Magnetic Equivalence¶
In [2]:
Copied!
from numpy import pi
import numpy as np
import matplotlib.pyplot as plt
from tins import spinsys, mesolve
from numpy import pi
import numpy as np
import matplotlib.pyplot as plt
from tins import spinsys, mesolve
Spin System with 4 spins¶
In [3]:
Copied!
I1, I2, I3, I4 = spinsys(0.5, 0.5, 0.5, 0.5)
def J(I1, I2):
"""
Construct Full Scalar coupling hamiltonian
"""
return I1.z @ I2.z + I1.x @ I2.x + I1.y @ I2.y
I1, I2, I3, I4 = spinsys(0.5, 0.5, 0.5, 0.5)
def J(I1, I2):
"""
Construct Full Scalar coupling hamiltonian
"""
return I1.z @ I2.z + I1.x @ I2.x + I1.y @ I2.y
Case I: Magnetic Equivalence¶
In [4]:
Copied!
Ω = 2 * pi * 100
J13, J23 = 2 * pi * 10, 2 * pi * 10
J14, J24 = 2 * pi * 5, 2 * pi * 5
J12 = 2 * pi * 10
meq = (
+ Ω * (I1.z + I2.z)
+ J12 * J(I1, I2)
+ J13 * J(I1, I3)
+ J14 * J(I1, I4)
+ J23 * J(I2, I3)
+ J24 * J(I2, I4)
)
start = I1.x + I2.x
detect = I1.p + I2.p
time = np.linspace(0, 5, 2000)
fid = mesolve(start=start, detect=detect, ham=meq, time=time)
Ω = 2 * pi * 100
J13, J23 = 2 * pi * 10, 2 * pi * 10
J14, J24 = 2 * pi * 5, 2 * pi * 5
J12 = 2 * pi * 10
meq = (
+ Ω * (I1.z + I2.z)
+ J12 * J(I1, I2)
+ J13 * J(I1, I3)
+ J14 * J(I1, I4)
+ J23 * J(I2, I3)
+ J24 * J(I2, I4)
)
start = I1.x + I2.x
detect = I1.p + I2.p
time = np.linspace(0, 5, 2000)
fid = mesolve(start=start, detect=detect, ham=meq, time=time)
In [7]:
Copied!
fid = fid * np.exp(-3 * time)
ft = np.fft.fftshift(np.fft.fft(fid))
fig, ax = plt.subplots(figsize=(7, 3))
ax.set_xlim(1250, 1750)
ax.plot(ft.real)
plt.show()
fid = fid * np.exp(-3 * time)
ft = np.fft.fftshift(np.fft.fft(fid))
fig, ax = plt.subplots(figsize=(7, 3))
ax.set_xlim(1250, 1750)
ax.plot(ft.real)
plt.show()
Magnetic Inequivalence¶
In [10]:
Copied!
Ω = 2 * pi * 100
J13, J23 = 2 * pi * 10, 2 * pi * 5
J14, J24 = 2 * pi * 5, 2 * pi * 10
J12 = 2 * pi * 10
# continue
Ω = 2 * pi * 100
J13, J23 = 2 * pi * 10, 2 * pi * 5
J14, J24 = 2 * pi * 5, 2 * pi * 10
J12 = 2 * pi * 10
# continue
In [ ]:
Copied!