Pulses¶
If you do not go into the rotating frame, you will need to consider a time dependent B1 field whenever you apply a pulse.
- Solve the evolution equation considering a circularly polarized and a linearly polarized B1 field.
- Show the Bloch-Siegert Shift numerically.
- How does this calculation change if you go to the rotating frame?
In [2]:
Copied!
from tins import spinsys
import numpy as np
from scipy.linalg import expm
np.set_printoptions(precision=2, suppress=True)
from tins import spinsys
import numpy as np
from scipy.linalg import expm
np.set_printoptions(precision=2, suppress=True)
In [3]:
Copied!
I = spinsys(0.5)
start = I.z
detect = I.p
I = spinsys(0.5)
start = I.z
detect = I.p
In [4]:
Copied!
def rf_circularly_polarized(amplitude, nu, t):
return amplitude * (
I.x * np.cos(2 * np.pi * nu * t) + I.y * np.sin(2 * np.pi * nu * t)
)
def rf_linearly_polarized(amplitude, nu, t):
return amplitude * (
I.x * np.cos(2 * np.pi * nu * t) + I.y * np.sin(2 * np.pi * nu * t)
) # +... continue
def rf_circularly_polarized(amplitude, nu, t):
return amplitude * (
I.x * np.cos(2 * np.pi * nu * t) + I.y * np.sin(2 * np.pi * nu * t)
)
def rf_linearly_polarized(amplitude, nu, t):
return amplitude * (
I.x * np.cos(2 * np.pi * nu * t) + I.y * np.sin(2 * np.pi * nu * t)
) # +... continue
In [5]:
Copied!
# continue with the calculation for the solution to the time dependent equation
# continue with the calculation for the solution to the time dependent equation
In [ ]:
Copied!