INEPT¶
In [2]:
Copied!
from tins import spinsys, mesolve, mesolve_single
import numpy as np
import matplotlib.pyplot as plt
np.set_printoptions(precision=2, suppress=True)
from tins import spinsys, mesolve, mesolve_single
import numpy as np
import matplotlib.pyplot as plt
np.set_printoptions(precision=2, suppress=True)
In [3]:
Copied!
I, S = spinsys(0.5, 0.5)
I, S = spinsys(0.5, 0.5)
In [4]:
Copied!
start = I.x
detect = S.p
jcoupling = 100
rf = 10e3
jham = 2 * np.pi * jcoupling * (I.z @ S.z)
rfham = (2 * np.pi * rf * I.x) + (2 * np.pi * rf * S.y)
acq_ham = 0 * S.z
acq = np.linspace(0, 1, 1000)
out_1 = mesolve_single(start=start, detect=None, ham=jham, time=5e-3)
out_2 = mesolve_single(start=out_1, detect=None, ham=rfham, time=25e-6)
fid = mesolve(start=out_2, detect=S.p, ham=jham, time=acq)
start = I.x
detect = S.p
jcoupling = 100
rf = 10e3
jham = 2 * np.pi * jcoupling * (I.z @ S.z)
rfham = (2 * np.pi * rf * I.x) + (2 * np.pi * rf * S.y)
acq_ham = 0 * S.z
acq = np.linspace(0, 1, 1000)
out_1 = mesolve_single(start=start, detect=None, ham=jham, time=5e-3)
out_2 = mesolve_single(start=out_1, detect=None, ham=rfham, time=25e-6)
fid = mesolve(start=out_2, detect=S.p, ham=jham, time=acq)
In [5]:
Copied!
ft = fid * np.exp(-4 * acq)
ft = np.fft.fftshift(np.fft.fft(ft))
fig, ax = plt.subplots(figsize=(6, 3))
ax.plot(ft.real)
plt.show()
ft = fid * np.exp(-4 * acq)
ft = np.fft.fftshift(np.fft.fft(ft))
fig, ax = plt.subplots(figsize=(6, 3))
ax.plot(ft.real)
plt.show()
Q1¶
- How do I get in-phase magnetization starting from the above output?
- How does one transfer the magnetization back to I?
- Plot the amplitude of the magnetization on S as s function of the inept delay time
In [6]:
Copied!
# your answers here
# your answers here
Q2¶
- Repeat this calculation for I2S and I3S spin systems and tell what the difference is.
- How does this help 'design' the DEPT experiment?