings together the methods we do to analyse
turbulence-induced melting.

The advantages of our approach are as follows: (a) it helps us
to identify the order parameters for turbulence-induced melting and
thus contrast it with conventional melting; (b) the sequence of transi-
tions can be characterised completely in terms of the Eulerian fields
ψ and Λ and the total energy E(t) and suitable Fourier transforms of
these; (c) the short-range order in the turbulent phase can be studied
conveniently in terms of G.

Equilibrium phase transitions occur strictly only in the thermody-
namic limit that is, roughly speaking, the limit of infinite size. It is
interesting to ask how we might take the thermodynamic limit for vor-
tex crystals we have studied here. There seem to be at least two ways
to do this: (a) in the first the system size should be taken to infinite in
such a way that the areal density of the vortical and strain-dominated
regimes remains the same in the ordered, crystalline phase; (b) we
can increase the parameter n in the forcing Fω so that more and more
unit cells occur in the simulation domain (cf., e.g., Figs. 5.1(a) and (b)
for n = 4 and n = 10, respectively). Such issues have not been ad-
dressed in detail by any study, partly because, for large system sizes,
it is not possible to obtain the long time series that are required to
characterise the temporal evolution of the system (especially in the
states we have referred to as spatiotemporal crystals). In particular,
it is quite challenging to investigate the system-size dependence of the
transitions summarised for n = 4 and n = 10 in Table 5.1.

As we have shown above, the array of transitions that comprise
turbulence-induced melting of a vortex crystal is far richer than con-
ventional equilibrium melting. There is another important way in
which the former differs from the latter: To maintain the steady
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states, statistical or otherwise, of our system, we always have a force
Fω; thus, in the language of phase transitions, we always have a
symmetry breaking field, both in the ordered and disordered phases.
Strictly speaking, therefore, there is no symmetry difference between
the ”disordered” turbulent state and the vortex crystal, as can be seen
directly from the remnants of the dominant peaks in the reciprocal-
space spectra EΛ(k) in Figs. 5.11 and 5.17(c) for n = 4 and n = 10,
respectively. One consequence of this is that the order parameters
〈Λ̂k〉, with k equal to the forcing wave vectors, do not vanish iden-
tically in the disordered, turbulent phase; however, they do assume
very small values. Moreover, in the case of turbulence-induced melt-
ing the crystal undergoes a transition from an ordered state to an
undulating crystal to a fully turbulent state. Thus there is noise and
hence no fluctuations in the crystalline state; i.e., it is equivalent to a
crystal at zero temperature. This has no analogue in the equilibrium
melting of a crystal.

In equilibrium, different ensembles are equivalent; we can, e.g.,
use either the canonical or grand-canonical ensemble to study the
statistical mechanics of a system and, in particular, the phase tran-
sitions in it. However, this equivalence cannot be taken for granted
when we consider nonequilibrium statistical steady states (see, e.g.,
Ref. [21]). We have seen an example of this in Chapter 4 and in
Ref. [14] where certain PDFs show slightly different behaviours de-
pending on whether we keep the Grashof number fixed or whether
we keep the Reynolds number fixed. Turbulence-induced melting of-
fers another example of the inequivalence of dynamical ensembles:
the precise sequence of transitions that we encounter in going from
the vortex crystal to the turbulent state depends on whether we do
so by changing the Grashof number (i.e., the amplitude of the force)
as in Ref. [10] or whether we do so by changing Ω as we have done
here. We have checked explicitly that we can reproduce the sequence
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of transitions in Ref. [10] if we tune the Grashof number rather than
Ω.

Investigations of similar transitions, such as in the route Kol-
mogorov flow [17] can also benefit by using the combination of meth-
ods we have used above. Detailed studies of the effects of confinement
air-drag induced Ekman friction on turbulence-induced melting, initi-
ated, e.g., in Refs. [11, 22], can also benefit from the use of our meth-
ods but that lies beyond the scope of this Chapter. We hope, too, that
our study will encourage experimental groups to analyse turbulence-
induced melting by using the set of techniques and ideas that we have
described above.



Appendix D

D.1 Numerical scheme

In this section we describe the numerical scheme that is used for
the time evolution of Eq. (5.5). We use periodic boundary conditions
and therefore use a pseudo-spectral method. We start with an initial
Fourier space ω̂ field and evaluate the stream function, and thus the
two-component velocity field, from it :

ψ̂ = − 1

k2 ω̂; (D1)

ûx = ıkyψ̂; (D2)
ûy = −ıkxψ̂. (D3)

(D4)

Fast Fourier Transform routines are used to go back and forth be-
tween real and Fourier space. If we define the nonlinear term

N̂ = ı(kxûxω + kyûyω) (D5)

the evolution equation becomes:

∂tω̂ = N̂ − νk2ω̂. (D6)
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This equation is then solved numerically by using the second-order
Runge–Kutta scheme:

ω̂1 = e−νk
2δt/2

{
ω̂n +

δt

2
N̂ [ω̂n]

}
; (D7)

ω̂n+1 = e−νk
2δtω̂n + δte−νk

2δt/2N̂ [ω̂1]. (D8)
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Chapter 6

Lifetime of topological structures
in two-dimensional turbulence

For a nonequilibrium fluctuating field persistence is the probability
P0(τ) that the sign of the field at a point in space does not change
upto time τ [1]. This probability can be determined analytically for
a number of models, e.g., the simple diffusion equation with Gaus-
sian random initial conditions [1, 2]. Such questions have also been
studied for several other models including reaction-diffusion systems,
fluctuating interfaces, granular media, and population dynamics. In
all these cases the persistence probability shows a power-law decay
for large τ , i.e., Pθ(τ) ∼ τ θ, where θ is negative; it is often called the
persistence exponent [3, 4].

Any turbulent flow in two dimensions displays vortical regions and
strain-dominated or extensional regions (see Chapters 4 and 5). In
this Chapter we examine the persistence of such regions in time. We
show, in particular, that the Okubo-Weiss parameter Λ (whose sign
determines whether a region is vortical or extensional), which we had
introduced in Chapter 4, provides us with a natural way of studying
such persistence. We distinguish two types of persistence: (A) In the
Eulerian framework we consider a point (x, y) and determine how long
the flow at this point remains vortical (extensional) if the flow at this
point became vortical (extensional) at some earlier time; (B) in the
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Lagrangian framework we consider how long a Lagrangian particle
resides in a vortical (extensional) region if this particle entered that
vortical (extensional) region at an earlier time. Our study shows that,
in the Eulerian framework, the persistence PDFs show an exponen-
tial tail. In the Lagrangian framework the persistence PDF for the
residence time of the particle in vortical regions shows a power-law
whereas the persistence PDF for the residence time of the particle in
straining regions shows an exponential tail. Our study of the autocor-
relation functions of Λ and ∇u shows that the correlation time in the
Lagrangian frame is shorter than in the Eulerian frame.

The rest of the Chapter is organised as follows: Section 6.1 contains
an Introduction; Section 6.2 describes the equations and the model;
results and conclusions are presented in Section 6.3 and Section 6.4,
respectively.

6.1 Introduction

Topological structures in a two-dimensional flow field are classified
by the eigenvalues of the velocity-gradient tensor A [5]. If, at a point
in space, the eigenvalues of A are complex (real), then in the plane
formed by the eigenvectors of A the flow is a center (a saddle) and
the topological structure is vortical (extensional). Whether the eigen-
values of A are real or complex can be determined by Λ ≡ det(A).
If the eigenvalues of A are complex then Λ > 0 and the flow is vor-
tical, whereas if the eigenvalues are real, then Λ < 0 and the flow
is extensional [see Fig. 4.6(a), Chap. 4]. Furthermore, the PDF of
Λ for two-dimensional turbulent flows is asymmetrical about Λ = 0,
i.e., vortical regions are more likely to occur than strain-dominated
regions (see Fig. 4.9, Chap. 4).

We investigate the temporal evolution of Λ in both Eulerian and
Lagrangian frames: (i) To collect data for Eulerian statistics, we mon-
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itor the evolution of Λ at Np (randomly chosen) points that are fixed in
the simulation domain 1; (ii) to collect data for Lagrangian statistics,
we seed the flow withNp (see Table 6.1) neutrally buoyant Lagrangian
particles and monitor the evolution of Λ along their trajectories. A typ-
ical Lagrangian particle track superimposed on a representative pseu-
docolour plot of the streamfunction is shown in Fig. 6.1. In Fig. 6.2 we
plot a typical time-series of Λ at an Eulerian point and along a La-
grangian trajectory.

We now outline the method we have used to determine different
persistence PDFs in two-dimensional (2D) turbulence. We first con-
sider persistence in the Eulerian framework by monitoring the sign of
Λ at a given point (x, y). We find the probability P+

E (τ) [resp., P−E (τ)]
that Λ remains positive (resp., negative) upto a time τ if it had entered
a region with Λ > 0 (resp., Λ < 0) at an earlier time. We show that the
PDFs P+

E (τ) and P−E (τ) show exponential tails (see Figs. 6.3,6.4,6.5,
and 6.6).

Next we consider persistence in the Lagrangian framework by mon-
itoring the sign of Λ along a Lagrangian particle trajectory. We find
the probability P+

L (τ) (resp., P−L (τ)) that Λ remains positive (resp.,
negative) upto a time τ if it had entered a region with Λ > 0 (resp.,
Λ < 0) at an earlier time. We show that the PDF P+

L (τ) of the persis-
tence times of Lagrangian particles in vortical regions shows a power-
law tail with an exponent θ = −3.1 ± 0.1 (see Fig. 6.10). By contrast,
the PDF of the persistence time of a Lagrangian particle in strain-
dominated regions shows an exponential decay. Furthermore, we find
that, on rescaling the PDF P−L (τ) with τrms plots for different runs
collapse onto each other (within our errorbars).

In an earlier experiment [6] the waiting time of a particle in a vor-
tex trap in a two-dimensional soap-film found a persistence PDF of
the form τ−5/3. The numerical simulations of Ref. [7] have studied the

1Although we have the full Eulerian field at every time-step storing it is computationally very
expensive.
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Figure 6.1: Representative pseudocolour plot of the streamfunction field and a rep-
resentative particle track from our run R2. The symbol o indicates the beginning of
the trajectory and the × sign marks its end.
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Figure 6.2: Plot of the typical time-series of Λ at an Eulerian point and along a
Lagrangian particle for our run R2.
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waiting time of particles in a region of a vortex trap in laminar and
chaotic Kolmogorov flows. This study predicted a τ−2.48 behaviour for
the persistence exponent in the turbulent regime. Both these studies
require an adhoc measure to estimate the size of a trap. In another
set of numerical studies [8, 9] the persistent streamline topology was
studied in two-dimensional turbulence in the inverse-cascade regime.
This study predicted a t3 law for particle pair-dispersion.

As we have mentioned above we show that, because the Okubo-
Weiss parameter Λ presents a natural way to determine whether a
particle is in a vortical or strain dominated, region it allows us to
study persistence times in both Lagrangian and Eulerian framework.
We also study the autocorrelation of Λ, and the velocity derivatives
∂xux, ∂xuy, and ∂yux in both Eulerian and Lagrangian frameworks.
Our study reveals that the characteristic time scale of the Lagrangian
autocorrelation function is shorter than the Eulerian one and that
both of them are comparable to the Kolmogorov time scale. Our study
has been designed with soap-film experiments in mind [10, 11] (see
also Chapter-4), so we also take into account the air-drag induced Ek-
man friction α and drive the fluid by using a Kolmogorov forcing.

6.2 Equations

We perform direct numerical simulations (DNS) of the incompressible
Navier-Stokes equation

∂tω − J(ψ, ω) = ν∇2ω + fω − αω (6.1)

with periodic boundary conditions in two dimensions by using a pseu-
dospectral method (see Appendix D.1 in Chapter 5). Here ψ is the
streamfunction, ω the vorticity, J(ψ, ω) ≡ (∂xψ)(∂yω) − (∂xω)(∂yψ) is
the Jacobean operator and ν is the kinematic viscosity and α the co-
efficient of Ekman friction. The two spatial coordinates are x and y.
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The velocity u is uniquely determined by the stream-function ψ as
u ≡ (−∂yψ, ∂xψ) and ω = ∇2ψ. fω is an external forcing which acts on
intermediate Fourier modes with | k |= kinj. We implement determin-
istic forcing with fω = −F0kinj cos(kinjx). The injected energy displays
an inverse cascade to small k. Ekman friction removes energy from
all Fourier modes; in particular, it removes energy from small Fourier
modes in such a way that the system reaches a nonequilibrium statis-
tical steady state.

To calculate the Lagrangian quantities we track Np particles. The
evolution equation for the Lagrangian particles is:

dxL(t)

dt
= u(xL, t). (6.2)

Here xL(t) denotes the position of the Lagrangian particle at time
t; u(xL, t), the velocity at the Lagrangian particle position, is eval-
uated from the Eulerian velocity field u(x, t) by using a bilinear-
interpolation scheme [12]. The time evolution of the particles is done
along with Eq. (6.1) by using a second-order Runge-Kutta method [12].
Initially all the particles are seeded randomly in the flow. To calculate
Λ at the Lagrangian particle position we use the method described in
Appendix E.1. A list of parameters used in our simulations, including
the values of kinj, F0 and α, is given in Table (6.1).

In all our simulations we wait for a time Ttran [Table (6.2)] to allow
transients to die out and to allow our system to reach a statistically
steady state.

6.3 Results

We now present the results that we have obtained from our DNS. We
monitor the time-series of Λ in both the Eulerian and Lagrangian
framework and calculate the respective persistence PDFs. We also
study the autocorrelation functions of Λ and A.
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Run N Np ν α F0 kinj ld λ Reλ

R1 512 1000 0.016 0.1 45 10 0.023 0.17 59.2

R2 512 1000 0.016 0.45 45 10 0.021 0.11 26.8

R3 1024 1000 10−5 0.01 0.005 10 0.0043 0.125 827.3

R4 1024 1000 10−5 0.01 0.005 4 0.0054 0.198 1318.8

Table 6.1: Parameters for our runs R1-4: N is the number of grid points along
each direction, Np the number of Lagrangian particles and Eulerian positions (at
which we monitor Λ), ν the viscosity, α the Ekman friction, F0 the forcing amplitude,
kinj the forcing wavenumber, ld ≡ (ν3/ε)1/4 the dissipation scale, Tη ≡

√
ν/ε the

Kolmogorov time scale, λ ≡
√
νE/ε the Taylor microscale, Reλ ≡ urmsλ/ν the Taylor

microscale Reynolds number.

Run Teddy Tη T−E T−L T+
E T+

mean Tinj τrms

R1 0.12 0.034 0.6 0.12 0.34 0.028 0.27 0.042

R2 0.11 0.027 0.4 0.15 0.28 0.042 0.22 0.071

R3 10.8 1.89 20.0 9.9 14.28 1.81 20 3.74

R4 7.34 2.97 33.3 12.5 25.0 2.52 30.2 5.63

Table 6.2: Time scales for our runs R1-4: Teddy ≡ [π
∑

k(E(k)/k)/(2u2
rms)], the eddy

turn-over time and Tη ≡
√
ν/ε the Kolmogorov time scale. The tail of the PDF of the

persistence time in the Eulerian framework in strain-dominated regions behaves as
P−E (τ) = exp(−t/T−E ), and its Lagrangian analogue as P−L (τ) = exp(−t/T−L ). The tail
of the PDF of the persistence time in the Eulerian framework in regions of vorticity
behaves as P+

E (τ) = exp(−t/T+
E ). The decay rates T−E , T−L , and T+

E for different runs
are as shown in the table above. T+

mean is the average time spent by a Lagrangian
particle in a vortical region, Tinj ≡ (l2inj/Einj)

2/3 is the energy-injection time scale,
where Einj =< f · u > is the energy injection rate and linj = 2π/kinj is the energy-
injection length scale, and τrms is the root-mean-square value of τ . We do not use
data for the first Ttran = 100Teddy times to remove transients. We use a square sim-
ulation domain with side L = 2π, grid spacing δx = L/N , area A, and boundary
∂A.
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6.3.1 Persistence times

In this Subsection we study the persistence PDFs in both Eulerian
and Lagrangian frameworks. The persistence PDFs P+

E and P−E in the
Eulerian framework for our runs R1− 4, along with the corresponding
fits, are shown in Figs. 6.3, 6.4, 6.5, and 6.6. The PDFs P+

E and P−E
show exponentially decaying tails for all the runs. Therefore, we can
define the characteristic time scales T+

E and T−E for vortical and strain
dominated regions, respectively, from these PDFs. The time-scales T+

E

and T−E for our different runs are given in Table (6.2). The plots for
the persistence PDF of a Lagrangian particle in a region of strain for
our runs R1− 4 along with the fits are shown in Fig. 6.7.

The persistence PDF of a Lagrangian particle in a vortical region
P+

L is very different from those discussed above and so it warrants a
separate discussion. To highlight the difference between P+

L and the
other PDFs, in Figs. 6.8(a)-(b) we present the log-log plots of the PDFs
P+

L , P−L , P+
E , and P−E for our runs R2 and R4. We find that P+

L shows a
power-law tail in contrast to the exponential tails of the PDFs for the
other three cases.

Since P+
L shows the power-law behavior P+

L ∼ τ θ, in what follows we
study this exponent for our different runs R1− 4. In Fig. 6.9(a) we plot
the PDF P+

L for our runs R1− R4. On scaling τ with τrms we find that
the PDFs for all the runs collapse [Fig. 6.9(b)], demonstrating that the
scaling exponent θ does not depend on the parameters α, F0, and kinj.
Since the exponent θ < −1, a mean value of this distribution is well
defined. Therefore an average lifetime of a particle in a vortex can
be calculated from the PDF P+

L . This average lifetime T+
mean, given in

Table (6.2) for different runs, is nearly equal to the Kolmogorov time
scale Tη.

We follow the convention in nonequilibrium statistical mechan-
ics [4] and call θ the persistence exponent. Let us first describe our
method of getting the best estimate for θ. In general, the calcula-
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Figure 6.3: Semilog plots of the persistence PDFs: (a) P+
E versus τ and (b) P−E versus

τ for our run R1. The red lines indicate fits to the data.
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Figure 6.4: Semilog plots of the persistence PDFs: (a) P+
E versus τ and (b) P−E versus

τ for our run R2. The red lines indicate fits to the data.
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Figure 6.5: Semilog plots of the persistence PDFs: (a) P+
E versus τ and (b) P−E versus

τ for our run R3. The red lines indicate fits to the data.
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Figure 6.6: Semilog plots of the persistence PDFs: (a) P+
E versus τ and (b) P−E versus

τ for our run R4. The red lines indicate fits to the data.
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Figure 6.7: Semilog plots of the persistence PDFs for a Lagrangian particle in a
region of strain for our runs: R1 (top left); R2 (top right); R3 (bottom left); R4 (bottom
right). The red lines indicate fits to the data.
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Figure 6.8: Log-log plots of the PDFs P+
L (red dots), P−L (green line), P+

E (black line),
and P−E (blue line). The probability distribution function(PDF) for our runs (a) R2
and (b) R4.
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Figure 6.9: Log-log plots of (a) the PDF P+
L (τ) versus τ and (b) the normalized PDF

P+
L (τ/τrms) versus τ/τrms for our runs R1− R4; the symbols used for different runs

are × (R1), � (R2), N (R3), and + (R4). The values of τrms for different runs is given in
Table 6.2.
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tion of PDFs from numerical data is plagued by errors originating
from the binning of the data to make histograms. Thus exponents
such as θ cannot be obtained reliably from such PDFs. A reliable es-
timate of such an exponent can be obtained by using the rank-order
method [13] to calculate the corresponding cumulative probability dis-
tribution function. A plot of the cumulative probability distribution
function of the persistence time of the Lagrangian particle in a vorti-
cal region is shown, for our run R4, in Fig. 6.10. The scaling exponent
θ + 1 is obtained by fitting a power-law to the tail of the cumulative
PDF. To find the best estimate for θ + 1 we evaluate the local slope
χ = d log10 PC(τ)/d log10(τ) in the region shown in the inset of Fig. 6.10.
Our estimate for θ + 1 is the average value of χ over the region indi-
cated in the inset; and the standard deviation yields the error. Finally
we obtain θ = −3.0± 0.1.

6.3.2 Auto-correlation of Λ

We now study how Λ is correlated over a Lagrangian particle track
and at a given Eulerian point. For this we have calculated the auto-
correlation function of Λ

CΛ(t) = 〈Λ(0)Λ(t)〉, (6.3)

in both the Eulerian and the Lagrangian frameworks from our sim-
ulations. Here 〈·〉 denotes averaging over the origin of time and also
over Np different Lagrangian particles or over Np different Eulerian
positions. In Figure 6.11 we plot CΛ(t/Tη) versus t/Tη for our run R1.
The plots from other runs are similar and are not shown here. We
find that the characteristic time of decay in the Lagrangian frame-
work is shorter than in the Eulerian framework; but they are both of
the same order as the Kolmogorov time scale Tη. This provides quanti-
tative support to the qualitative notion [14, 15] that the characteristic
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Figure 6.10: Log-log plot of the cumulative PDF PC(τ) versus τ for our run R4. The
dashed red line is drawn for reference and has a slope equal to −2; the dashed green
vertical line indicates the Kolmogorov time scale; and the dashed black vertical
line indicates the energy injection time scale. The inset shows the local slope χ =

d log10 PC(τ)/d log10(τ) versus τ . The red line at χ = −2 is drawn for reference.
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Figure 6.11: Plots of CΛ(t/Tη) versus t/Tη for our run R1. The red curve is for the
Lagrangian autocorrelation and the black curve is for the Eulerian autocorrelation
(see text).
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lifetime of topological structures (e.g., vortices) is of the same order as
the Kolmogorov time.

Different models have been proposed to study the dynamics of the
velocity gradient tensor [14, 15] in three dimensions. In Ref. [15], the
dynamics of the velocity gradient tensor is modelled along Lagrangian
trajectories. One of the central assumptions of these models is that
the velocity gradient tensor is correlated upto time Tη. Thus we now
study the autocorrelation of the components of the velocity gradient
tensor, namely,

Cij(t) = 〈∂iuj(0)∂iuj(t)〉, (6.4)

where the subscripts ij indicate different components of the velocity
gradient tensor. In Figs. 6.12(a), 6.12(b), and Fig. 6.12 (c) we plot the
autocorrelations of Cxx, Cxy, and Cyx.

We find that, for t < Tη, Cij remains close to unity whereas, for
t > Tη, Cij decays sharply like the correlation function of Λ. To the best
of our knowledge this is the first time this result has been shown in a
direct numerical simulation. This result can also be used as a bench-
mark for models in two-dimensions which study the time-evolution of
the velocity gradient tensor but do not make a priori assumptions on
the correlation time of the velocity gradient tensor.

6.4 Conclusions

To summarise, we have numerically calculated persistence times and
autocorrelation functions for the parameter Λ in Eulerian and La-
grangian frameworks. We observe qualitatively different behaviours
for the probability distribution functions for persistence times in dif-
ferent frames. In the Eulerian case, the PDF for residence time in vor-
tical regions shows exponential decay whereas in the Lagrangian case
it shows power law tail. Qualitatively such a nontrivial behaviour
appears because of the possibility of a passive tracer particle being



6.4. Conclusions 200

Figure 6.12: Log-lin plot of the autocorrelation functions (a) Cxx(t/Tη), (b) Cxy(t/Tη),
and (c) Cyx(t/Tη) versus t/Tη for our run R1. In all the three figures, the red curve
is for the Lagrangian autocorrelation and the black curve is for the corresponding
Eulerian autocorrelation.
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trapped temporarily in a vortical region. Earlier studies [16] have
found that passive tracer particles seldom, if at all, escape a strong
vortical region, i.e., the lifetime of a particle in a vortical region is the
same as the lifetime of a vortical region itself. This is not the case in
our simulations as the lifetime of a vortical region, i.e., residence time
in the Eulerian frame, is different from the lifetime of passive tracers
in vortical region.



Appendix E

E.1 Λ at particle position

In this appendix we describe the method that is used to evaluate Λ ≡
det(A) at the Lagrangian particle position.

Consider the situation in which the tracer particle is at an off-grid
position (x, y) as shown in Fig. E1. The neighbouring grid points of
the particle are (xi, yj), (xi+1, yj), (xi, yj+1), and (xi+1, yj+1).

Figure E1: Sketch showing a particle (red dot) at an off-grid position (x, y). The
neighbouring grid points are at (xi, yj), (xi+1, yj), and (xi+1, yj+1).
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To evaluate Λ at (x, y) we first find out all the components of the
velocity gradient tensor A at the neighbouring grid positions of the
particle from the velocity field u using a second-order, centered, finite-
difference (see Appendix E.2). Once A is determined at the off-grid
positions, we interpolate it to the particle position (x, y) using a bilin-
ear interpolation

A(x, y) = A(xi, yj)
(xi+1 − x)(yj+1 − y)

(xi+1 − xi)(yj+1 − yj)
+

A(xi+1, yj)
(x− xi)(yi+1 − y)

(xi+1 − xi)(yj+1 − yj)
+

A(xi, yj+1)
(xi+1 − x)(y − yj)

(xi+1 − xi)(yj+1 − yj)
+

A(xi+1, yj+1)
(x− xi)(y − yj)

(xi+1 − xi)(yj+1 − yj)
. (E1)

Determinant of this interpolated A gives us Λ at the off-grid position.

E.2 Second order finite-difference scheme

In this appendix we describe the finite-difference scheme we use for
first-derivatives.

The centered second-order explicit finite-difference approximation
of the derivative of a function f ∈ R1 is:

f ′ = (−fi−1 + fi+1)/(2∆x).
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