REDOR¶
The effective hamiltonian (static) for a single crystal in a REDOR experiment under MAS is as follows:
$H_{REDOR} = \frac{\sqrt(2)}{\pi}b_{IS}\cos(\gamma) \sin(2\beta) 2 I_z S_z$
For $b_{IS} = 5000~Hz$, calculate the evolution of an Ix magnetization under the influence of this hamiltonian in a powder sample
In [1]:
Copied!
import numpy as np
import numpy as np
In [2]:
Copied!
def redor_single_crystal(alpha, beta, gamma, b, time):
frequency = np.sqrt(2) / np.pi * np.cos(gamma) * np.sin(2 * beta) # rectify this
oscillation = np.cos(frequency * time)
return oscillation
def redor_single_crystal(alpha, beta, gamma, b, time):
frequency = np.sqrt(2) / np.pi * np.cos(gamma) * np.sin(2 * beta) # rectify this
oscillation = np.cos(frequency * time)
return oscillation
In [3]:
Copied!
# continue here
# continue here
In [ ]:
Copied!